OpenFPGA/openfpga/src/utils/physical_pb_utils.cpp

470 lines
21 KiB
C++
Raw Normal View History

/************************************************************************
* Function to perform fundamental operation for the physical pb using
* data structures
***********************************************************************/
/* Headers from vtrutil library */
#include "vtr_assert.h"
#include "vtr_log.h"
/* Headers from openfpgautil library */
#include "openfpga_tokenizer.h"
#include "openfpga_naming.h"
#include "lut_utils.h"
#include "pb_type_utils.h"
#include "physical_pb_utils.h"
/* begin namespace openfpga */
namespace openfpga {
/************************************************************************
* Allocate an empty physical pb graph based on pb_graph
* This function should start with an empty physical pb object!!!
* Suggest to check this before executing this function
* VTR_ASSERT(true == phy_pb.empty());
***********************************************************************/
static
void rec_alloc_physical_pb_from_pb_graph(PhysicalPb& phy_pb,
const t_pb_graph_node* pb_graph_node,
const VprDeviceAnnotation& device_annotation) {
t_pb_type* pb_type = pb_graph_node->pb_type;
t_mode* physical_mode = device_annotation.physical_mode(pb_type);
PhysicalPbId cur_phy_pb_id = phy_pb.create_pb(pb_graph_node);
VTR_ASSERT(true == phy_pb.valid_pb_id(cur_phy_pb_id));
/* Finish for primitive node */
if (true == is_primitive_pb_type(pb_type)) {
/* Deposite mode bits here */
phy_pb.set_mode_bits(cur_phy_pb_id, device_annotation.pb_type_mode_bits(pb_type));
return;
}
/* Find the physical mode */
VTR_ASSERT(nullptr != physical_mode);
/* Go to the leaf nodes first. This aims to build all the primitive nodes first
* and then we build the parents and create links
*/
for (int ipb = 0; ipb < physical_mode->num_pb_type_children; ++ipb) {
for (int jpb = 0; jpb < physical_mode->pb_type_children[ipb].num_pb; ++jpb) {
rec_alloc_physical_pb_from_pb_graph(phy_pb,
&(pb_graph_node->child_pb_graph_nodes[physical_mode->index][ipb][jpb]),
device_annotation);
}
}
}
/************************************************************************
* Build all the relationships between parent and children
* inside a physical pb graph
* This function must be executed after rec_alloc_physical_pb_from_pb_graph()!!!
***********************************************************************/
static
void rec_build_physical_pb_children_from_pb_graph(PhysicalPb& phy_pb,
const t_pb_graph_node* pb_graph_node,
const VprDeviceAnnotation& device_annotation) {
t_pb_type* pb_type = pb_graph_node->pb_type;
/* Finish for primitive node */
if (true == is_primitive_pb_type(pb_type)) {
return;
}
t_mode* physical_mode = device_annotation.physical_mode(pb_type);
VTR_ASSERT(nullptr != physical_mode);
/* Please use the openfpga naming function so that you can build the link to module manager */
PhysicalPbId parent_pb_id = phy_pb.find_pb(pb_graph_node);
VTR_ASSERT(true == phy_pb.valid_pb_id(parent_pb_id));
/* Add all the children */
for (int ipb = 0; ipb < physical_mode->num_pb_type_children; ++ipb) {
for (int jpb = 0; jpb < physical_mode->pb_type_children[ipb].num_pb; ++jpb) {
PhysicalPbId child_pb_id = phy_pb.find_pb(&(pb_graph_node->child_pb_graph_nodes[physical_mode->index][ipb][jpb]));
VTR_ASSERT(true == phy_pb.valid_pb_id(child_pb_id));
phy_pb.add_child(parent_pb_id, child_pb_id, &(physical_mode->pb_type_children[ipb]));
}
}
/* Go to the leaf nodes first. This aims to build all the primitive nodes first
* and then we build the parents and create links
*/
for (int ipb = 0; ipb < physical_mode->num_pb_type_children; ++ipb) {
for (int jpb = 0; jpb < physical_mode->pb_type_children[ipb].num_pb; ++jpb) {
rec_build_physical_pb_children_from_pb_graph(phy_pb,
&(pb_graph_node->child_pb_graph_nodes[physical_mode->index][ipb][jpb]),
device_annotation);
}
}
}
/************************************************************************
* Allocate an empty physical pb graph based on pb_graph
* This function should start with an empty physical pb object!!!
