gemini-cli/packages/cli/src/core/gemini-client.ts

384 lines
18 KiB
TypeScript

import {
GenerateContentConfig, GoogleGenAI, Part, Chat,
Type,
SchemaUnion,
PartListUnion,
Content
} from '@google/genai';
import { getApiKey } from '../config/env.js';
import { CoreSystemPrompt } from './prompts.js';
import { type ToolCallEvent, type ToolCallConfirmationDetails, ToolCallStatus } from '../ui/types.js';
import process from 'node:process';
import { toolRegistry } from '../tools/tool-registry.js';
import { ToolResult } from '../tools/tools.js';
import { getFolderStructure } from '../utils/getFolderStructure.js';
import { GeminiEventType, GeminiStream } from './gemini-stream.js';
type ToolExecutionOutcome = {
callId: string;
name: string;
args: Record<string, any>;
result?: ToolResult;
error?: any;
confirmationDetails?: ToolCallConfirmationDetails;
};
export class GeminiClient {
private ai: GoogleGenAI;
private defaultHyperParameters: GenerateContentConfig = {
temperature: 0,
topP: 1,
};
private readonly MAX_TURNS = 100;
constructor() {
const apiKey = getApiKey();
this.ai = new GoogleGenAI({ apiKey });
}
public async startChat(): Promise<Chat> {
const tools = toolRegistry.getToolSchemas();
// --- Get environmental information ---
const cwd = process.cwd();
const today = new Date().toLocaleDateString(undefined, { // Use locale-aware date formatting
weekday: 'long', year: 'numeric', month: 'long', day: 'numeric'
});
const platform = process.platform;
// --- Format information into a conversational multi-line string ---
const folderStructure = await getFolderStructure(cwd);
// --- End folder structure formatting ---)
const initialContextText = `
Okay, just setting up the context for our chat.
Today is ${today}.
My operating system is: ${platform}
I'm currently working in the directory: ${cwd}
${folderStructure}
`.trim();
const initialContextPart: Part = { text: initialContextText };
// --- End environmental information formatting ---
try {
const chat = this.ai.chats.create({
model: 'gemini-2.0-flash',//'gemini-2.0-flash',
config: {
systemInstruction: CoreSystemPrompt,
...this.defaultHyperParameters,
tools,
},
history: [
// --- Add the context as a single part in the initial user message ---
{
role: "user",
parts: [initialContextPart] // Pass the single Part object in an array
},
// --- Add an empty model response to balance the history ---
{
role: "model",
parts: [{ text: "Got it. Thanks for the context!" }] // A slightly more conversational model response
}
// --- End history modification ---
],
});
return chat;
} catch (error) {
console.error("Error initializing Gemini chat session:", error);
const message = error instanceof Error ? error.message : "Unknown error.";
throw new Error(`Failed to initialize chat: ${message}`);
}
}
public addMessageToHistory(chat: Chat, message: Content): void {
const history = chat.getHistory();
history.push(message);
this.ai.chats
chat
}
public async* sendMessageStream(
chat: Chat,
request: PartListUnion,
signal?: AbortSignal
): GeminiStream {
let currentMessageToSend: PartListUnion = request;
let turns = 0;
try {
while (turns < this.MAX_TURNS) {
turns++;
const resultStream = await chat.sendMessageStream({ message: currentMessageToSend });
let functionResponseParts: Part[] = [];
let pendingToolCalls: Array<{ callId: string; name: string; args: Record<string, any> }> = [];
let yieldedTextInTurn = false;
const chunksForDebug = [];
for await (const chunk of resultStream) {
chunksForDebug.push(chunk);
if (signal?.aborted) {
const abortError = new Error("Request cancelled by user during stream.");
abortError.name = 'AbortError';
throw abortError;
}
const functionCalls = chunk.functionCalls;
if (functionCalls && functionCalls.length > 0) {
for (const call of functionCalls) {
const callId = call.id ?? `${call.name}-${Date.now()}-${Math.random().toString(16).slice(2)}`;
const name = call.name || 'undefined_tool_name';
const args = (call.args || {}) as Record<string, any>;
pendingToolCalls.push({ callId, name, args });
const evtValue: ToolCallEvent = {
type: 'tool_call',
status: ToolCallStatus.Pending,
