riscv-openocd/src/target/riscv/riscv.c

6378 lines
186 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0-or-later
#include <assert.h>
#include <stdlib.h>
#include <time.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/log.h>
#include <helper/time_support.h>
#include "target/target.h"
#include "target/algorithm.h"
#include "target/target_type.h"
#include <target/smp.h>
#include "jtag/jtag.h"
#include "target/register.h"
#include "target/breakpoints.h"
#include "helper/base64.h"
#include "helper/time_support.h"
#include "riscv.h"
#include "program.h"
#include "gdb_regs.h"
#include "rtos/rtos.h"
#include "debug_defines.h"
#include <helper/bits.h>
#include "field_helpers.h"
/*** JTAG registers. ***/
#define DTMCONTROL 0x10
#define DTMCONTROL_VERSION (0xf)
#define DBUS 0x11
static uint8_t ir_dtmcontrol[4] = {DTMCONTROL};
struct scan_field select_dtmcontrol = {
.in_value = NULL,
.out_value = ir_dtmcontrol
};
static uint8_t ir_dbus[4] = {DBUS};
struct scan_field select_dbus = {
.in_value = NULL,
.out_value = ir_dbus
};
static uint8_t ir_idcode[4] = {0x1};
struct scan_field select_idcode = {
.in_value = NULL,
.out_value = ir_idcode
};
static bscan_tunnel_type_t bscan_tunnel_type;
int bscan_tunnel_ir_width; /* if zero, then tunneling is not present/active */
static int bscan_tunnel_ir_id; /* IR ID of the JTAG TAP to access the tunnel. Valid when not 0 */
static const uint8_t bscan_zero[4] = {0};
static const uint8_t bscan_one[4] = {1};
static uint8_t ir_user4[4];
static struct scan_field select_user4 = {
.in_value = NULL,
.out_value = ir_user4
};
static uint8_t bscan_tunneled_ir_width[4] = {5}; /* overridden by assignment in riscv_init_target */
static struct scan_field _bscan_tunnel_data_register_select_dmi[] = {
{
.num_bits = 3,
.out_value = bscan_zero,
.in_value = NULL,
},
{
.num_bits = 5, /* initialized in riscv_init_target to ir width of DM */
.out_value = ir_dbus,
.in_value = NULL,
},
{
.num_bits = 7,
.out_value = bscan_tunneled_ir_width,
.in_value = NULL,
},
{
.num_bits = 1,
.out_value = bscan_zero,
.in_value = NULL,
}
};
static struct scan_field _bscan_tunnel_nested_tap_select_dmi[] = {
{
.num_bits = 1,
.out_value = bscan_zero,
.in_value = NULL,
},
{
.num_bits = 7,
.out_value = bscan_tunneled_ir_width,
.in_value = NULL,
},
{
.num_bits = 0, /* initialized in riscv_init_target to ir width of DM */
.out_value = ir_dbus,
.in_value = NULL,
},
{
.num_bits = 3,
.out_value = bscan_zero,
.in_value = NULL,
}
};
static struct scan_field *bscan_tunnel_nested_tap_select_dmi = _bscan_tunnel_nested_tap_select_dmi;
static uint32_t bscan_tunnel_nested_tap_select_dmi_num_fields = ARRAY_SIZE(_bscan_tunnel_nested_tap_select_dmi);
static struct scan_field *bscan_tunnel_data_register_select_dmi = _bscan_tunnel_data_register_select_dmi;
static uint32_t bscan_tunnel_data_register_select_dmi_num_fields = ARRAY_SIZE(_bscan_tunnel_data_register_select_dmi);
struct trigger {
uint64_t address;
uint32_t length;
uint64_t mask;
uint64_t value;
bool is_read, is_write, is_execute;
int unique_id;
};
struct tdata2_cache {
struct list_head elem_tdata2;
riscv_reg_t tdata2;
};
struct tdata1_cache {
riscv_reg_t tdata1;
struct list_head tdata2_cache_head;
struct list_head elem_tdata1;
};
/* Wall-clock timeout for a command/access. Settable via RISC-V Target commands.*/
int riscv_command_timeout_sec = DEFAULT_COMMAND_TIMEOUT_SEC;
/* Wall-clock timeout after reset. Settable via RISC-V Target commands.*/
