import { GenerateContentConfig, GoogleGenAI, Part, Chat, Type, SchemaUnion, PartListUnion, Content } from '@google/genai'; import { getApiKey } from '../config/env.js'; import { CoreSystemPrompt } from './prompts.js'; import { type ToolCallEvent, type ToolCallConfirmationDetails, ToolCallStatus } from '../ui/types.js'; import process from 'node:process'; import { toolRegistry } from '../tools/tool-registry.js'; import { ToolResult } from '../tools/tools.js'; import { getFolderStructure } from '../utils/getFolderStructure.js'; import { GeminiEventType, GeminiStream } from './gemini-stream.js'; type ToolExecutionOutcome = { callId: string; name: string; args: Record; result?: ToolResult; error?: any; confirmationDetails?: ToolCallConfirmationDetails; }; export class GeminiClient { private ai: GoogleGenAI; private defaultHyperParameters: GenerateContentConfig = { temperature: 0, topP: 1, }; private readonly MAX_TURNS = 100; constructor() { const apiKey = getApiKey(); this.ai = new GoogleGenAI({ apiKey }); } public async startChat(): Promise { const tools = toolRegistry.getToolSchemas(); // --- Get environmental information --- const cwd = process.cwd(); const today = new Date().toLocaleDateString(undefined, { // Use locale-aware date formatting weekday: 'long', year: 'numeric', month: 'long', day: 'numeric' }); const platform = process.platform; // --- Format information into a conversational multi-line string --- const folderStructure = await getFolderStructure(cwd); // --- End folder structure formatting ---) const initialContextText = ` Okay, just setting up the context for our chat. Today is ${today}. My operating system is: ${platform} I'm currently working in the directory: ${cwd} ${folderStructure} `.trim(); const initialContextPart: Part = { text: initialContextText }; // --- End environmental information formatting --- try { const chat = this.ai.chats.create({ model: 'gemini-2.0-flash',//'gemini-2.0-flash', config: { systemInstruction: CoreSystemPrompt, ...this.defaultHyperParameters, tools, }, history: [ // --- Add the context as a single part in the initial user message --- { role: "user", parts: [initialContextPart] // Pass the single Part object in an array }, // --- Add an empty model response to balance the history --- { role: "model", parts: [{ text: "Got it. Thanks for the context!" }] // A slightly more conversational model response } // --- End history modification --- ], }); return chat; } catch (error) { console.error("Error initializing Gemini chat session:", error); const message = error instanceof Error ? error.message : "Unknown error."; throw new Error(`Failed to initialize chat: ${message}`); } } public addMessageToHistory(chat: Chat, message: Content): void { const history = chat.getHistory(); history.push(message); this.ai.chats chat } public async* sendMessageStream( chat: Chat, request: PartListUnion, signal?: AbortSignal ): GeminiStream { let currentMessageToSend: PartListUnion = request; let turns = 0; try { while (turns < this.MAX_TURNS) { turns++; const resultStream = await chat.sendMessageStream({ message: currentMessageToSend }); let functionResponseParts: Part[] = []; let pendingToolCalls: Array<{ callId: string; name: string; args: Record }> = []; let yieldedTextInTurn = false; const chunksForDebug = []; for await (const chunk of resultStream) { chunksForDebug.push(chunk); if (signal?.aborted) { const abortError = new Error("Request cancelled by user during stream."); abortError.name = 'AbortError'; throw abortError; } const functionCalls = chunk.functionCalls; if (functionCalls && functionCalls.length > 0) { for (const call of functionCalls) { const callId = call.id ?? `${call.name}-${Date.now()}-${Math.random().toString(16).slice(2)}`; const name = call.name || 'undefined_tool_name'; const args = (call.args || {}) as Record; pendingToolCalls.push({ callId, name, args }); const evtValue: ToolCallEvent = { type: 'tool_call', status: ToolCallStatus.Pending, callId, name, args, resultDisplay: undefined, confirmationDetails: undefined, } yield { type: GeminiEventType.ToolCallInfo, value: evtValue, }; } } else { const text = chunk.text; if (text) { yieldedTextInTurn = true; yield { type: GeminiEventType.Content, value: text, }; } } } if (pendingToolCalls.length > 0) { const toolPromises: Promise[] = pendingToolCalls.map(async pendingToolCall => { const tool = toolRegistry.getTool(pendingToolCall.name); if (!tool) { // Directly return error outcome if tool not found return { ...pendingToolCall, error: new Error(`Tool "${pendingToolCall.name}" not found or is not registered.