OpenFPGA/libs/libarchopenfpga/src/simulation_setting.cpp

356 lines
11 KiB
C++
Raw Normal View History

#include "simulation_setting.h"
#include "vtr_assert.h"
/* namespace openfpga begins */
namespace openfpga {
/************************************************************************
* Member functions for class SimulationSetting
***********************************************************************/
/************************************************************************
* Public Accessors : aggregates
***********************************************************************/
SimulationSetting::simulation_clock_range SimulationSetting::clocks() const {
return vtr::make_range(clock_ids_.begin(), clock_ids_.end());
}
std::vector<SimulationClockId> SimulationSetting::operating_clocks() const {
std::vector<SimulationClockId> op_clks;
for (const SimulationClockId& clk : clocks()) {
if (!clock_is_programming(clk)) {
op_clks.push_back(clk);
}
}
return op_clks;
}
std::vector<SimulationClockId> SimulationSetting::programming_clocks() const {
std::vector<SimulationClockId> prog_clks;
for (const SimulationClockId& clk : clocks()) {
if (clock_is_programming(clk)) {
prog_clks.push_back(clk);
}
}
return prog_clks;
}
std::vector<SimulationClockId>
SimulationSetting::programming_shift_register_clocks() const {
std::vector<SimulationClockId> prog_clks;
for (const SimulationClockId& clk : clocks()) {
if (clock_is_programming(clk) && clock_is_shift_register(clk)) {
prog_clks.push_back(clk);
}
}
return prog_clks;
}
/************************************************************************
* Constructors
***********************************************************************/
SimulationSetting::SimulationSetting() { return; }
/************************************************************************
* Public Accessors
***********************************************************************/
float SimulationSetting::default_operating_clock_frequency() const {
return default_clock_frequencies_.x();
}
2020-01-18 16:40:20 -06:00
float SimulationSetting::programming_clock_frequency() const {
return default_clock_frequencies_.y();
}
size_t SimulationSetting::num_simulation_clock_cycles() const {
return clock_ids_.size();
}
std::string SimulationSetting::clock_name(
const SimulationClockId& clock_id) const {
VTR_ASSERT(valid_clock_id(clock_id));
return clock_names_[clock_id];
}
BasicPort SimulationSetting::clock_port(
const SimulationClockId& clock_id) const {
VTR_ASSERT(valid_clock_id(clock_id));
return clock_ports_[clock_id];
}
float SimulationSetting::clock_frequency(
const SimulationClockId& clock_id) const {
VTR_ASSERT(valid_clock_id(clock_id));
return clock_frequencies_[clock_id];
}
bool SimulationSetting::clock_is_programming(
const SimulationClockId& clock_id) const {
VTR_ASSERT(valid_clock_id(clock_id));
return clock_is_programming_[clock_id];
}
bool SimulationSetting::clock_is_shift_register(
const SimulationClockId& clock_id) const {
VTR_ASSERT(valid_clock_id(clock_id));
return clock_is_shift_register_[clock_id];
}
bool SimulationSetting::auto_select_num_clock_cycles() const {
return 0 == num_clock_cycles_;
}
size_t SimulationSetting::num_clock_cycles() const { return num_clock_cycles_; }
float SimulationSetting::operating_clock_frequency_slack() const {
return operating_clock_frequency_slack_;
}
float SimulationSetting::simulation_temperature() const {
return simulation_temperature_;
}
bool SimulationSetting::verbose_output() const { return verbose_output_; }
bool SimulationSetting::capacitance_output() const {
return capacitance_output_;
}
e_sim_accuracy_type SimulationSetting::simulation_accuracy_type() const {
return simulation_accuracy_type_;
}