int riscv_reset_timeout_sec = DEFAULT_RESET_TIMEOUT_SEC;
static bool riscv_enable_virt2phys = true;
bool riscv_enable_virtual;
static enum {
RO_NORMAL,
RO_REVERSED
} resume_order;
static const virt2phys_info_t sv32 = {
.name = "Sv32",
.va_bits = 32,
.level = 2,
.pte_shift = 2,
.vpn_shift = {12, 22},
.vpn_mask = {0x3ff, 0x3ff},
.pte_ppn_shift = {10, 20},
.pte_ppn_mask = {0x3ff, 0xfff},
.pa_ppn_shift = {12, 22},
.pa_ppn_mask = {0x3ff, 0xfff},
};
static const virt2phys_info_t sv32x4 = {
.name = "Sv32x4",
.va_bits = 34,
.level = 2,
.pte_shift = 2,
.vpn_shift = {12, 22},
.vpn_mask = {0x3ff, 0xfff},
.pte_ppn_shift = {10, 20},
.pte_ppn_mask = {0x3ff, 0xfff},
.pa_ppn_shift = {12, 22},
.pa_ppn_mask = {0x3ff, 0xfff},
};
static const virt2phys_info_t sv39 = {
.name = "Sv39",
.va_bits = 39,
.level = 3,
.pte_shift = 3,
.vpn_shift = {12, 21, 30},
.vpn_mask = {0x1ff, 0x1ff, 0x1ff},
.pte_ppn_shift = {10, 19, 28},
.pte_ppn_mask = {0x1ff, 0x1ff, 0x3ffffff},
.pa_ppn_shift = {12, 21, 30},
.pa_ppn_mask = {0x1ff, 0x1ff, 0x3ffffff},
};
static const virt2phys_info_t sv39x4 = {
.name = "Sv39x4",
.va_bits = 41,
.level = 3,
.pte_shift = 3,
.vpn_shift = {12, 21, 30},
.vpn_mask = {0x1ff, 0x1ff, 0x7ff},
.pte_ppn_shift = {10, 19, 28},
.pte_ppn_mask = {0x1ff, 0x1ff, 0x3ffffff},
.pa_ppn_shift = {12, 21, 30},
.pa_ppn_mask = {0x1ff, 0x1ff, 0x3ffffff},
};
static const virt2phys_info_t sv48 = {
.name = "Sv48",
.va_bits = 48,
.level = 4,
.pte_shift = 3,
.vpn_shift = {12, 21, 30, 39},
.vpn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ff},
.pte_ppn_shift = {10, 19, 28, 37},
.pte_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ffff},
.pa_ppn_shift = {12, 21, 30, 39},
.pa_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ffff},
};
static const virt2phys_info_t sv48x4 = {
.name = "Sv48x4",
.va_bits = 50,
.level = 4,
.pte_shift = 3,
.vpn_shift = {12, 21, 30, 39},
.vpn_mask = {0x1ff, 0x1ff, 0x1ff, 0x7ff},
.pte_ppn_shift = {10, 19, 28, 37},
.pte_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ffff},
.pa_ppn_shift = {12, 21, 30, 39},
.pa_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ffff},
};
static const virt2phys_info_t sv57 = {
.name = "Sv57",
.va_bits = 57,
.level = 5,
.pte_shift = 3,
.vpn_shift = {12, 21, 30, 39, 48},
.vpn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ff, 0x1ff},
.pte_ppn_shift = {10, 19, 28, 37, 46},
.pte_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ff, 0xff},
.pa_ppn_shift = {12, 21, 30, 39, 48},
.pa_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ff, 0xff},
};
static const virt2phys_info_t sv57x4 = {
.name = "Sv57x4",
.va_bits = 59,
.level = 5,
.pte_shift = 3,
.vpn_shift = {12, 21, 30, 39, 48},
.vpn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ff, 0x7ff},
.pte_ppn_shift = {10, 19, 28, 37, 46},
.pte_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ff, 0xff},
.pa_ppn_shift = {12, 21, 30, 39, 48},
.pa_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ff, 0xff},
};
static enum riscv_halt_reason riscv_halt_reason(struct target *target);
static void riscv_info_init(struct target *target, struct riscv_info *r);
static void riscv_invalidate_register_cache(struct target *target);
static int riscv_step_rtos_hart(struct target *target);
static void riscv_sample_buf_maybe_add_timestamp(struct target *target, bool before)
{
RISCV_INFO(r);
uint32_t now = timeval_ms() & 0xffffffff;
if (r->sample_buf.used + 5 < r->sample_buf.size) {
if (before)
r->sample_buf.buf[r->sample_buf.used++] = RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE;
