2020-02-17 18:57:43 -06:00
|
|
|
/***************************************************************************************
|
|
|
|
* This file includes functions that are used to redo packing for physical pbs
|
|
|
|
***************************************************************************************/
|
|
|
|
|
|
|
|
/* Headers from vtrutil library */
|
|
|
|
#include "vtr_log.h"
|
|
|
|
#include "vtr_assert.h"
|
|
|
|
#include "vtr_time.h"
|
|
|
|
|
2020-02-20 21:26:20 -06:00
|
|
|
/* Headers from vpr library */
|
|
|
|
#include "vpr_utils.h"
|
|
|
|
|
|
|
|
#include "pb_type_utils.h"
|
2020-02-20 14:24:34 -06:00
|
|
|
#include "build_physical_lb_rr_graph.h"
|
2020-02-20 21:26:20 -06:00
|
|
|
#include "lb_router.h"
|
|
|
|
#include "lb_router_utils.h"
|
2020-02-21 18:47:27 -06:00
|
|
|
#include "physical_pb_utils.h"
|
2020-02-17 18:57:43 -06:00
|
|
|
#include "repack.h"
|
|
|
|
|
|
|
|
/* begin namespace openfpga */
|
|
|
|
namespace openfpga {
|
|
|
|
|
2020-02-20 21:26:20 -06:00
|
|
|
/***************************************************************************************
|
|
|
|
* Try find the pin id which is mapped to a given atom net id in the context of pb route
|
|
|
|
***************************************************************************************/
|
|
|
|
static
|
|
|
|
std::vector<t_pb_graph_pin*> find_routed_pb_graph_pins_atom_net(const t_pb* pb,
|
|
|
|
const AtomNetId& atom_net_id,
|
|
|
|
t_pb_graph_pin** pb_graph_pin_lookup_from_index) {
|
|
|
|
std::vector<t_pb_graph_pin*> sink_pb_pins;
|
|
|
|
|
|
|
|
/* Find the sink nodes from top-level node */
|
|
|
|
for (int pin = 0; pin < pb->pb_graph_node->total_pb_pins; ++pin) {
|
|
|
|
/* Bypass unused pins */
|
|
|
|
if ((0 == pb->pb_route.count(pin)) || (AtomNetId::INVALID() == pb->pb_route[pin].atom_net_id)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* Get the driver pb pin id, it must be valid */
|
|
|
|
if (atom_net_id != pb->pb_route[pin].atom_net_id) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* Check each sink nodes, if pin belongs to an input of a primitive pb_graph_node, it is what we want */
|
|
|
|
for (const int& sink_pb_pin_id : pb->pb_route[pin].sink_pb_pin_ids) {
|
|
|
|
t_pb_graph_pin* sink_pb_pin = pb_graph_pin_lookup_from_index[sink_pb_pin_id];
|
|
|
|
VTR_ASSERT(nullptr != sink_pb_pin);
|
|
|
|
/* We care only
|
|
|
|
* - input pins of primitive nodes
|
|
|
|
* - output pins of top node
|
|
|
|
*/
|
|
|
|
if ( (true == is_primitive_pb_type(sink_pb_pin->parent_node->pb_type))
|
|
|
|
&& (IN_PORT == sink_pb_pin->port->type)) {
|
|
|
|
sink_pb_pins.push_back(sink_pb_pin);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( (true == sink_pb_pin->parent_node->is_root())
|
|
|
|
&& (OUT_PORT == sink_pb_pin->port->type)) {
|
|
|
|
sink_pb_pins.push_back(sink_pb_pin);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return sink_pb_pins;
|
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************************
|
|
|
|
* Find the corresponding nodes in a logical block routing resource graph
|
|
|
|
* with a given list of sink pb_graph pins
|
|
|
|
* Note that these sink pins belong to operating pb_graph_node,
|
|
|
|
* we will find the associated physical pb_graph_node as well as physical pins
|
|
|
|
* and then spot the nodes in lb_rr_graph
|
|
|
|
***************************************************************************************/
|
|
|
|
static
|
|
|
|
std::vector<LbRRNodeId> find_lb_net_physical_sink_lb_rr_nodes(const LbRRGraph& lb_rr_graph,