* Suggest to check this before executing this function
* VTR_ASSERT(true == phy_pb.empty());
***********************************************************************/
void alloc_physical_pb_from_pb_graph(PhysicalPb& phy_pb,
const t_pb_graph_node* pb_graph_head,
const VprDeviceAnnotation& device_annotation) {
VTR_ASSERT(true == phy_pb.empty());
rec_alloc_physical_pb_from_pb_graph(phy_pb, pb_graph_head, device_annotation);
rec_build_physical_pb_children_from_pb_graph(phy_pb, pb_graph_head, device_annotation);
}
/************************************************************************
* Update a mapping net from a pin of an operating primitive pb to a
* physical pb data base
***********************************************************************/
static
void update_primitive_physical_pb_pin_atom_net(PhysicalPb& phy_pb,
const PhysicalPbId& primitive_pb,
const t_pb_graph_pin* pb_graph_pin,
const t_pb_routes& pb_route,
const VprDeviceAnnotation& device_annotation) {
int node_index = pb_graph_pin->pin_count_in_cluster;
if (pb_route.count(node_index)) {
/* The pin is mapped to a net, find the original pin in the atom netlist */
AtomNetId atom_net = pb_route[node_index].atom_net_id;
VTR_ASSERT(atom_net);
/* Find the physical pb_graph_pin */
2020-02-21 21:45:22 -06:00
t_pb_graph_pin* physical_pb_graph_pin = device_annotation.physical_pb_graph_pin(pb_graph_pin);
VTR_ASSERT(nullptr != physical_pb_graph_pin);
/* Print info to help debug
bool verbose = true;
VTR_LOGV(verbose,
"\nSynchronize net '%lu' to physical pb_graph_pin '%s.%s[%d]'\n",
size_t(atom_net),
pb_graph_pin->parent_node->pb_type->name,
pb_graph_pin->port->name,
pb_graph_pin->pin_number);
*/
/* Check if the pin has been mapped to a net.
* If yes, the atom net must be the same
*/
if (AtomNetId::INVALID() == phy_pb.pb_graph_pin_atom_net(primitive_pb, physical_pb_graph_pin)) {
phy_pb.set_pb_graph_pin_atom_net(primitive_pb, physical_pb_graph_pin, atom_net);
} else {
VTR_ASSERT(atom_net == phy_pb.pb_graph_pin_atom_net(primitive_pb, physical_pb_graph_pin));
}
}
}
/************************************************************************
* Synchronize mapping nets from an operating primitive pb to a physical pb
***********************************************************************/
static
void synchronize_primitive_physical_pb_atom_nets(PhysicalPb& phy_pb,
const PhysicalPbId& primitive_pb,
const t_pb_graph_node* pb_graph_node,
const t_pb_routes& pb_route,
const AtomContext& atom_ctx,
const AtomBlockId& atom_blk,
const VprDeviceAnnotation& device_annotation) {
/* Iterate over all the ports: input, output and clock */
for (int iport = 0; iport < pb_graph_node->num_input_ports; ++iport) {
for (int ipin = 0; ipin < pb_graph_node->num_input_pins[iport]; ++ipin) {
/* Port exists (some LUTs may have no input and hence no port in the atom netlist) */
t_model_ports* model_port = pb_graph_node->input_pins[iport][ipin].port->model_port;
if (nullptr == model_port) {
continue;
}
AtomPortId atom_port = atom_ctx.nlist.find_atom_port(atom_blk, model_port);
if (!atom_port) {
continue;
}
/* Find the atom nets mapped to the pin
* Note that some inputs may not be used, we set them to be open by default
*/
update_primitive_physical_pb_pin_atom_net(phy_pb, primitive_pb,
&(pb_graph_node->input_pins[iport][ipin]),
pb_route, device_annotation);
}
}
for (int iport = 0; iport < pb_graph_node->num_output_ports; ++iport) {