else
r->sample_buf.buf[r->sample_buf.used++] = RISCV_SAMPLE_BUF_TIMESTAMP_AFTER;
r->sample_buf.buf[r->sample_buf.used++] = now & 0xff;
r->sample_buf.buf[r->sample_buf.used++] = (now >> 8) & 0xff;
r->sample_buf.buf[r->sample_buf.used++] = (now >> 16) & 0xff;
r->sample_buf.buf[r->sample_buf.used++] = (now >> 24) & 0xff;
}
}
static int riscv_resume_go_all_harts(struct target *target);
void select_dmi_via_bscan(struct target *target)
{
jtag_add_ir_scan(target->tap, &select_user4, TAP_IDLE);
if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER)
jtag_add_dr_scan(target->tap, bscan_tunnel_data_register_select_dmi_num_fields,
bscan_tunnel_data_register_select_dmi, TAP_IDLE);
else /* BSCAN_TUNNEL_NESTED_TAP */
jtag_add_dr_scan(target->tap, bscan_tunnel_nested_tap_select_dmi_num_fields,
bscan_tunnel_nested_tap_select_dmi, TAP_IDLE);
}
int dtmcontrol_scan_via_bscan(struct target *target, uint32_t out, uint32_t *in_ptr)
{
/* On BSCAN TAP: Select IR=USER4, issue tunneled IR scan via BSCAN TAP's DR */
uint8_t tunneled_ir_width[4] = {bscan_tunnel_ir_width};
uint8_t tunneled_dr_width[4] = {32};
uint8_t out_value[5] = {0};
uint8_t in_value[5] = {0};
buf_set_u32(out_value, 0, 32, out);
struct scan_field tunneled_ir[4] = {};
struct scan_field tunneled_dr[4] = {};
if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER) {
tunneled_ir[0].num_bits = 3;
tunneled_ir[0].out_value = bscan_zero;
tunneled_ir[0].in_value = NULL;
tunneled_ir[1].num_bits = bscan_tunnel_ir_width;
tunneled_ir[1].out_value = ir_dtmcontrol;
tunneled_ir[1].in_value = NULL;
tunneled_ir[2].num_bits = 7;
tunneled_ir[2].out_value = tunneled_ir_width;
tunneled_ir[2].in_value = NULL;
tunneled_ir[3].num_bits = 1;
tunneled_ir[3].out_value = bscan_zero;
tunneled_ir[3].in_value = NULL;
tunneled_dr[0].num_bits = 3;
tunneled_dr[0].out_value = bscan_zero;
tunneled_dr[0].in_value = NULL;
tunneled_dr[1].num_bits = 32 + 1;
tunneled_dr[1].out_value = out_value;
tunneled_dr[1].in_value = in_value;
tunneled_dr[2].num_bits = 7;
tunneled_dr[2].out_value = tunneled_dr_width;
tunneled_dr[2].in_value = NULL;
tunneled_dr[3].num_bits = 1;
tunneled_dr[3].out_value = bscan_one;
tunneled_dr[3].in_value = NULL;
} else {
/* BSCAN_TUNNEL_NESTED_TAP */
tunneled_ir[3].num_bits = 3;
tunneled_ir[3].out_value = bscan_zero;
tunneled_ir[3].in_value = NULL;
tunneled_ir[2].num_bits = bscan_tunnel_ir_width;
tunneled_ir[2].out_value = ir_dtmcontrol;
tunneled_ir[1].in_value = NULL;
tunneled_ir[1].num_bits = 7;
tunneled_ir[1].out_value = tunneled_ir_width;
tunneled_ir[2].in_value = NULL;
tunneled_ir[0].num_bits = 1;
tunneled_ir[0].out_value = bscan_zero;
tunneled_ir[0].in_value = NULL;
tunneled_dr[3].num_bits = 3;
tunneled_dr[3].out_value = bscan_zero;
tunneled_dr[3].in_value = NULL;
tunneled_dr[2].num_bits = 32 + 1;
tunneled_dr[2].out_value = out_value;
tunneled_dr[2].in_value = in_value;
tunneled_dr[1].num_bits = 7;
tunneled_dr[1].out_value = tunneled_dr_width;
tunneled_dr[1].in_value = NULL;
tunneled_dr[0].num_bits = 1;
tunneled_dr[0].out_value = bscan_one;
tunneled_dr[0].in_value = NULL;
}
jtag_add_ir_scan(target->tap, &select_user4, TAP_IDLE);
jtag_add_dr_scan(target->tap, ARRAY_SIZE(tunneled_ir), tunneled_ir, TAP_IDLE);
jtag_add_dr_scan(target->tap, ARRAY_SIZE(tunneled_dr), tunneled_dr, TAP_IDLE);
select_dmi_via_bscan(target);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("failed jtag scan: %d", retval);
return retval;
}