`) }; } try { const confirmation = await tool.shouldConfirmExecute(pendingToolCall.args); if (confirmation) { return { ...pendingToolCall, confirmationDetails: confirmation }; } } catch (error) { return { ...pendingToolCall, error: new Error(`Tool failed to check tool confirmation: ${error}`) }; } try { const result = await tool.execute(pendingToolCall.args); return { ...pendingToolCall, result }; } catch (error) { return { ...pendingToolCall, error: new Error(`Tool failed to execute: ${error}`) }; } }); const toolExecutionOutcomes: ToolExecutionOutcome[] = await Promise.all(toolPromises); for (const executedTool of toolExecutionOutcomes) { const { callId, name, args, result, error, confirmationDetails } = executedTool; if (error) { const errorMessage = error?.message || String(error); yield { type: GeminiEventType.Content, value: `[Error invoking tool ${name}: ${errorMessage}]`, }; } else if (result && typeof result === 'object' && result !== null && 'error' in result) { const errorMessage = String(result.error); yield { type: GeminiEventType.Content, value: `[Error executing tool ${name}: ${errorMessage}]`, }; } else { const status = confirmationDetails ? ToolCallStatus.Confirming : ToolCallStatus.Invoked; const evtValue: ToolCallEvent = { type: 'tool_call', status, callId, name, args, resultDisplay: result?.returnDisplay, confirmationDetails } yield { type: GeminiEventType.ToolCallInfo, value: evtValue, }; } } pendingToolCalls = []; const waitingOnConfirmations = toolExecutionOutcomes.filter(outcome => outcome.confirmationDetails).length > 0; if (waitingOnConfirmations) { // Stop processing content, wait for user. // TODO: Kill token processing once API supports signals. break; } functionResponseParts = toolExecutionOutcomes.map((executedTool: ToolExecutionOutcome): Part => { const { name, result, error } = executedTool; const output = { "output": result?.llmContent }; let toolOutcomePayload: any; if (error) { const errorMessage = error?.message || String(error); toolOutcomePayload = { error: `Invocation failed: ${errorMessage}` }; console.error(`[Turn ${turns}] Critical error invoking tool ${name}:`, error); } else if (result && typeof result === 'object' && result !== null && 'error' in result) { toolOutcomePayload = output; console.warn(`[Turn ${turns}] Tool ${name} returned an error structure:`, result.error); } else { toolOutcomePayload = output; } return { functionResponse: { name: name, id: executedTool.callId, response: toolOutcomePayload, }, }; }); currentMessageToSend = functionResponseParts; } else if (yieldedTextInTurn) { const history = chat.getHistory(); const checkPrompt = `Analyze *only* the content and structure of your immediately preceding response (your last turn in the conversation history). Based *strictly* on that response, determine who should logically speak next: the 'user' or the 'model' (you). **Decision Rules (apply in order):** 1. **Model Continues:** If your last response explicitly states an immediate next action *you* intend to take (e.g., "Next, I will...", "Now I'll process...", "Moving on to analyze...", indicates an intended tool call that didn't execute), OR if the response seems clearly incomplete (cut off mid-thought without a natural conclusion), then the **'model'** should speak next. 2. **Question to User:** If your last response ends with a direct question specifically addressed *to the user*, then the **'user'** should speak next. 3. **Waiting for User:** If your last response completed a thought, statement, or task *and* does not meet the criteria for Rule 1 (Model Continues) or Rule 2 (Question to User), it implies a pause expecting user input or reaction. In this case, the **'user'** should speak next. **Output Format:** Respond *only* in