for (int ipin = 0; ipin < pb_graph_node->num_output_pins[iport]; ++ipin) {
/* Port exists (some LUTs may have no input and hence no port in the atom netlist) */
t_model_ports* model_port = pb_graph_node->output_pins[iport][ipin].port->model_port;
if (nullptr == model_port) {
continue;
}
AtomPortId atom_port = atom_ctx.nlist.find_atom_port(atom_blk, model_port);
if (!atom_port) {
continue;
}
/* Find the atom nets mapped to the pin
* Note that some inputs may not be used, we set them to be open by default
*/
update_primitive_physical_pb_pin_atom_net(phy_pb, primitive_pb,
&(pb_graph_node->output_pins[iport][ipin]),
pb_route, device_annotation);
}
}
for (int iport = 0; iport < pb_graph_node->num_clock_ports; ++iport) {
for (int ipin = 0; ipin < pb_graph_node->num_clock_pins[iport]; ++ipin) {
/* Port exists (some LUTs may have no input and hence no port in the atom netlist) */
t_model_ports* model_port = pb_graph_node->clock_pins[iport][ipin].port->model_port;
if (nullptr == model_port) {
continue;
}
AtomPortId atom_port = atom_ctx.nlist.find_atom_port(atom_blk, model_port);
if (!atom_port) {
continue;
}
/* Find the atom nets mapped to the pin
* Note that some inputs may not be used, we set them to be open by default
*/
update_primitive_physical_pb_pin_atom_net(phy_pb, primitive_pb,
&(pb_graph_node->clock_pins[iport][ipin]),
pb_route, device_annotation);
}
}
}
/************************************************************************
* Reach this function, the primitive pb should be
* - linked to a LUT pb_type
* - operating in the wire mode of a LUT
*
* Note: this function will not check the prequistics here
* Users must be responsible for this!!!
*
* This function will find the physical pb_graph_pin for each output
* of the pb_graph node and mark in the physical_pb database
* as driven by an wired LUT
***********************************************************************/
static
void mark_physical_pb_wired_lut_outputs(PhysicalPb& phy_pb,
const PhysicalPbId& primitive_pb,
const t_pb_graph_node* pb_graph_node,
const VprDeviceAnnotation& device_annotation,
const bool& verbose) {
for (int iport = 0; iport < pb_graph_node->num_output_ports; ++iport) {
for (int ipin = 0; ipin < pb_graph_node->num_output_pins[iport]; ++ipin) {
t_pb_graph_pin* pb_graph_pin = &(pb_graph_node->output_pins[iport][ipin]);
/* Find the physical pb_graph_pin */
t_pb_graph_pin* physical_pb_graph_pin = device_annotation.physical_pb_graph_pin(pb_graph_pin);
VTR_ASSERT(nullptr != physical_pb_graph_pin);
/* Print debug info */
VTR_LOGV(verbose,
"Mark physical pb_graph pin '%s.%s[%d]' as wire LUT output\n",
physical_pb_graph_pin->parent_node->pb_type->name,
physical_pb_graph_pin->port->name,
physical_pb_graph_pin->pin_number);
/* Label the pins in physical_pb as driven by wired LUT*/
phy_pb.set_wire_lut_output(primitive_pb, physical_pb_graph_pin, true);
}
}
}
/************************************************************************
* Synchronize mapping results from an operating pb to a physical pb
***********************************************************************/
void rec_update_physical_pb_from_operating_pb(PhysicalPb& phy_pb,
const t_pb* op_pb,
const t_pb_routes& pb_route,
const AtomContext& atom_ctx,
const VprDeviceAnnotation& device_annotation,
const VprBitstreamAnnotation& bitstream_annotation,
const bool& verbose) {
t_pb_graph_node* pb_graph_node = op_pb->pb_graph_node;
t_pb_type* pb_type = pb_graph_node->pb_type;
