pixelgl/planetfall.glsl

334 lines
9.1 KiB
Plaintext
Raw Permalink Normal View History

// Created by inigo quilez - iq/2018
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
// Pretty much a modification to Klems' shader (https://www.shadertoy.com/view/XlcfRs)
// Youtube version: https://www.youtube.com/watch?v=q1OBrqtl7Yo
#version 330 core
// Change AA to 1 if it renders too slow for you
#define AA 1
uniform vec2 uResolution;
uniform float uTime; // shader playback time (in seconds)
uniform vec4 uMouse;
// there is tearing on my box. is this because this isn't working? -- jcarr
uniform int iFrame; // shader playback frame
out vec4 fragColor;
// in vec2 fragCoord;
mat3 makeBase( in vec3 w )
{
float k = inversesqrt(1.0-w.y*w.y);
return mat3( vec3(-w.z,0.0,w.x)*k,
vec3(-w.x*w.y,1.0-w.y*w.y,-w.y*w.z)*k,
w);
}
#define ZERO (min(iFrame,0))
// http://iquilezles.org/www/articles/intersectors/intersectors.htm
vec2 sphIntersect( in vec3 ro, in vec3 rd, in float rad )
{
float b = dot( ro, rd );
float c = dot( ro, ro ) - rad*rad;
float h = b*b - c;
if( h<0.0 ) return vec2(-1.0);
h = sqrt(h);
return vec2(-b-h,-b+h);
}
// http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
float sdCapsule( in vec3 p, in float b, in float r )
{
float h = clamp( p.z/b, 0.0, 1.0 );
return length( p - vec3(0.0,0.0,b)*h ) - r;//*(0.2+1.6*h);
}
// modified Keinert et al's inverse Spherical Fibonacci Mapping
vec4 inverseSF( in vec3 p, const in float n )
{
const float PI = 3.14159265359;
const float PHI = 1.61803398875;
float phi = min(atan(p.y,p.x),PI);
float k = max(floor(log(n*PI*sqrt(5.0)*(1.-p.z*p.z))/log(PHI+1.)),2.0);
float Fk = pow(PHI,k)/sqrt(5.0);
vec2 F = vec2(round(Fk),round(Fk*PHI));
vec2 G = PI*(fract((F+1.0)*PHI)-(PHI-1.0));
mat2 iB = mat2(F.y,-F.x,G.y,-G.x)/(F.y*G.x-F.x*G.y);
vec2 c = floor(iB*0.5*vec2(phi,n*p.z-n+1.0));
float ma = 0.0;
vec4 res = vec4(0);
for( int s=0; s<4; s++ )
{
vec2 uv = vec2(s&1,s>>1);
float i = dot(F,uv+c);
float phi = 2.0*PI*fract(i*PHI);
float cT = 1.0 - (2.0*i+1.0)/n;
float sT = sqrt(1.0-cT*cT);
vec3 q = vec3(cos(phi)*sT, sin(phi)*sT,cT);
float a = dot(p,q);
if (a > ma)
{
ma = a;
res.xyz = q;
res.w = i;
}
}
return res;
}
float map( in vec3 p, out vec4 color, const in bool doColor )
{
float lp = length(p);
float dmin = lp-1.0;
{
vec3 w = p/lp;
vec4 fibo = inverseSF(w, 700.0);
float hh = 1.0 - smoothstep(0.05,0.1,length(fibo.xyz-w));
dmin -= 0.07*hh;
color = vec4(0.05,0.1,0.1,1.0)*hh * (1.0+0.5*sin(fibo.w*111.1));
}
float s = 1.0;
for( int i=0; i<3; i++ )
{
float h = float(i)/float(3-1);
vec4 f = inverseSF(normalize(p), 65.0 + h*75.0);
// snap
p -= f.xyz;
// orient to surface
p = p*makeBase(f.xyz);
// scale
float scale = 6.6 + 2.0*sin(111.0*f.w);
p *= scale;
p.xy *= 1.2;
//translate
p.z -= 3.0 - length(p.xy)*0.6*sin(f.w*212.1);
// measure distance
s *= scale;
float d = sdCapsule( p, -6.0, 0.42 );
d /= s;
if( d<dmin )
{
if( doColor )
{
color.w *= smoothstep(0.0, 5.0/s, dmin-d);
if( i==0 )
{
color.xyz = vec3(0.425,0.36,0.1)*1.1; // fall
//color.xyz = vec3(0.4,0.8,0.1); // summer
//color.xyz = vec3(0.4,0.4,0.8); // winter
}
color.zyx += 0.3*(1.0-sqrt(h))*sin(f.w*1111.0+vec3(0.0,1.0,2.0));
color.xyz = max(color.xyz,0.0);
}
dmin = d;
}
else
{
color.w *= 0.4*(0.1 + 0.9*smoothstep(0.0, 1.0/s, d-dmin));
}
}
return dmin;
}
// http://iquilezles.org/www/articles/normalsSDF/normalsSDF.htm
vec3 calcNormal( in vec3 pos, in float ep )
{
vec4 kk;
#if 0
vec2 e = vec2(1.0,-1.0)*0.5773;
return normalize( e.xyy*map( pos + e.xyy*ep, kk, false ) +
e.yyx*map( pos + e.yyx*ep, kk, false ) +
e.yxy*map( pos + e.yxy*ep, kk, false ) +