JSON format according to the following schema. Do not include any text outside the JSON structure. \`\`\`json { "type": "object", "properties": { "reasoning": { "type": "string", "description": "Brief explanation justifying the 'next_speaker' choice based *strictly* on the applicable rule and the content/structure of the preceding turn." }, "next_speaker": { "type": "string", "enum": ["user", "model"], "description": "Who should speak next based *only* on the preceding turn and the decision rules." } }, "required": ["next_speaker", "reasoning"] \`\`\` }`; // Schema Idea const responseSchema: SchemaUnion = { type: Type.OBJECT, properties: { reasoning: { type: Type.STRING, description: "Brief explanation justifying the 'next_speaker' choice based *strictly* on the applicable rule and the content/structure of the preceding turn." }, next_speaker: { type: Type.STRING, enum: ['user', 'model'], // Enforce the choices description: "Who should speak next based *only* on the preceding turn and the decision rules", }, }, required: ['reasoning', 'next_speaker'] }; try { // Use the new generateJson method, passing the history and the check prompt const parsedResponse = await this.generateJson([...history, { role: "user", parts: [{ text: checkPrompt }] }], responseSchema); // Safely extract the next speaker value const nextSpeaker: string | undefined = typeof parsedResponse?.next_speaker === 'string' ? parsedResponse.next_speaker : undefined; if (nextSpeaker === 'model') { currentMessageToSend = { text: 'alright' }; // Or potentially a more meaningful continuation prompt } else { // 'user' should speak next, or value is missing/invalid. End the turn. break; } } catch (error) { console.error(`[Turn ${turns}] Failed to get or parse next speaker check:`, error); // If the check fails, assume user should speak next to avoid infinite loops break; } } else { console.warn(`[Turn ${turns}] No text or function calls received from Gemini. Ending interaction.`); break; } } if (turns >= this.MAX_TURNS) { console.warn("sendMessageStream: Reached maximum tool call turns limit."); yield { type: GeminiEventType.Content, value: "\n\n[System Notice: Maximum interaction turns reached. The conversation may be incomplete.]", }; } } catch (error: unknown) { if (error instanceof Error && error.name === 'AbortError') { console.log("Gemini stream request aborted by user."); throw error; } else { console.error(`Error during Gemini stream or tool interaction:`, error); const message = error instanceof Error ? error.message : String(error); yield { type: GeminiEventType.Content, value: `\n\n[Error: An unexpected error occurred during the chat: ${message}]`, }; throw error; } } } /** * Generates structured JSON content based on conversational history and a schema. * @param contents The conversational history (Content array) to provide context. * @param schema The SchemaUnion defining the desired JSON structure. * @returns A promise that resolves to the parsed JSON object matching the schema. * @throws Throws an error if the API call fails or the response is not valid JSON. */ public async generateJson(contents: Content[], schema: SchemaUnion): Promise { try { const result = await this.ai.models.generateContent({ model: 'gemini-2.0-flash', // Using flash for potentially faster structured output config: { ...this.defaultHyperParameters, systemInstruction: CoreSystemPrompt, responseSchema: schema, responseMimeType: 'application/json', }, contents: contents, // Pass the full Content array }); const responseText = result.text; if (!responseText) { throw new Error("API returned an empty response."); } try { const parsedJson = JSON.parse(responseText); // TODO: Add schema validation if needed return parsedJson; } catch (parseError) { console.error("Failed to parse JSON response:", responseText); throw new Error(`Failed to parse API response as JSON: ${parseError instanceof Error ? parseError.message : String(parseError)}`); } } catch (error) { console.error("Error generating JSON content:", error); const message = error instanceof Error ? error.message : "Unknown API error."; throw new Error(`Failed to generate JSON content: ${message}`); } } }