if (true == is_primitive_pb_type(pb_type)) {
t_pb_graph_node* physical_pb_graph_node = device_annotation.physical_pb_graph_node(pb_graph_node);
VTR_ASSERT(nullptr != physical_pb_graph_node);
/* Find the physical pb */
const PhysicalPbId& physical_pb = phy_pb.find_pb(physical_pb_graph_node);
VTR_ASSERT(true == phy_pb.valid_pb_id(physical_pb));
/* Set the mode bits */
2020-02-26 00:29:16 -06:00
phy_pb.set_mode_bits(physical_pb, device_annotation.pb_type_mode_bits(pb_type));
/* Find mapped atom block and add to this physical pb */
AtomBlockId atom_blk = atom_ctx.nlist.find_block(op_pb->name);
VTR_ASSERT(atom_blk);
phy_pb.add_atom_block(physical_pb, atom_blk);
/* if the operating pb type has bitstream annotation,
* bind the bitstream value from atom block to the physical pb
*/
if (VprBitstreamAnnotation::e_bitstream_source_type::BITSTREAM_SOURCE_EBLIF == bitstream_annotation.pb_type_bitstream_source(pb_type)) {
StringToken tokenizer = bitstream_annotation.pb_type_bitstream_content(pb_type);
std::vector<std::string> tokens = tokenizer.split(" ");
/* FIXME: The token-level check should be done much earlier!!! */
VTR_ASSERT(2 == tokens.size());
if (std::string(".param") == tokens[0]) {
for (const auto& param_search : atom_ctx.nlist.block_params(atom_blk)) {
if (param_search.first == tokens[1]) {
phy_pb.set_fixed_bitstream(physical_pb, param_search.second);
}
}
} else if (std::string(".attr") == tokens[0]) {
for (const auto& attr_search : atom_ctx.nlist.block_attrs(atom_blk)) {
if (attr_search.first == tokens[1]) {
phy_pb.set_fixed_bitstream(physical_pb, attr_search.second);
}
}
}
}
/* Iterate over ports and annotate the atom pins */
synchronize_primitive_physical_pb_atom_nets(phy_pb, physical_pb,
pb_graph_node,
pb_route,
atom_ctx, atom_blk,
device_annotation);
return;
}
/* Walk through the pb recursively but only visit the mapped modes and child pbs */
t_mode* mapped_mode = &(pb_graph_node->pb_type->modes[op_pb->mode]);
for (int ipb = 0; ipb < mapped_mode->num_pb_type_children; ++ipb) {
/* Each child may exist multiple times in the hierarchy*/
for (int jpb = 0; jpb < mapped_mode->pb_type_children[ipb].num_pb; ++jpb) {
if ((nullptr != op_pb->child_pbs[ipb]) && (nullptr != op_pb->child_pbs[ipb][jpb].name)) {
rec_update_physical_pb_from_operating_pb(phy_pb,
&(op_pb->child_pbs[ipb][jpb]),
pb_route,
atom_ctx,
device_annotation,
bitstream_annotation,
verbose);
} else {
/* Some pb may be used just in routing purpose, find out the output nets */
/* The following code is inspired by output_cluster.cpp */
bool is_used = false;
t_pb_type* child_pb_type = &(mapped_mode->pb_type_children[ipb]);
2020-04-22 18:28:16 -05:00
/* Bypass non-primitive pb_type, we care only the LUT pb_type */
if (false == is_primitive_pb_type(child_pb_type)) {
continue;
}
int port_index = 0;
t_pb_graph_node* child_pb_graph_node = &(pb_graph_node->child_pb_graph_nodes[op_pb->mode][ipb][jpb]);
for (int k = 0; k < child_pb_type->num_ports && !is_used; k++) {
if (OUT_PORT == child_pb_type->ports[k].type) {
for (int m = 0; m < child_pb_type->ports[k].num_pins; m++) {
int node_index = child_pb_graph_node->output_pins[port_index][m].pin_count_in_cluster;
if (pb_route.count(node_index) && pb_route[node_index].atom_net_id) {
is_used = true;
break;
}
}
port_index++;
}
}
/* Identify output pb_graph_pin that is driven by a wired LUT
* Without this function, physical Look-Up Table build-up will cause errors
* and bitstream will be incorrect!!!
