* Bug: In Anabatic::Edge::getDistance(), remove the additionnal 0.1
added to horizontal edges. This was for testing before the hScaling
parameter was added (to the distance computation in GlobalRoute).
* New: Anabatic::Path_Edges, collectio to walkthrough all the edges
between two node. More complex than in Knik as we are no longer
using a regular grid. We may request the north bound path or south
bound path.
Collection returned by AnabaticEngine::getEdgesUnderPath().
* New: In Anabatic::NetData, add a new flag GlobalEstimated to tell if
the net RMST has been computed (using FLUTE).
* New: In Anabatic::PriorityQueue, used to sort Vertexes by increasing
distances, add a new criterion to be used in case of distance
equality. The attractor which should be the center of the search
area. In case of equality, we choose the Vertex which is closest
to the attractor. Give a small improvement, and more "dendritic"
trees.
For a more simple implementation of the comparison function it is
made as a static member (so no two Dijkstra objects at the same
time...).
* Change: In Anabatic::Edge, make the estimate occupance a floating
point number instead of an integer.
* New: In Katana::GlobalRoute, finally implement the estimated congestion
driven router. Net RMST estimated using FLUTE.
Use the historic cost from Knik implementation and not the one
given in Damien's thesis, which seems not be the same and a bit
strange.
* New: In KatanaEngine, add the ability to exclude nets from routing,
and export it to Python.
* Change: To allow multiple tools, and not only Knik, to link and use
FLUTE, remove it from Knik and put it at top level.
Bootsrap must compile this new tool and the library must be
included in all CMakeLists.txt depending on Knik (and soon
Anabatic).
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
* New: In Katana::TrackCost, the TrackElement and it's optional
symmetric are now kept as attribute of a TrackCost. The cost
is completly computed inside the constructor.
TrackCost now support any mix of symmetric event and wide
segments.
The cost is now computed by adding directly to the current
one instead of creating secondaries that are merged afterwards.
As a consequence, remove all copy construction and merge
capabilities.
All the various methods used to compute the cost are renamed
"addOverlapcost()" in all the various related objects.
As a reminder, the overal cost method call is as follow:
1. TrackCost constructor on a TrackElement.
2. Call TrackElement::addOverlapcost()
3. For all Track under the TrackElement, call
Track::addOverlapCost()
4. For all other TrackElement intersecting with
the overlap interval call:
TrackElement::incOverlapCost()
5. The callback overlap function for segments
is called (defined in NegociateWidow).
Don't confuse:
- TrackElement::addOverlapCost(), which compute the cost of
inserting the segment inside a track (or a set of).
- TrackElement::incOverlapCost(), which compute the cost of
overlaping with this already inserted segment. It is the
other way around of the previous one.
* Change: In Katana::SegmentFsm, use a vector of pointer to TrackCost
instead of an object to avoid copy construction.
* Change: In all top CMakeLists.txt, force the use of Python 2.7 as
we do not compile against 3.x flavors. Do not use the "EXACT"
flags as it will not recognize 2.7.x versions.
* Change: In Katana::RoutingEvent::Key::Compare(), preliminary
experiments shows that the best sorting order is:
- Lower layer first (i.e. M2 -> M3 -> M4 -> ... )
- Longer segments first.
The later seems to be counter-intuitive. Guess is that placing
the small ones first generate a more important fragmentation of
the big ones. They are placed too early and are difficult to move
afterwards.
Another feature to test is *not* inserting pushed left/right
segments if they are not *already* routed.
* Change: In PyKatanaEngine.runNegociate() now takes a flag argument,
provided through the new PyKatanaFlags exported object.
(doChip.py must be changed accordingly)
* Change: In Hurricane::BaseFlags, store flags in uint64_t instead of
unsigned int because we start to need more than 32 different flags
in some tools.
* New: In ::getString() & ::getRecord() templates, add support for
std::array<>.
* Change: In CRL::ToolEngine, add support for timer (time & memory
measurements) displaced from Katabatic. This way all ToolEngine
can use this feature. The _postCreate() method display the
memory just after ToolEngine allocation.
* Change: In Etesian::EtesianEngine, make use of the ToolEngine
builtin timer (remove the local one). Forgot to call the base
class _postCreate() and _preDestroy().
* Change: In Anabatic::AnabaticEngine, make use of the ToolEngine
builtin timer (remove the local one).
* New: In Anabatic, new AutoSegments_Connecteds() collection. This
Collection allows a deterministic walkthough *all* the AutoSegments
connected either to source or target of one AutoSegment.
* New: In Anabatic::AutoContactTerminal::isEndPoint() to check if an
AutoContactTerminal is the *only one* anchored on a RoutingPad,
thus being a true "end point" and not a kind of feed-through.
* New: In Katana::KatanaEngine, added support for symmetric nets.
Created new class DataSymmetric to store symmetric information
of a net (mainly the paired AutoSegments).
Added KatanaEngine::runSymmetricRouter(), for now only build
the DataSymmetric informations. More to come...
* Change: In Katana::GraphicKatanaEngine::_runTest(), now perform
symmetric information building the non-symmetric routing.
* Bug: In Hurricane, in StaticObservable::getObserver(), if the slot
pointer is NULL, do not try to access the owner. Returns NULL, so
the caller can be aware of the situation...
* Change: In Hurricane, in BreakpointWidget & ExceptionWidget some
cosmetic changes (fonts and window sizes).
* Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account
the constraints from the source AutoContact, as it holds the constraints
transmitted by the RoutingPads and sets up by propageConstraintsFromRp().
It is likely to be a bug affecting the original Katabatic as well.
* Change: In Anabatic, in RawGCellsUnder(), check that the segment is not
completly oustside the cell abutment box and truncate the coordinates
to the part that is inside. Use the "shrink" if we reach the east/north
border.
* Change: In Anabatic, in Configuration, no more decorator because we will
use a true derived relationship. Katana *derives* from *Anabatic* and do
not *decorate* it, so the Configuration can do the same. It also implies
that we directly create a Katana engine, not an Anabatic one.
* Change: In Anabatic, in Session, do not allow the opening of the Session
in a standalone fashion (with a static method). Instead it must be opened
using the relevant method of the Anabatic/Katana engine. This ensure we
are opening the right Session type.
* Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment
is not part of the collection by default, but will be included if the
Flags::WithSelf is set.
* Change: In Configuration, all the flags value are now defined in two steps.
Declared in the header and initialized in the module. This is to prevent
the fact that on some cases, in relation with the Python "extern C" part
modules, we need a true allocated variable. It was causing weird linking
problems.
A side effect is that they can no longer be used as entry is switches,
have to replace them by if/else.
* New: In Anabatic, new GCell::getNeighborAt() utility function.
* Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with
the grid type... Back annote all the edges capacity (north & east) with
the reserved local capacity.
* New: Complete portage of Kite over Anabatic. The new engine is christened
"Katana" for Kite-Analogic. When it's capabilities and performances
will be on a part with Kite, it is to completly replace it (and take
back the "Kite" name). Preliminary tests seems to show that, contrary
to intuition (because built on a more complex/slower grid), it is even
slightly faster than Kite 8-).