/* Note the starting offset is bit 1, not bit 0. In BSCAN tunnel, there is a one-bit TCK skew between
output and input */
uint32_t in = buf_get_u32(in_value, 1, 32);
LOG_DEBUG("DTMCS: 0x%x -> 0x%x", out, in);
if (in_ptr)
*in_ptr = in;
return ERROR_OK;
}
static int dtmcontrol_scan(struct target *target, uint32_t out, uint32_t *in_ptr)
{
struct scan_field field;
uint8_t in_value[4];
uint8_t out_value[4] = { 0 };
if (bscan_tunnel_ir_width != 0)
return dtmcontrol_scan_via_bscan(target, out, in_ptr);
buf_set_u32(out_value, 0, 32, out);
jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE);
field.num_bits = 32;
field.out_value = out_value;
field.in_value = in_value;
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
/* Always return to dbus. */
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "dtmcontrol scan failed, error code = %d", retval);
return retval;
}
uint32_t in = buf_get_u32(field.in_value, 0, 32);
LOG_DEBUG("DTMCONTROL: 0x%x -> 0x%x", out, in);
if (in_ptr)
*in_ptr = in;
return ERROR_OK;
}
static struct target_type *get_target_type(struct target *target)
{
if (!target->arch_info) {
LOG_TARGET_ERROR(target, "Target has not been initialized.");
return NULL;
}
RISCV_INFO(info);
switch (info->dtm_version) {
case DTM_DTMCS_VERSION_0_11:
return &riscv011_target;
case DTM_DTMCS_VERSION_1_0:
return &riscv013_target;
default:
/* TODO: once we have proper support for non-examined targets
* we should have an assert here */
LOG_TARGET_ERROR(target, "Unsupported DTM version: %d",
info->dtm_version);
return NULL;
}
}
static int riscv_create_target(struct target *target, Jim_Interp *interp)
{
LOG_TARGET_DEBUG(target, "riscv_create_target()");
target->arch_info = calloc(1, sizeof(struct riscv_info));
if (!target->arch_info) {
LOG_TARGET_ERROR(target, "Failed to allocate RISC-V target structure.");
return ERROR_FAIL;
}
riscv_info_init(target, target->arch_info);
return ERROR_OK;
}
static int riscv_init_target(struct command_context *cmd_ctx,
struct target *target)
{
LOG_TARGET_DEBUG(target, "riscv_init_target()");
RISCV_INFO(info);
info->cmd_ctx = cmd_ctx;
select_dtmcontrol.num_bits = target->tap->ir_length;
select_dbus.num_bits = target->tap->ir_length;
select_idcode.num_bits = target->tap->ir_length;
if (bscan_tunnel_ir_width != 0) {
uint32_t ir_user4_raw = bscan_tunnel_ir_id;
/* Provide a default value which target some Xilinx FPGA USER4 IR */
if (ir_user4_raw == 0) {
assert(target->tap->ir_length >= 6);
ir_user4_raw = 0x23 << (target->tap->ir_length - 6);
}
h_u32_to_le(ir_user4, ir_user4_raw);
select_user4.num_bits = target->tap->ir_length;
bscan_tunneled_ir_width[0] = bscan_tunnel_ir_width;
if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER)
bscan_tunnel_data_register_select_dmi[1].num_bits = bscan_tunnel_ir_width;
else /* BSCAN_TUNNEL_NESTED_TAP */
bscan_tunnel_nested_tap_select_dmi[2].num_bits = bscan_tunnel_ir_width;
}
riscv_semihosting_init(target);
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
static void riscv_free_registers(struct target *target)
{
/* Free the shared structure use for most registers. */
if (target->reg_cache) {
if (target->reg_cache->reg_list) {
free(target->reg_cache->reg_list[0].arch_info);
/* Free the ones we allocated separately. */
for (unsigned i = GDB_REGNO_COUNT; i < target->reg_cache->num_regs; i++)
free(target->reg_cache->reg_list[i].arch_info);
for (unsigned int i = 0; i < target->reg_cache->num_regs; i++)
free(target->reg_cache->reg_list[i].value);