|
|
|
|
const std::vector<t_pb_graph_pin*>& sink_pins,
|
|
|
|
const VprDeviceAnnotation& device_annotation) {
|
|
|
|
std::vector<LbRRNodeId> sink_nodes;
|
|
|
|
|
|
|
|
for (t_pb_graph_pin* sink_pin : sink_pins) {
|
|
|
|
/* Find the physical pin */
|
|
|
|
t_pb_graph_pin* physical_sink_pin = nullptr;
|
|
|
|
if (true == sink_pin->parent_node->is_root()) {
|
|
|
|
physical_sink_pin = sink_pin;
|
|
|
|
} else {
|
|
|
|
physical_sink_pin = device_annotation.physical_pb_graph_pin(sink_pin);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if this is the root node, the physical pin is its self */
|
|
|
|
if (nullptr == physical_sink_pin) {
|
|
|
|
VTR_LOG("Fail to find a physical pin for operating pin '%s'!\n",
|
|
|
|
sink_pin->to_string().c_str());
|
|
|
|
}
|
|
|
|
VTR_ASSERT(nullptr != physical_sink_pin);
|
|
|
|
LbRRNodeId sink_lb_rr_node = lb_rr_graph.find_node(LB_INTERMEDIATE, physical_sink_pin);
|
|
|
|
if (true != lb_rr_graph.valid_node_id(sink_lb_rr_node)) {
|
|
|
|
VTR_LOG("Try to find the lb_rr_node for pb_graph_pin '%s'\n",
|
|
|
|
physical_sink_pin->to_string().c_str());
|
|
|
|
}
|
|
|
|
VTR_ASSERT(true == lb_rr_graph.valid_node_id(sink_lb_rr_node));
|
|
|
|
sink_nodes.push_back(sink_lb_rr_node);
|
|
|
|
}
|
|
|
|
|
|
|
|
return sink_nodes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************************
|
|
|
|
* Create nets to be routed, including the source nodes and terminals
|
|
|
|
* And add them to the logical block router
|
|
|
|
***************************************************************************************/
|
|
|
|
static
|
|
|
|
void add_lb_router_nets(LbRouter& lb_router,
|
|
|
|
t_logical_block_type_ptr lb_type,
|
|
|
|
const LbRRGraph& lb_rr_graph,
|
|
|
|
const AtomContext& atom_ctx,
|
|
|
|
const VprDeviceAnnotation& device_annotation,
|
|
|
|
const ClusteringContext& clustering_ctx,
|
|
|
|
const VprClusteringAnnotation& clustering_annotation,
|
|
|
|
const ClusterBlockId& block_id,
|
|
|
|
const bool& verbose) {
|
|
|
|
size_t net_counter = 0;
|
|
|
|
|
|
|
|
/* Two spots to find source nodes for each nets
|
|
|
|
* - nets that appear in the inputs of a clustered block
|
|
|
|
* Note that these nets may be moved to another input of the same cluster block
|
|
|
|
* we will locate the final pin and consider its corresponding routing resource node as source
|
|
|
|
* - nets that appear in the outputs of a primitive pb_graph_node
|
|
|
|
* Note that these primitive pb_graph node are operating pb_graph_node
|
|
|
|
* while we are considering physical pb_graph node
|
|
|
|
* Therefore, we will find the outputs of physical pb_graph_node corresponding to the operating one
|
|
|
|
* and then consider the assoicated routing resource node as source
|
|
|
|
*/
|
|
|
|
t_pb* pb = clustering_ctx.clb_nlist.block_pb(block_id);
|
|
|
|
VTR_ASSERT(true == pb->pb_graph_node->is_root());
|
|
|
|
|
|
|
|
/* Build the fast look-up between pb_pin_id and pb_graph_pin pointer */
|
|
|
|
t_pb_graph_pin** pb_graph_pin_lookup_from_index = alloc_and_load_pb_graph_pin_lookup_from_index(lb_type);
|
|
|
|
|
|
|
|
/* Find the source nodes for the nets mapped to inputs of a clustered block */
|
|
|
|
for (int j = 0; j < lb_type->pb_type->num_pins; j++) {
|
|
|
|
/* Find the net mapped to this pin in clustering results*/
|
|
|
|
ClusterNetId cluster_net_id = clustering_ctx.clb_nlist.block_net(block_id, j);
|
|
|
|
/* Get the actual net id because it may be renamed during routing */
