* New: In Anabatic::NetBuilder, set all the attributes as private and
create accessors and mutators.
Finish virtualising all GCell build methods and transfer them
into the NetBuilderHV class.
Build methods now return a boolean to tell if the GCell was
processed or not, to allow cascading in the "big switch".
Reorganise the "big switch" in separate sections only partially
cascading.
Truly fuse the *big switch* for channel routing and over-the-cells.
Create a new method "_do_globalSegment()" to delagate the
drawing of global segments between two GCell to the derived classes.
* New: In Anabatic, rename GCellTopology to NetBuilder, expose the class
(no longer in a local namespace).
NetBuilder become a base class performing the walkthrough the Net
tree. Derived class are tasked to build routing for specific gauge.
NetBuilderHV is created to manage all gauge with metal2 horizontal
and metal3 vertical.
In our terminolgy we consider that the first routing metal is
metal2. Metal1 is used inside the standard cells.
* Change: In Anabatic, remove GraphicAnabaticEngine, PyGraphicAnabaticEngine,
PyAnabaticEngine (but keep PyAnabatic for constants exportation)
and GlobalRoute (moved to Katana). Drawing methods for Edge & GCell
are moved into GraphicKatanaEngine.
* New: In Anabatic:
- In AnabaticEngine, keep track of overflowed edges.
- In AnabaticEngine, getNetsFromedge() to lookup all nets going
through an Edge.
- In Configuration, read the Kite "reserved local" parameter to
decrease the Edge capacity (it's a guessing of the cost of the
local routing).
- In Edge, add an attribute to know if there is an associated
segment of the current net (set by Dijkstra::_traceback()).
Transparently manage the overflowed edges.
- In GCell_Edges, correct a filtering bug when not all sides are
selecteds.
- New GCell::getEdgeTo() to find the edge between two adjacent
GCells.
- New GCell::unrefContact() to automatically removes global contacts
no longer used by any global segments (used during the ripup
step).
- In Dijkstra::load(), now able to "reload" and already partially
or completly routed net (look for Contact of "gcontact" layer
and their attached segments).
- In Dijkstra, keep the last net loaded until the next one is.
Put the cleanup operations in an isolated function "_cleanup()".
- In Dijkstra::_selectFirstsource() and run(), load first source
component made of multiple vertexes.
- In Dijkstra::_trackback(), link the Net segments to the Edges.
- New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform
the ripup of one edge of a Net (must be loaded in Dijkstra first).
Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes
- that are connecteds through edges *with* segments.
- In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global
routing tool with ripup & reroute.