free(target->reg_cache->reg_list);
}
free(target->reg_cache);
target->reg_cache = NULL;
}
}
static void free_reg_names(struct target *target);
static void free_custom_register_names(struct target *target)
{
RISCV_INFO(info);
if (!info->custom_register_names.reg_names)
return;
for (unsigned int i = 0; i < info->custom_register_names.num_entries; i++)
free(info->custom_register_names.reg_names[i]);
free(info->custom_register_names.reg_names);
info->custom_register_names.reg_names = NULL;
}
static void free_wp_triggers_cache(struct target *target)
{
RISCV_INFO(r);
for (unsigned int i = 0; i < r->trigger_count; ++i) {
struct tdata1_cache *elem_1, *tmp_1;
list_for_each_entry_safe(elem_1, tmp_1, &r->wp_triggers_negative_cache[i], elem_tdata1) {
struct tdata2_cache *elem_2, *tmp_2;
list_for_each_entry_safe(elem_2, tmp_2, &elem_1->tdata2_cache_head, elem_tdata2) {
list_del(&elem_2->elem_tdata2);
free(elem_2);
}
list_del(&elem_1->elem_tdata1);
free(elem_1);
}
}
free(r->wp_triggers_negative_cache);
}
static void riscv_deinit_target(struct target *target)
{
LOG_TARGET_DEBUG(target, "riscv_deinit_target()");
struct riscv_info *info = target->arch_info;
struct target_type *tt = get_target_type(target);
if (!tt)
LOG_TARGET_ERROR(target, "Could not identify target type.");
if (riscv_flush_registers(target) != ERROR_OK)
LOG_TARGET_ERROR(target, "Failed to flush registers. Ignoring this error.");
if (tt && info && info->version_specific)
tt->deinit_target(target);
riscv_free_registers(target);
free_wp_triggers_cache(target);
if (!info)
return;
range_list_t *entry, *tmp;
list_for_each_entry_safe(entry, tmp, &info->hide_csr, list) {
free(entry->name);
free(entry);
}
list_for_each_entry_safe(entry, tmp, &info->expose_csr, list) {
free(entry->name);
free(entry);
}
list_for_each_entry_safe(entry, tmp, &info->expose_custom, list) {
free(entry->name);
free(entry);
}
free_reg_names(target);
free(target->arch_info);
target->arch_info = NULL;
}
static void trigger_from_breakpoint(struct trigger *trigger,
const struct breakpoint *breakpoint)
{
trigger->address = breakpoint->address;
trigger->length = breakpoint->length;
trigger->mask = ~0LL;
trigger->is_read = false;
trigger->is_write = false;
trigger->is_execute = true;
/* unique_id is unique across both breakpoints and watchpoints. */
trigger->unique_id = breakpoint->unique_id;
}
static bool can_use_napot_match(struct trigger *trigger)
{
riscv_reg_t addr = trigger->address;
riscv_reg_t size = trigger->length;
bool size_power_of_2 = (size & (size - 1)) == 0;
bool addr_aligned = (addr & (size - 1)) == 0;
return size > 1 && size_power_of_2 && addr_aligned;
}
/* Find the next free trigger of the given type, without talking to the target. */
static int find_next_free_trigger(struct target *target, int type, bool chained,
unsigned int *idx)
{
assert(idx);
RISCV_INFO(r);
unsigned int num_found = 0;
unsigned int num_required = chained ? 2 : 1;
for (unsigned int i = *idx; i < r->trigger_count; i++) {
if (r->trigger_unique_id[i] == -1) {
if (r->trigger_tinfo[i] & (1 << type)) {
num_found++;
if (num_required == num_found) {
/* Found num_required consecutive free triggers - success, done. */
*idx = i - (num_required - 1);
LOG_TARGET_DEBUG(target,
"%d trigger(s) of type %d found on index %u, "
"chained == %s",
num_required, type, *idx,
chained ? "true" : "false");
return ERROR_OK;
}
/* Found a trigger but need more consecutive ones */
continue;
}
}
/* Trigger already occupied or incompatible type.