callId,
name,
args,
resultDisplay: undefined,
confirmationDetails: undefined,
}
yield {
type: GeminiEventType.ToolCallInfo,
value: evtValue,
};
}
} else {
const text = chunk.text;
if (text) {
yieldedTextInTurn = true;
yield {
type: GeminiEventType.Content,
value: text,
};
}
}
}
if (pendingToolCalls.length > 0) {
const toolPromises: Promise<ToolExecutionOutcome>[] = pendingToolCalls.map(async pendingToolCall => {
const tool = toolRegistry.getTool(pendingToolCall.name);
if (!tool) {
// Directly return error outcome if tool not found
return { ...pendingToolCall, error: new Error(`Tool "${pendingToolCall.name}" not found or is not registered.`) };
}
try {
const confirmation = await tool.shouldConfirmExecute(pendingToolCall.args);
if (confirmation) {
return { ...pendingToolCall, confirmationDetails: confirmation };
}
} catch (error) {
return { ...pendingToolCall, error: new Error(`Tool failed to check tool confirmation: ${error}`) };
}
try {
const result = await tool.execute(pendingToolCall.args);
return { ...pendingToolCall, result };
} catch (error) {
return { ...pendingToolCall, error: new Error(`Tool failed to execute: ${error}`) };
}
});
const toolExecutionOutcomes: ToolExecutionOutcome[] = await Promise.all(toolPromises);
for (const executedTool of toolExecutionOutcomes) {
const { callId, name, args, result, error, confirmationDetails } = executedTool;
if (error) {
const errorMessage = error?.message || String(error);
yield {
type: GeminiEventType.Content,
value: `[Error invoking tool ${name}: ${errorMessage}]`,
};
} else if (result && typeof result === 'object' && result !== null && 'error' in result) {
const errorMessage = String(result.error);
yield {
type: GeminiEventType.Content,
value: `[Error executing tool ${name}: ${errorMessage}]`,
};
} else {
const status = confirmationDetails ? ToolCallStatus.Confirming : ToolCallStatus.Invoked;
const evtValue: ToolCallEvent = { type: 'tool_call', status, callId, name, args, resultDisplay: result?.returnDisplay, confirmationDetails }
yield {
type: GeminiEventType.ToolCallInfo,
value: evtValue,
};
}
}
pendingToolCalls = [];
const waitingOnConfirmations = toolExecutionOutcomes.filter(outcome => outcome.confirmationDetails).length > 0;
if (waitingOnConfirmations) {
// Stop processing content, wait for user.
// TODO: Kill token processing once API supports signals.
break;
}
functionResponseParts = toolExecutionOutcomes.map((executedTool: ToolExecutionOutcome): Part => {
const { name, result, error } = executedTool;
const output = { "output": result?.llmContent };
let toolOutcomePayload: any;
if (error) {
const errorMessage = error?.message || String(error);
toolOutcomePayload = { error: `Invocation failed: ${errorMessage}` };
console.error(`[Turn ${turns}] Critical error invoking tool ${name}:`, error);
} else if (result && typeof result === 'object' && result !== null && 'error' in result) {
toolOutcomePayload = output;
console.warn(`[Turn ${turns}] Tool ${name} returned an error structure:`, result.error);
} else {
toolOutcomePayload = output;
}
return {
functionResponse: {
name: name,
id: executedTool.callId,
response: toolOutcomePayload,
},
};
});
currentMessageToSend = functionResponseParts;
} else if (yieldedTextInTurn) {
const history = chat.getHistory();
const checkPrompt = `Analyze *only* the content and structure of your immediately preceding response (your last turn in the conversation history). Based *strictly* on that response, determine who should logically speak next: the 'user' or the 'model' (you).
**Decision Rules (apply in order):**
1. **Model Continues:** If your last response explicitly states an immediate next action *you* intend to take (e.g., "Next, I will...", "Now I'll process...", "Moving on to analyze...", indicates an intended tool call that didn't execute), OR if the response seems clearly incomplete (cut off mid-thought without a natural conclusion), then the **'model'** should speak next.
2. **Question to User:** If your last response ends with a direct question specifically addressed *to the user*, then the **'user'** should speak next.