float SimulationSetting::simulation_accuracy() const {
return simulation_accuracy_;
}
bool SimulationSetting::fast_simulation() const { return fast_simulation_; }
bool SimulationSetting::run_monte_carlo_simulation() const {
return 0 == monte_carlo_simulation_points_;
}
size_t SimulationSetting::monte_carlo_simulation_points() const {
return monte_carlo_simulation_points_;
}
float SimulationSetting::measure_slew_upper_threshold(
const e_sim_signal_type& signal_type) const {
VTR_ASSERT(true ==
valid_signal_threshold(slew_upper_thresholds_[signal_type]));
return slew_upper_thresholds_[signal_type];
}
float SimulationSetting::measure_slew_lower_threshold(
const e_sim_signal_type& signal_type) const {
VTR_ASSERT(true ==
valid_signal_threshold(slew_lower_thresholds_[signal_type]));
return slew_lower_thresholds_[signal_type];
}
float SimulationSetting::measure_delay_input_threshold(
const e_sim_signal_type& signal_type) const {
VTR_ASSERT(true ==
valid_signal_threshold(delay_input_thresholds_[signal_type]));
return delay_input_thresholds_[signal_type];
}
float SimulationSetting::measure_delay_output_threshold(
const e_sim_signal_type& signal_type) const {
VTR_ASSERT(true ==
valid_signal_threshold(delay_output_thresholds_[signal_type]));
return delay_output_thresholds_[signal_type];
}
e_sim_accuracy_type SimulationSetting::stimuli_clock_slew_type(
const e_sim_signal_type& signal_type) const {
return clock_slew_types_[signal_type];
}
float SimulationSetting::stimuli_clock_slew(
const e_sim_signal_type& signal_type) const {
return clock_slews_[signal_type];
}
e_sim_accuracy_type SimulationSetting::stimuli_input_slew_type(
const e_sim_signal_type& signal_type) const {
return input_slew_types_[signal_type];
}
float SimulationSetting::stimuli_input_slew(
const e_sim_signal_type& signal_type) const {
return input_slews_[signal_type];
}
/************************************************************************
* Public Mutators
***********************************************************************/
void SimulationSetting::set_default_operating_clock_frequency(
const float& clock_freq) {
default_clock_frequencies_.set_x(clock_freq);
}
void SimulationSetting::set_programming_clock_frequency(
const float& clock_freq) {
default_clock_frequencies_.set_y(clock_freq);
}
SimulationClockId SimulationSetting::create_clock(const std::string& name) {
/* Ensure a unique name for the clock definition */
std::map<std::string, SimulationClockId>::iterator it =
clock_name2ids_.find(name);
if (it != clock_name2ids_.end()) {
return SimulationClockId::INVALID();
}
/* This is a legal name. we can create a new id */
SimulationClockId clock_id = SimulationClockId(clock_ids_.size());
clock_ids_.push_back(clock_id);
clock_names_.push_back(name);
clock_ports_.emplace_back();
clock_frequencies_.push_back(0.);
clock_is_programming_.push_back(false);
clock_is_shift_register_.push_back(false);
/* Register in the name-to-id map */
clock_name2ids_[name] = clock_id;
return clock_id;
}
void SimulationSetting::set_clock_port(const SimulationClockId& clock_id,
const BasicPort& port) {
VTR_ASSERT(valid_clock_id(clock_id));
clock_ports_[clock_id] = port;
}
void SimulationSetting::set_clock_frequency(const SimulationClockId& clock_id,
const float& frequency) {
VTR_ASSERT(valid_clock_id(clock_id));
clock_frequencies_[clock_id] = frequency;
}
void SimulationSetting::set_clock_is_programming(
const SimulationClockId& clock_id, const float& is_prog) {
VTR_ASSERT(valid_clock_id(clock_id));
clock_is_programming_[clock_id] = is_prog;
}
void SimulationSetting::set_clock_is_shift_register(
const SimulationClockId& clock_id, const float& is_sr) {
VTR_ASSERT(valid_clock_id(clock_id));