* Reset the counter of found consecutive triggers */
num_found = 0;
}
return ERROR_FAIL;
}
static int find_first_trigger_by_id(struct target *target, int unique_id)
{
RISCV_INFO(r);
for (unsigned int i = 0; i < r->trigger_count; i++) {
if (r->trigger_unique_id[i] == unique_id)
return i;
}
return -1;
}
static int set_trigger(struct target *target, unsigned int idx, riscv_reg_t tdata1, riscv_reg_t tdata2,
riscv_reg_t tdata1_ignore_mask)
{
riscv_reg_t tdata1_rb, tdata2_rb;
// Select which trigger to use
if (riscv_set_register(target, GDB_REGNO_TSELECT, idx) != ERROR_OK)
return ERROR_FAIL;
// Disable the trigger by writing 0 to it
if (riscv_set_register(target, GDB_REGNO_TDATA1, 0) != ERROR_OK)
return ERROR_FAIL;
// Set trigger data for tdata2 (and tdata3 if it was supported)
if (riscv_set_register(target, GDB_REGNO_TDATA2, tdata2) != ERROR_OK)
return ERROR_FAIL;
// Set trigger data for tdata1
if (riscv_set_register(target, GDB_REGNO_TDATA1, tdata1) != ERROR_OK)
return ERROR_FAIL;
// Read back tdata1, tdata2, (tdata3), and check if the configuration is supported
if (riscv_get_register(target, &tdata1_rb, GDB_REGNO_TDATA1) != ERROR_OK)
return ERROR_FAIL;
if (riscv_get_register(target, &tdata2_rb, GDB_REGNO_TDATA2) != ERROR_OK)
return ERROR_FAIL;
bool tdata1_config_denied = (tdata1 & ~tdata1_ignore_mask) != (tdata1_rb & ~tdata1_ignore_mask);
bool tdata2_config_denied = tdata2 != tdata2_rb;
if (tdata1_config_denied || tdata2_config_denied) {
LOG_TARGET_DEBUG(target, "Trigger %u doesn't support what we need.", idx);
if (tdata1_config_denied)
LOG_TARGET_DEBUG(target,
"After writing 0x%" PRIx64 " to tdata1 it contains 0x%" PRIx64 "; tdata1_ignore_mask=0x%" PRIx64,
tdata1, tdata1_rb, tdata1_ignore_mask);
if (tdata2_config_denied)
LOG_TARGET_DEBUG(target,
"wrote 0x%" PRIx64 " to tdata2 but read back 0x%" PRIx64,
tdata2, tdata2_rb);
if (riscv_set_register(target, GDB_REGNO_TDATA1, 0) != ERROR_OK)
return ERROR_FAIL;
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
return ERROR_OK;
}
static int maybe_add_trigger_t1(struct target *target, struct trigger *trigger)
{
int ret;
riscv_reg_t tdata1, tdata2;
RISCV_INFO(r);
const uint32_t bpcontrol_x = 1<<0;
const uint32_t bpcontrol_w = 1<<1;
const uint32_t bpcontrol_r = 1<<2;
const uint32_t bpcontrol_u = 1<<3;
const uint32_t bpcontrol_s = 1<<4;
const uint32_t bpcontrol_h = 1<<5;
const uint32_t bpcontrol_m = 1<<6;
const uint32_t bpcontrol_bpmatch = 0xf << 7;
const uint32_t bpcontrol_bpaction = 0xff << 11;
unsigned int idx = 0;
ret = find_next_free_trigger(target, CSR_TDATA1_TYPE_LEGACY, false, &idx);
if (ret != ERROR_OK)
return ret;
if (riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1) != ERROR_OK)
return ERROR_FAIL;
if (tdata1 & (bpcontrol_r | bpcontrol_w | bpcontrol_x)) {
/* Trigger is already in use, presumably by user code. */
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