|
|
|
|
if (true == clustering_annotation.is_net_renamed(block_id, j)) {
|
|
|
|
cluster_net_id = clustering_annotation.net(block_id, j);
|
|
|
|
}
|
|
|
|
/* Bypass unmapped pins */
|
|
|
|
if (ClusterNetId::INVALID() == cluster_net_id) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the source pb_graph pin and find the rr_node in logical block routing resource graph */
|
|
|
|
const t_pb_graph_pin* source_pb_pin = get_pb_graph_node_pin_from_block_pin(block_id, j);
|
|
|
|
VTR_ASSERT(source_pb_pin->parent_node == pb->pb_graph_node);
|
|
|
|
/* Bypass output pins */
|
|
|
|
if (OUT_PORT == source_pb_pin->port->type) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The outputs of pb_graph_node is INTERMEDIATE node in the routing resource graph,
|
|
|
|
* they are all connected to a common source node
|
|
|
|
*/
|
|
|
|
LbRRNodeId source_lb_rr_node = lb_rr_graph.find_node(LB_INTERMEDIATE, source_pb_pin);
|
|
|
|
VTR_ASSERT(true == lb_rr_graph.valid_node_id(source_lb_rr_node));
|
|
|
|
|
|
|
|
AtomNetId atom_net_id = atom_ctx.lookup.atom_net(cluster_net_id);
|
|
|
|
VTR_ASSERT(AtomNetId::INVALID() != atom_net_id);
|
|
|
|
|
|
|
|
/* Find all the sink pins in the pb_route, we walk through the input pins and find the pin */
|
|
|
|
std::vector<t_pb_graph_pin*> sink_pb_graph_pins = find_routed_pb_graph_pins_atom_net(pb, atom_net_id, pb_graph_pin_lookup_from_index);
|
|
|
|
std::vector<LbRRNodeId> sink_lb_rr_nodes = find_lb_net_physical_sink_lb_rr_nodes(lb_rr_graph, sink_pb_graph_pins, device_annotation);
|
|
|
|
VTR_ASSERT(sink_lb_rr_nodes.size() == sink_pb_graph_pins.size());
|
|
|
|
|
|
|
|
/* Add the net */
|
2020-02-20 22:56:15 -06:00
|
|
|
add_lb_router_net_to_route(lb_router, lb_rr_graph,
|
2020-02-20 21:26:20 -06:00
|
|
|
source_lb_rr_node, sink_lb_rr_nodes,
|
2020-02-20 22:56:15 -06:00
|
|
|
atom_ctx, atom_net_id);
|
2020-02-20 21:26:20 -06:00
|
|
|
net_counter++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Find the source nodes for the nets mapped to outputs of primitive pb_graph_node */
|
|
|
|
for (int pin = 0; pin < pb->pb_graph_node->total_pb_pins; ++pin) {
|
|
|
|
/* Bypass unused pins */
|
|
|
|
if ((0 == pb->pb_route.count(pin)) || (AtomNetId::INVALID() == pb->pb_route[pin].atom_net_id)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* Get the driver pb pin id, it must be valid */
|
|
|
|
int source_pb_pin_id = pb->pb_route[pin].driver_pb_pin_id;
|
|
|
|
if (OPEN == source_pb_pin_id) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
VTR_ASSERT(OPEN != source_pb_pin_id && source_pb_pin_id < pb->pb_graph_node->total_pb_pins);
|
|
|
|
/* Find the corresponding pb_graph_pin and its physical pb_graph_pin */
|
|
|
|
t_pb_graph_pin* source_pb_pin = pb_graph_pin_lookup_from_index[source_pb_pin_id];
|
|
|
|
/* Skip the pin from top-level pb_graph_node, they have been handled already */
|
|
|
|
if (source_pb_pin->parent_node == pb->pb_graph_node) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The pin must be an output of a primitive pb_graph_node */
|
|
|
|
if (OUT_PORT != source_pb_pin->port->type) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (true != is_primitive_pb_type(source_pb_pin->parent_node->pb_type)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The outputs of pb_graph_node is SOURCE node in the routing resource graph */
|
|
|
|
t_pb_graph_pin* physical_source_pb_pin = device_annotation.physical_pb_graph_pin(source_pb_pin);
|
|
|
|