3. **Waiting for User:** If your last response completed a thought, statement, or task *and* does not meet the criteria for Rule 1 (Model Continues) or Rule 2 (Question to User), it implies a pause expecting user input or reaction. In this case, the **'user'** should speak next.
**Output Format:**
Respond *only* in JSON format according to the following schema. Do not include any text outside the JSON structure.
\`\`\`json
{
"type": "object",
"properties": {
"reasoning": {
"type": "string",
"description": "Brief explanation justifying the 'next_speaker' choice based *strictly* on the applicable rule and the content/structure of the preceding turn."
},
"next_speaker": {
"type": "string",
"enum": ["user", "model"],
"description": "Who should speak next based *only* on the preceding turn and the decision rules."
}
},
"required": ["next_speaker", "reasoning"]
\`\`\`
}`;
// Schema Idea
const responseSchema: SchemaUnion = {
type: Type.OBJECT,
properties: {
reasoning: {
type: Type.STRING,
description: "Brief explanation justifying the 'next_speaker' choice based *strictly* on the applicable rule and the content/structure of the preceding turn."
},
next_speaker: {
type: Type.STRING,
enum: ['user', 'model'], // Enforce the choices
description: "Who should speak next based *only* on the preceding turn and the decision rules",
},
},
required: ['reasoning', 'next_speaker']
};
try {
// Use the new generateJson method, passing the history and the check prompt
const parsedResponse = await this.generateJson([...history, { role: "user", parts: [{ text: checkPrompt }] }], responseSchema);
// Safely extract the next speaker value
const nextSpeaker: string | undefined = typeof parsedResponse?.next_speaker === 'string' ? parsedResponse.next_speaker : undefined;
if (nextSpeaker === 'model') {
currentMessageToSend = { text: 'alright' }; // Or potentially a more meaningful continuation prompt
} else {
// 'user' should speak next, or value is missing/invalid. End the turn.
break;
}
} catch (error) {
console.error(`[Turn ${turns}] Failed to get or parse next speaker check:`, error);
// If the check fails, assume user should speak next to avoid infinite loops
break;
}
} else {
console.warn(`[Turn ${turns}] No text or function calls received from Gemini. Ending interaction.`);
break;
}
}
if (turns >= this.MAX_TURNS) {
console.warn("sendMessageStream: Reached maximum tool call turns limit.");
yield {
type: GeminiEventType.Content,
value: "\n\n[System Notice: Maximum interaction turns reached. The conversation may be incomplete.]",
};
}
} catch (error: unknown) {
if (error instanceof Error && error.name === 'AbortError') {
console.log("Gemini stream request aborted by user.");
throw error;
} else {
console.error(`Error during Gemini stream or tool interaction:`, error);
const message = error instanceof Error ? error.message : String(error);
yield {
type: GeminiEventType.Content,
value: `\n\n[Error: An unexpected error occurred during the chat: ${message}]`,
};
throw error;
}
}
}
/**
* Generates structured JSON content based on conversational history and a schema.
* @param contents The conversational history (Content array) to provide context.
* @param schema The SchemaUnion defining the desired JSON structure.
* @returns A promise that resolves to the parsed JSON object matching the schema.
* @throws Throws an error if the API call fails or the response is not valid JSON.
*/
public async generateJson(contents: Content[], schema: SchemaUnion): Promise<any> {
try {
const result = await this.ai.models.generateContent({
model: 'gemini-2.0-flash', // Using flash for potentially faster structured output
config: {
...this.defaultHyperParameters,
systemInstruction: CoreSystemPrompt,
responseSchema: schema,
responseMimeType: 'application/json',
},
contents: contents, // Pass the full Content array
});
const responseText = result.text;
if (!responseText) {
throw new Error("API returned an empty response.");
}
try {
const parsedJson = JSON.parse(responseText);
// TODO: Add schema validation if needed
return parsedJson;
} catch (parseError) {
console.error("Failed to parse JSON response:", responseText);
throw new Error(`Failed to parse API response as JSON: ${parseError instanceof Error ? parseError.message : String(parseError)}`);
}
} catch (error) {
console.error("Error generating JSON content:", error);
const message = error instanceof Error ? error.message : "Unknown API error.";
throw new Error(`Failed to generate JSON content: ${message}`);
}
}
}