*/
if (true == is_used) {
VTR_ASSERT(LUT_CLASS == child_pb_type->class_type);
t_pb_graph_node* physical_pb_graph_node = device_annotation.physical_pb_graph_node(child_pb_graph_node);
VTR_ASSERT(nullptr != physical_pb_graph_node);
/* Find the physical pb */
const PhysicalPbId& physical_pb = phy_pb.find_pb(physical_pb_graph_node);
VTR_ASSERT(true == phy_pb.valid_pb_id(physical_pb));
/* Set the mode bits */
phy_pb.set_mode_bits(physical_pb, device_annotation.pb_type_mode_bits(child_pb_type));
mark_physical_pb_wired_lut_outputs(phy_pb, physical_pb,
child_pb_graph_node,
device_annotation,
verbose);
}
}
}
}
}
/***************************************************************************************
* This function will identify all the wire LUTs that is created by repacker only
* under a physical pb
* Return the number of wire LUTs that are found
***************************************************************************************/
int identify_one_physical_pb_wire_lut_created_by_repack(PhysicalPb& physical_pb,
const PhysicalPbId& lut_pb_id,
const VprDeviceAnnotation& device_annotation,
const CircuitLibrary& circuit_lib,
const bool& verbose) {
int wire_lut_counter = 0;
const t_pb_graph_node* pb_graph_node = physical_pb.pb_graph_node(lut_pb_id);
CircuitModelId lut_model = device_annotation.pb_type_circuit_model(physical_pb.pb_graph_node(lut_pb_id)->pb_type);
VTR_ASSERT(CIRCUIT_MODEL_LUT == circuit_lib.model_type(lut_model));
/* Find all the nets mapped to each inputs */
std::vector<AtomNetId> input_nets;
for (int iport = 0; iport < pb_graph_node->num_input_ports; ++iport) {
for (int ipin = 0; ipin < pb_graph_node->num_input_pins[iport]; ++ipin) {
/* Skip the input pin that do not drive by LUT MUXes */
CircuitPortId circuit_port = device_annotation.pb_circuit_port(pb_graph_node->input_pins[iport][ipin].port);
if (true == circuit_lib.port_is_harden_lut_port(circuit_port)) {
continue;
}
input_nets.push_back(physical_pb.pb_graph_pin_atom_net(lut_pb_id, &(pb_graph_node->input_pins[iport][ipin])));
}
}
/* Find all the nets mapped to each outputs */
for (int iport = 0; iport < pb_graph_node->num_output_ports; ++iport) {
for (int ipin = 0; ipin < pb_graph_node->num_output_pins[iport]; ++ipin) {
const t_pb_graph_pin* output_pin = &(pb_graph_node->output_pins[iport][ipin]);
/* Skip the output ports that are not driven by LUT MUXes */
CircuitPortId circuit_port = device_annotation.pb_circuit_port(output_pin->port);
if (true == circuit_lib.port_is_harden_lut_port(circuit_port)) {
continue;
}
AtomNetId output_net = physical_pb.pb_graph_pin_atom_net(lut_pb_id, output_pin);
/* Bypass unmapped pins */
if (AtomNetId::INVALID() == output_net) {
continue;
}
/* Check if this is a LUT used as wiring */
if ( (false == physical_pb.is_wire_lut_output(lut_pb_id, output_pin))
&& (true == physical_pb.atom_blocks(lut_pb_id).empty())
&& (true == is_wired_lut(input_nets, output_net))) {
/* Print debug info */
VTR_LOGV(verbose,
"Identify physical pb_graph pin '%s.%s[%d]' as wire LUT output created by repacker\n",
output_pin->parent_node->pb_type->name,
output_pin->port->name,
output_pin->pin_number);
/* Label the pins in physical_pb as driven by wired LUT*/
physical_pb.set_wire_lut_output(lut_pb_id, output_pin, true);
wire_lut_counter++;
}
}
}
return wire_lut_counter;
}
} /* end namespace openfpga */