LbRRNodeId source_lb_rr_node = lb_rr_graph.find_node(LB_SOURCE, physical_source_pb_pin);
|
|
|
|
VTR_ASSERT(true == lb_rr_graph.valid_node_id(source_lb_rr_node));
|
|
|
|
|
|
|
|
AtomNetId atom_net_id = pb->pb_route[pin].atom_net_id;
|
|
|
|
VTR_ASSERT(AtomNetId::INVALID() != atom_net_id);
|
|
|
|
|
|
|
|
/* Find all the sink pins in the pb_route */
|
|
|
|
std::vector<t_pb_graph_pin*> sink_pb_graph_pins = find_routed_pb_graph_pins_atom_net(pb, atom_net_id, pb_graph_pin_lookup_from_index);
|
|
|
|
std::vector<LbRRNodeId> sink_lb_rr_nodes = find_lb_net_physical_sink_lb_rr_nodes(lb_rr_graph, sink_pb_graph_pins, device_annotation);
|
|
|
|
VTR_ASSERT(sink_lb_rr_nodes.size() == sink_pb_graph_pins.size());
|
|
|
|
|
|
|
|
/* Add the net */
|
2020-02-20 22:56:15 -06:00
|
|
|
add_lb_router_net_to_route(lb_router, lb_rr_graph,
|
2020-02-20 21:26:20 -06:00
|
|
|
source_lb_rr_node, sink_lb_rr_nodes,
|
2020-02-20 22:56:15 -06:00
|
|
|
atom_ctx, atom_net_id);
|
2020-02-20 21:26:20 -06:00
|
|
|
net_counter++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free */
|
|
|
|
free_pb_graph_pin_lookup_from_index(pb_graph_pin_lookup_from_index);
|
|
|
|
|
|
|
|
VTR_LOGV(verbose,
|
|
|
|
"Added %lu nets to be routed.\n",
|
|
|
|
net_counter);
|
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************************
|
|
|
|
* Repack a clustered block in the physical mode
|
|
|
|
* This function will do
|
|
|
|
* - Find the lb_rr_graph that is affiliated to the clustered block
|
|
|
|
* and initilize the logcial tile router
|
|
|
|
* - Create nets to be routed, including the source nodes and terminals
|
|
|
|
* This should consider the net remapping in the clustering_annotation
|
|
|
|
* - Run the router to finish the repacking
|
|
|
|
* - Output routing results to data structure PhysicalPb and store it in clustering annotation
|
|
|
|
***************************************************************************************/
|
|
|
|
static
|
|
|
|
void repack_cluster(const DeviceContext& device_ctx,
|
|
|
|
const AtomContext& atom_ctx,
|
|
|
|
const ClusteringContext& clustering_ctx,
|
|
|
|
const VprDeviceAnnotation& device_annotation,
|
|
|
|
VprClusteringAnnotation& clustering_annotation,
|
|
|
|
const ClusterBlockId& block_id,
|
|
|
|
const bool& verbose) {
|
|
|
|
/* Get the pb graph that current clustered block is mapped to */
|
|
|
|
t_logical_block_type_ptr lb_type = clustering_ctx.clb_nlist.block_type(block_id);
|
|
|
|
t_pb_graph_node* pb_graph_head = lb_type->pb_graph_head;
|
|
|
|
VTR_ASSERT(nullptr != pb_graph_head);
|
|
|
|
|
|
|
|
/* We should get a non-empty graph */
|
|
|
|
const LbRRGraph& lb_rr_graph = device_annotation.physical_lb_rr_graph(pb_graph_head);
|
|
|
|
VTR_ASSERT(!lb_rr_graph.empty());
|
|
|
|
|
|
|
|
VTR_LOG("Repack clustered block '%s'...",
|
|
|
|
clustering_ctx.clb_nlist.block_name(block_id).c_str());
|
|
|
|
VTR_LOGV(verbose, "\n");
|
|
|
|
|
|
|
|
/* Initialize the router */
|
|
|
|
LbRouter lb_router(lb_rr_graph, lb_type);
|
|
|
|
|
|
|
|
/* Add nets to be routed with source and terminals */
|
|
|
|
add_lb_router_nets(lb_router, lb_type, lb_rr_graph, atom_ctx, device_annotation,
|
|
|
|
clustering_ctx, const_cast<const VprClusteringAnnotation&>(clustering_annotation),
|
|
|
|
block_id, verbose);
|
|
|
|
|
2020-02-21 12:29:00 -06:00
|
|
|
/* Initialize the modes to expand routing trees with the physical modes in device annotation
|
|
|
|
* This is a must-do before running the routeri in the purpose of repacking!!!
