// Created by inigo quilez - iq/2018 // License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. // Pretty much a modification to Klems' shader (https://www.shadertoy.com/view/XlcfRs) // Youtube version: https://www.youtube.com/watch?v=q1OBrqtl7Yo #version 330 core // Change AA to 1 if it renders too slow for you #define AA 1 uniform vec2 uResolution; uniform float uTime; // shader playback time (in seconds) uniform vec4 uMouse; // there is tearing on my box. is this because this isn't working? -- jcarr uniform int iFrame; // shader playback frame out vec4 fragColor; // in vec2 fragCoord; mat3 makeBase( in vec3 w ) { float k = inversesqrt(1.0-w.y*w.y); return mat3( vec3(-w.z,0.0,w.x)*k, vec3(-w.x*w.y,1.0-w.y*w.y,-w.y*w.z)*k, w); } #define ZERO (min(iFrame,0)) // http://iquilezles.org/www/articles/intersectors/intersectors.htm vec2 sphIntersect( in vec3 ro, in vec3 rd, in float rad ) { float b = dot( ro, rd ); float c = dot( ro, ro ) - rad*rad; float h = b*b - c; if( h<0.0 ) return vec2(-1.0); h = sqrt(h); return vec2(-b-h,-b+h); } // http://iquilezles.org/www/articles/distfunctions/distfunctions.htm float sdCapsule( in vec3 p, in float b, in float r ) { float h = clamp( p.z/b, 0.0, 1.0 ); return length( p - vec3(0.0,0.0,b)*h ) - r;//*(0.2+1.6*h); } // modified Keinert et al's inverse Spherical Fibonacci Mapping vec4 inverseSF( in vec3 p, const in float n ) { const float PI = 3.14159265359; const float PHI = 1.61803398875; float phi = min(atan(p.y,p.x),PI); float k = max(floor(log(n*PI*sqrt(5.0)*(1.-p.z*p.z))/log(PHI+1.)),2.0); float Fk = pow(PHI,k)/sqrt(5.0); vec2 F = vec2(round(Fk),round(Fk*PHI)); vec2 G = PI*(fract((F+1.0)*PHI)-(PHI-1.0)); mat2 iB = mat2(F.y,-F.x,G.y,-G.x)/(F.y*G.x-F.x*G.y); vec2 c = floor(iB*0.5*vec2(phi,n*p.z-n+1.0)); float ma = 0.0; vec4 res = vec4(0); for( int s=0; s<4; s++ ) { vec2 uv = vec2(s&1,s>>1); float i = dot(F,uv+c); float phi = 2.0*PI*fract(i*PHI); float cT = 1.0 - (2.0*i+1.0)/n; float sT = sqrt(1.0-cT*cT); vec3 q = vec3(cos(phi)*sT, sin(phi)*sT,cT); float a = dot(p,q); if (a > ma) { ma = a; res.xyz = q; res.w = i; } } return res; } float map( in vec3 p, out vec4 color, const in bool doColor ) { float lp = length(p); float dmin = lp-1.0; { vec3 w = p/lp; vec4 fibo = inverseSF(w, 700.0); float hh = 1.0 - smoothstep(0.05,0.1,length(fibo.xyz-w)); dmin -= 0.07*hh; color = vec4(0.05,0.1,0.1,1.0)*hh * (1.0+0.5*sin(fibo.w*111.1)); } float s = 1.0; for( int i=0; i<3; i++ ) { float h = float(i)/float(3-1); vec4 f = inverseSF(normalize(p), 65.0 + h*75.0); // snap p -= f.xyz; // orient to surface p = p*makeBase(f.xyz); // scale float scale = 6.6 + 2.0*sin(111.0*f.w); p *= scale; p.xy *= 1.2; //translate p.z -= 3.0 - length(p.xy)*0.6*sin(f.w*212.1); // measure distance s *= scale; float d = sdCapsule( p, -6.0, 0.42 ); d /= s; if( d>1)&1),((i>>1)&1),(i&1))-1.0); n += e*map(pos+e*ep, kk, false); } return