* Change: In Hurricane::Isobar/PyHurricane.h, make the hash function use
the DBo id whenever possible instead of the object pointer, fall back
to it for standalone objects (Box like one). The DirectHashMethod()
macro generate a C style function (linkage) which call a template
function "getPyHash<>()" that uses a SFINAE mechanism to select
the right variant.
Create two comparison macros DirectCmpByPtrMethod() and
DirectCmpByValueMethod() to customize the comparison for objects that
have C++ operator==(). So now two boxes with the same contents will
be seen equal by Python. For DBo objects we keep the previous
comparison by C++ pointer.
* Bug: In Hurricane::DbU, replace long by DbU::Unit (aka int64_t) in all
remaining occurrences.
* Change: In Hurricane::DbU::getValueString(), rewrite using ostringstream.
* Change: In Hurricane, in PyHurricane.h, PyAny_AsLong<> template to
convert any kind of Python integer into DbU, making sure we always
use 64 bits integers (long long for 32 bits and long for 64 bits).
PyDbU_FromLong<> template to peform the reverse, DbU to Python
integer in 64 bits (either using PyLong_FromLong() or
PyLong_FromLongLong()).
* Bug: In Isobar, in PyArg_ParseTuple(), never use the "l" direct
converter when reading a DbU. Instead read a PyObject then convert
using PyAny_AsLong<>. This ensure to never do a truncature.
* Change: In Hurricane Commons.h, even when cdebug print nothing, it slow
down the program (three times for Kite!). Create a macro cdebug_log
which calls cdebug *only* if the debug level is active.
* Change: In Hurricane, in Flags add operator overload for "int" type
and not only "unsigned int". Otherwise the compiler complaints about
ambiguous overload when using enum values which are considered as
"int".
Simpler code for the BaseFlags::contains() method.
Added implicit conversion from BaseFlags toward bool type.
* Change: In Hurricane, in Commons, complete replacement of the previous
two trace systems (trace & ltrace) by a stream-based one.
As it is a true object it is much less fragile than the one based
on defines (but maybe a little slower).
Define a reservation table for the trace levels for all the
Coriolis & Chams components.
* Change: All tools, use the new trace system.
* New: In CRL Core, in helpers & alliance.conf, set and read a "PAD"
variable to define the pad model name extension ("px" for "sxlib
and "pxr" for vsxlib, this is provisional).
* New: In CRL Core, in plugin.conf, add parameters to define the name
of used for power & clock supply. We may remove the extention in
the future (to be more coherent with the previous modification).
* New: In Cumulus, in chip.Configuration.GaugeConf._rpAccess(), no
longer place the accessing contact *at the center* of the
RoutingPad. It works under sxlib because buffers & registers all
have same size terminals. But this is not true under vsxlib,
leading to misaligned contacts & wires. Now systematically place
on the slice midlle track (maybe with one pitch above or below).
This is still very weak as we do not check if the terminal
reach were the contact is being put. Has to be strenthened in
the future.
* New: In Cumulus, in chip.Configuration.ChipConf, read the new
clock & power pad parameters.
* Change: In Isobar (and all other Python wrappers), uses PyLong instead
of PyInt for DbU conversions. In PyHurricane argument converter,
automatically check for both PyLong and then PyInt.
* Change: In Cumulus, in chip.PadsCorona, more accurate error message
in case of discrepency in global net connections (i.e. no net
of the same name in instance model and instance model owner.
* Change: In Kite, in BuildPowerRails, when looking up at the pads
model name to find "pck_" or "pvddeck_", do not compare the
extension part. But we still use hard-coded stem pad names,
maybe we shouldn't.
* Bug: In Katabatic, in GCellConfiguration::_do_xG_xM1_xM3(), there
was a loop in the search of the best N/E initial RoutingPad.
* Bug: In Kite, in KiteEngine::protectRoutingPads(), *do not* protect
RoutingPads of fixed nets, they are already through the
BuildPowerRails stage (and it's causing scary overlap warning
messages).
* Bug: In Cumulus, in ClockTree.HTreeNode.addLeaf(), do not create
deep-plug when the core is flat (not sub-modules). All the new
nets are at core level.
* Bug: In Cumulus, in ChipPlugin.PlaceCore.doFloorplan(), ensure
that the core is aligned on the GCell grid (i.e. the slice
grid of the overall chip).
* Bug: In Kite, in GCellTopology::_do_xG_xM1_xM3(), infinite loop
while looking for the bigger N-E RoutingPad. Forgot to decrement
the index...
* Change: In Isobar, the Python interface was not exactly mirroring the
C++ one, now it is the case. The Python code should look likes almost
exactly like the C++ one, the only differences remaining being due
to the languages respective syntaxes. Note that in the case of
constructor functions, it leads to a slightly longer notation in
Python that it could have been (mimic the ".create()" static
member). Main modifications:
1. Mirror the static constructor syntax with create():
Cell( ... ) ==> Cell.create( ... )
2. Correct hierarchy for constants in Instance, Net, Pin
& Transformation. For example:
Hurricane.PlacementStatusFIXED
==> Hurricane.Instance.PlacementStatus.FIXED
Hurricane.OrientationID
==> Hurricane.Transformation.Orientation.ID
Hurricane.TypeLOGICAL ==> Hurricane.Net.Type.LOGICAL
Hurricane.DirectionIN ==> Hurricane.Net.Direction.IN
* Change: In CRL Core, correction to match the improved Python API
in the configutation helpers.
* Change: In Cumulus, correction to match the improved Python API.
* Change: In Stratus, correction to match the improved Python API.
* Change: In Documenation, update for the new Python interface
(both user's guide & examples).
* Note: We must port those changes into Chams for it to continue
to run.
* Change: In Documenation, update the Python script support part.
* New: In CRL Core, in PyCellGauge, add the missing methods.
* Bug: In Isobar, PyOccurrence_create(), the HTRY/HCATCH block was not
enclosing the constructor of Occurrence, which can throw exceptions.
When an exception was thown the Python interpreter just terminate
with the cryptic message:
"Fatal Python error: Py_EndInterpreter: thread still has a frame"
Reminder to myself: when such a message occurs, it means that the
interpreter did encounter a problem, but it's related to the isobar
interface.
I rewrited everything like it was in Coriolis-1 (PyType_create) and reuse the precedent hierarchical system (PyTypeInheritedObjectDefinition)
With all these changes Pharos is able to run the same script several times without any error (and not only 7 times before crash)
Maybe there are still some bugs but it seems ok for the moment :D.