|
|
|
|
*/
|
|
|
|
lb_router.set_physical_pb_modes(lb_rr_graph, device_annotation);
|
|
|
|
|
2020-02-20 22:56:15 -06:00
|
|
|
/* Run the router */
|
|
|
|
bool route_success = lb_router.try_route(lb_rr_graph, atom_ctx.nlist, verbose);
|
|
|
|
|
2020-02-21 13:16:50 -06:00
|
|
|
if (false == route_success) {
|
2020-02-20 22:56:15 -06:00
|
|
|
VTR_LOGV(verbose, "Reroute failed\n");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
VTR_ASSERT(true == route_success);
|
|
|
|
VTR_LOGV(verbose, "Reroute succeed\n");
|
|
|
|
|
2020-02-21 18:47:27 -06:00
|
|
|
/* Annotate routing results to physical pb */
|
|
|
|
PhysicalPb phy_pb;
|
|
|
|
alloc_physical_pb_from_pb_graph(phy_pb, pb_graph_head, device_annotation);
|
|
|
|
rec_update_physical_pb_from_operating_pb(phy_pb, clustering_ctx.clb_nlist.block_pb(block_id));
|
|
|
|
|
|
|
|
/* Add the pb to clustering context */
|
|
|
|
clustering_annotation.add_physical_pb(block_id, phy_pb);
|
|
|
|
|
2020-02-20 21:26:20 -06:00
|
|
|
VTR_LOG("Done\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************************
|
|
|
|
* Repack each clustered blocks in the clustering context
|
|
|
|
***************************************************************************************/
|
|
|
|
static
|
|
|
|
void repack_clusters(const DeviceContext& device_ctx,
|
|
|
|
const AtomContext& atom_ctx,
|
|
|
|
const ClusteringContext& clustering_ctx,
|
|
|
|
const VprDeviceAnnotation& device_annotation,
|
|
|
|
VprClusteringAnnotation& clustering_annotation,
|
|
|
|
const bool& verbose) {
|
|
|
|
vtr::ScopedStartFinishTimer timer("Repack clustered blocks to physical implementation of logical tile");
|
|
|
|
|
|
|
|
for (auto blk_id : clustering_ctx.clb_nlist.blocks()) {
|
|
|
|
repack_cluster(device_ctx, atom_ctx, clustering_ctx,
|
|
|
|
device_annotation, clustering_annotation,
|
|
|
|
blk_id, verbose);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-02-17 18:57:43 -06:00
|
|
|
/***************************************************************************************
|
|
|
|
* Top-level function to pack physical pb_graph
|
|
|
|
* This function will do :
|
|
|
|
* - create physical lb_rr_graph for each pb_graph considering physical modes only
|
2020-02-20 14:24:34 -06:00
|
|
|
* the lb_rr_graph will be added to device annotation
|
2020-02-17 18:57:43 -06:00
|
|
|
* - annotate nets to be routed for each clustered block from operating modes of pb_graph
|
|
|
|
* to physical modes of pb_graph
|
|
|
|
* - rerun the routing for each clustered block
|
|
|
|
* - store the packing results to clustering annotation
|
|
|
|
***************************************************************************************/
|
|
|
|
void pack_physical_pbs(const DeviceContext& device_ctx,
|
2020-02-20 21:26:20 -06:00
|
|
|
const AtomContext& atom_ctx,
|
|
|
|
const ClusteringContext& clustering_ctx,
|
2020-02-20 14:24:34 -06:00
|
|
|
VprDeviceAnnotation& device_annotation,
|
2020-02-17 18:57:43 -06:00
|
|
|
VprClusteringAnnotation& clustering_annotation,
|
|
|
|
const bool& verbose) {
|
2020-02-20 14:24:34 -06:00
|
|
|
|
2020-02-20 21:26:20 -06:00
|
|
|
/* build the routing resource graph for each logical tile */
|
2020-02-20 14:24:34 -06:00
|
|
|
build_physical_lb_rr_graphs(device_ctx,
|
|
|
|
device_annotation,
|
|
|
|
verbose);
|
|
|
|
|
2020-02-20 21:26:20 -06:00
|
|
|
/* Call the LbRouter to re-pack each clustered block to physical implementation */
|
|
|
|
repack_clusters(device_ctx, atom_ctx, clustering_ctx,
|
|
|
|
const_cast<const VprDeviceAnnotation&>(device_annotation), clustering_annotation,
|
|
|
|
verbose);
|
2020-02-17 18:57:43 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
} /* end namespace openfpga */
|