normalize(n); #endif } // http://iquilezles.org/www/articles/rmshadows/rmshadows.htm float calcSoftshadow( in vec3 ro, in vec3 rd, float tmin, float tmax, const float k ) { vec2 bound = sphIntersect( ro, rd, 2.1 ); tmin = max(tmin,bound.x); tmax = min(tmax,bound.y); float res = 1.0; float t = tmin; for( int i=0; i<50; i++ ) { vec4 kk; float h = map( ro + rd*t, kk, false ); res = min( res, k*h/t ); t += clamp( h, 0.02, 0.20 ); if( res<0.005 || t>tmax ) break; } return clamp( res, 0.0, 1.0 ); } float raycast(in vec3 ro, in vec3 rd, in float tmin, in float tmax ) { vec4 kk; float t = tmin; for( int i=0; i<512; i++ ) { vec3 p = ro + t*rd; float h = map(p,kk,false); if( abs(h)<(0.15*t/uResolution.x) ) break; t += h*0.5; if( t>tmax ) return -1.0;; } //if( t>tmax ) t=-1.0; return t; } // void mainImage( out vec4 fragColor, in vec2 fragCoord ) // gl_FragCoord.xy void main() { float an = (uTime-10.0)*0.05; // camera vec3 ro = vec3( 4.5*sin(an), 0.0, 4.5*cos(an) ); vec3 ta = vec3( 0.0, 0.0, 0.0 ); // camera-to-world rotation mat3 ca = makeBase( normalize(ta-ro) ); // render vec3 tot = vec3(0.0); #if AA>1 for( int m=ZERO; m0.0 ) { // raycast float t = raycast(ro, rd, bound.x, bound.y ); if( t>0.0 ) { // local geometry vec3 pos = ro + t*rd; vec3 nor = calcNormal(pos, 0.01); vec3 upp = normalize(pos); // color and occlusion vec4 mate; map(pos, mate, true); // lighting col = vec3(0.0); // key ligh { // dif vec3 lig = normalize(vec3(1.0,0.0,0.7)); float dif = clamp(0.5+0.5*dot(nor,lig),0.0,1.0); float sha = calcSoftshadow( pos+0.0001*nor, lig, 0.0001, 2.0, 6.0 ); col += mate.xyz*dif*vec3(1.8,0.6,0.5)*1.1*vec3(sha,sha*0.3+0.7*sha*sha,sha*sha); // spec vec3 hal = normalize(lig-rd); float spe = clamp( dot(nor,hal), 0.0, 1.0 ); float fre = clamp( dot(-rd,lig), 0.0, 1.0 ); fre = 0.2 + 0.8*pow(fre,5.0); spe *= spe; spe *= spe; spe *= spe; col += 1.0*(0.25+0.75*mate.x)*spe*dif*sha*fre; } // back light { vec3 lig = normalize(vec3(-1.0,0.0,0.0)); float dif = clamp(0.5+0.5*dot(nor,lig),0.0,1.0); col += mate.rgb*dif*vec3(1.2,0.9,0.6)*0.2*mate.w; } // dome light { float dif = clamp(0.3+0.7*dot(nor,upp),0.0,1.0); #if 0 dif *= 0.05 + 0.95*calcSoftshadow( pos+0.0001*nor, upp, 0.0001, 1.0, 1.0 ); col += mate.xyz*dif*5.0*vec3(0.1,0.1,0.3)*mate.w; #else col += mate.xyz*dif*3.0*vec3(0.1,0.1,0.3)*mate.w*(0.2+0.8*mate.w); #endif } // fake sss { float fre = clamp(1.0+dot(rd,nor),0.0,1.0); col += 0.3*vec3(1.0,0.3,0.2)*mate.xyz*mate.xyz*fre*fre*mate.w; } // grade/sss { col = 2.0*pow( col, vec3(0.7,0.85,1.0) ); } // exposure control col *= 0.7 + 0.3*smoothstep(0.0,25.0,abs(uTime-31.0)); // display fake occlusion //col = mate.www; } } // gamma col = pow( col, vec3(0.4545) ); tot += col; #if AA>1 } tot /= float(AA*AA); #endif // vignetting vec2 q = gl_FragCoord.xy/uResolution.xy; tot *= pow( 16.0*q.x*q.y*(1.0-q.x)*(1.0-q.y), 0.2 ); fragColor = vec4( tot, 1.0 ); }