clock_is_shift_register_[clock_id] = is_sr;
}
void SimulationSetting::set_num_clock_cycles(const size_t& num_clk_cycles) {
num_clock_cycles_ = num_clk_cycles;
}
void SimulationSetting::set_operating_clock_frequency_slack(
const float& op_clk_freq_slack) {
operating_clock_frequency_slack_ = op_clk_freq_slack;
}
void SimulationSetting::set_simulation_temperature(const float& sim_temp) {
simulation_temperature_ = sim_temp;
}
void SimulationSetting::set_verbose_output(const bool& verbose_output) {
verbose_output_ = verbose_output;
}
void SimulationSetting::set_capacitance_output(const bool& cap_output) {
capacitance_output_ = cap_output;
}
void SimulationSetting::set_simulation_accuracy_type(
const e_sim_accuracy_type& type) {
VTR_ASSERT(NUM_SIM_ACCURACY_TYPES != type);
simulation_accuracy_type_ = type;
}
void SimulationSetting::set_simulation_accuracy(const float& accuracy) {
simulation_accuracy_ = accuracy;
}
void SimulationSetting::set_fast_simulation(const bool& fast_sim) {
fast_simulation_ = fast_sim;
}
void SimulationSetting::set_monte_carlo_simulation_points(
const size_t& num_mc_points) {
monte_carlo_simulation_points_ = num_mc_points;
}
void SimulationSetting::set_measure_slew_upper_threshold(
const e_sim_signal_type& signal_type, const float& upper_thres) {
VTR_ASSERT(NUM_SIM_SIGNAL_TYPES != signal_type);
VTR_ASSERT(true == valid_signal_threshold(upper_thres));
slew_upper_thresholds_[signal_type] = upper_thres;
}
void SimulationSetting::set_measure_slew_lower_threshold(
const e_sim_signal_type& signal_type, const float& lower_thres) {
VTR_ASSERT(NUM_SIM_SIGNAL_TYPES != signal_type);
VTR_ASSERT(true == valid_signal_threshold(lower_thres));
slew_lower_thresholds_[signal_type] = lower_thres;
}
void SimulationSetting::set_measure_delay_input_threshold(
const e_sim_signal_type& signal_type, const float& input_thres) {
VTR_ASSERT(NUM_SIM_SIGNAL_TYPES != signal_type);
VTR_ASSERT(true == valid_signal_threshold(input_thres));
delay_input_thresholds_[signal_type] = input_thres;
}
void SimulationSetting::set_measure_delay_output_threshold(
const e_sim_signal_type& signal_type, const float& output_thres) {
VTR_ASSERT(NUM_SIM_SIGNAL_TYPES != signal_type);
VTR_ASSERT(true == valid_signal_threshold(output_thres));
delay_output_thresholds_[signal_type] = output_thres;
}
void SimulationSetting::set_stimuli_clock_slew_type(
const e_sim_signal_type& signal_type, const e_sim_accuracy_type& slew_type) {
VTR_ASSERT(NUM_SIM_SIGNAL_TYPES != signal_type);
clock_slew_types_[signal_type] = slew_type;
}
void SimulationSetting::set_stimuli_clock_slew(
const e_sim_signal_type& signal_type, const float& clock_slew) {
clock_slews_[signal_type] = clock_slew;
}
void SimulationSetting::set_stimuli_input_slew_type(
const e_sim_signal_type& signal_type, const e_sim_accuracy_type& input_type) {
VTR_ASSERT(NUM_SIM_SIGNAL_TYPES != signal_type);
input_slew_types_[signal_type] = input_type;
}
void SimulationSetting::set_stimuli_input_slew(
const e_sim_signal_type& signal_type, const float& input_slew) {
input_slews_[signal_type] = input_slew;
}
/************************************************************************
* Public Validators
***********************************************************************/
bool SimulationSetting::valid_signal_threshold(const float& threshold) const {
return (0. < threshold) && (threshold < 1);
}
bool SimulationSetting::valid_clock_id(
const SimulationClockId& clock_id) const {
return (size_t(clock_id) < clock_ids_.size()) &&
(clock_id == clock_ids_[clock_id]);
}
bool SimulationSetting::constrained_clock(
const SimulationClockId& clock_id) const {
VTR_ASSERT(valid_clock_id(clock_id));
return 0. != clock_frequencies_[clock_id];
}
} // namespace openfpga