e.xxx*map( pos + e.xxx*ep, kk, false ) );
#else
// prevent the compiler from inlining map() 4 times
vec3 n = vec3(0.0);
for( int i=ZERO; i<4; i++ )
{
vec3 e = 0.5773*(2.0*vec3((((i+3)>>1)&1),((i>>1)&1),(i&1))-1.0);
n += e*map(pos+e*ep, kk, false);
}
return normalize(n);
#endif
}
// http://iquilezles.org/www/articles/rmshadows/rmshadows.htm
float calcSoftshadow( in vec3 ro, in vec3 rd, float tmin, float tmax, const float k )
{
vec2 bound = sphIntersect( ro, rd, 2.1 );
tmin = max(tmin,bound.x);
tmax = min(tmax,bound.y);
float res = 1.0;
float t = tmin;
for( int i=0; i<50; i++ )
{
vec4 kk;
float h = map( ro + rd*t, kk, false );
res = min( res, k*h/t );
t += clamp( h, 0.02, 0.20 );
if( res<0.005 || t>tmax ) break;
}
return clamp( res, 0.0, 1.0 );
}
float raycast(in vec3 ro, in vec3 rd, in float tmin, in float tmax )
{
vec4 kk;
float t = tmin;
for( int i=0; i<512; i++ )
{
vec3 p = ro + t*rd;
float h = map(p,kk,false);
if( abs(h)<(0.15*t/uResolution.x) ) break;
t += h*0.5;
if( t>tmax ) return -1.0;;
}
//if( t>tmax ) t=-1.0;
return t;
}
// void mainImage( out vec4 fragColor, in vec2 fragCoord )
// gl_FragCoord.xy
void main()
{
float an = (uTime-10.0)*0.05;
// camera
vec3 ro = vec3( 4.5*sin(an), 0.0, 4.5*cos(an) );
vec3 ta = vec3( 0.0, 0.0, 0.0 );
// camera-to-world rotation
mat3 ca = makeBase( normalize(ta-ro) );
// render
vec3 tot = vec3(0.0);
#if AA>1
for( int m=ZERO; m<AA; m++ )
for( int n=ZERO; n<AA; n++ )
{
// pixel coordinates
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
vec2 p = (-uResolution.xy + 2.0*(gl_FragCoord.xy+o))/uResolution.y;
#else
vec2 p = (-uResolution.xy + 2.0*gl_FragCoord.xy)/uResolution.y;
#endif
// ray direction
vec3 rd = ca * normalize( vec3(p.xy,2.2) );
// background
vec3 col = vec3(0.1,0.14,0.18) + 0.1*rd.y;
// bounding volume
vec2 bound = sphIntersect( ro, rd, 2.1 );
if( bound.x>0.0 )
{
// raycast
float t = raycast(ro, rd, bound.x, bound.y );
if( t>0.0 )
{
// local geometry
vec3 pos = ro + t*rd;
vec3 nor = calcNormal(pos, 0.01);
vec3 upp = normalize(pos);
// color and occlusion
vec4 mate; map(pos, mate, true);
// lighting
col = vec3(0.0);
// key ligh
{
// dif
vec3 lig = normalize(vec3(1.0,0.0,0.7));
float dif = clamp(0.5+0.5*dot(nor,lig),0.0,1.0);
float sha = calcSoftshadow( pos+0.0001*nor, lig, 0.0001, 2.0, 6.0 );
col += mate.xyz*dif*vec3(1.8,0.6,0.5)*1.1*vec3(sha,sha*0.3+0.7*sha*sha,sha*sha);
// spec
vec3 hal = normalize(lig-rd);
float spe = clamp( dot(nor,hal), 0.0, 1.0 );
float fre = clamp( dot(-rd,lig), 0.0, 1.0 );
fre = 0.2 + 0.8*pow(fre,5.0);
spe *= spe;
spe *= spe;
spe *= spe;
col += 1.0*(0.25+0.75*mate.x)*spe*dif*sha*fre;
}
// back light
{
vec3 lig = normalize(vec3(-1.0,0.0,0.0));
float dif = clamp(0.5+0.5*dot(nor,lig),0.0,1.0);
col += mate.rgb*dif*vec3(1.2,0.9,0.6)*0.2*mate.w;
}
// dome light
{
float dif = clamp(0.3+0.7*dot(nor,upp),0.0,1.0);
#if 0
dif *= 0.05 + 0.95*calcSoftshadow( pos+0.0001*nor, upp, 0.0001, 1.0, 1.0 );
col += mate.xyz*dif*5.0*vec3(0.1,0.1,0.3)*mate.w;
#else
col += mate.xyz*dif*3.0*vec3(0.1,0.1,0.3)*mate.w*(0.2+0.8*mate.w);
#endif
}
// fake sss
{
float fre = clamp(1.0+dot(rd,nor),0.0,1.0);
col += 0.3*vec3(1.0,0.3,0.2)*mate.xyz*mate.xyz*fre*fre*mate.w;
}
// grade/sss
{
col = 2.0*pow( col, vec3(0.7,0.85,1.0) );
}
// exposure control
col *= 0.7 + 0.3*smoothstep(0.0,25.0,abs(uTime-31.0));
// display fake occlusion
//col = mate.www;
}
}
// gamma
col = pow( col, vec3(0.4545) );
tot += col;
#if AA>1
}
tot /= float(AA*AA);
#endif
// vignetting
vec2 q = gl_FragCoord.xy/uResolution.xy;
tot *= pow( 16.0*q.x*q.y*(1.0-q.x)*(1.0-q.y), 0.2 );
fragColor = vec4( tot, 1.0 );
}