tdata1 = 0;
tdata1 = set_field(tdata1, bpcontrol_r, trigger->is_read);
tdata1 = set_field(tdata1, bpcontrol_w, trigger->is_write);
tdata1 = set_field(tdata1, bpcontrol_x, trigger->is_execute);
tdata1 = set_field(tdata1, bpcontrol_u, !!(r->misa & BIT('U' - 'A')));
tdata1 = set_field(tdata1, bpcontrol_s, !!(r->misa & BIT('S' - 'A')));
tdata1 = set_field(tdata1, bpcontrol_h, !!(r->misa & BIT('H' - 'A')));
tdata1 = set_field(tdata1, bpcontrol_m, 1);
tdata1 = set_field(tdata1, bpcontrol_bpaction, 0); /* cause bp exception */
tdata1 = set_field(tdata1, bpcontrol_bpmatch, 0); /* exact match */
tdata2 = trigger->address;
ret = set_trigger(target, idx, tdata1, tdata2, 0);
if (ret != ERROR_OK)
return ret;
r->trigger_unique_id[idx] = trigger->unique_id;
return ERROR_OK;
}
struct trigger_request_info {
riscv_reg_t tdata1;
riscv_reg_t tdata2;
riscv_reg_t tdata1_ignore_mask;
};
static void log_trigger_request_info(struct trigger_request_info trig_info)
{
LOG_DEBUG("tdata1=%" PRIx64 ", tdata2=%" PRIx64 ", tdata1_ignore_mask=%" PRIx64,
trig_info.tdata1, trig_info.tdata2, trig_info.tdata1_ignore_mask);
};
static struct tdata1_cache *tdata1_cache_alloc(struct list_head *tdata1_cache_head, riscv_reg_t tdata1)
{
struct tdata1_cache *elem = (struct tdata1_cache *)calloc(1, sizeof(struct tdata1_cache));
elem->tdata1 = tdata1;
INIT_LIST_HEAD(&elem->tdata2_cache_head);
list_add_tail(&elem->elem_tdata1, tdata1_cache_head);
return elem;
}
static void tdata2_cache_alloc(struct list_head *tdata2_cache_head, riscv_reg_t tdata2)
{
struct tdata2_cache * const elem = calloc(1, sizeof(struct tdata2_cache));
elem->tdata2 = tdata2;
list_add(&elem->elem_tdata2, tdata2_cache_head);
}
struct tdata2_cache *tdata2_cache_search(struct list_head *tdata2_cache_head, riscv_reg_t find_tdata2)
{
struct tdata2_cache *elem_2;
list_for_each_entry(elem_2, tdata2_cache_head, elem_tdata2) {
if (elem_2->tdata2 == find_tdata2)
return elem_2;
}
return NULL;
}
struct tdata1_cache *tdata1_cache_search(struct list_head *tdata1_cache_head, riscv_reg_t find_tdata1)
{
struct tdata1_cache *elem_1;
list_for_each_entry(elem_1, tdata1_cache_head, elem_tdata1) {
if (elem_1->tdata1 == find_tdata1)
return elem_1;
}
return NULL;
}
static void create_wp_trigger_cache(struct target *target)
{
RISCV_INFO(r);
r->wp_triggers_negative_cache = (struct list_head *)calloc(r->trigger_count,
sizeof(struct list_head));
for (unsigned int i = 0; i < r->trigger_count; ++i)
INIT_LIST_HEAD(&r->wp_triggers_negative_cache[i]);
}
static void wp_triggers_cache_add(struct target *target, unsigned int idx, riscv_reg_t tdata1,
riscv_reg_t tdata2, int error_code)
{
RISCV_INFO(r);
struct tdata1_cache *tdata1_cache = tdata1_cache_search(&r->wp_triggers_negative_cache[idx], tdata1);
if (!tdata1_cache) {
tdata1_cache = tdata1_cache_alloc(&r->wp_triggers_negative_cache[idx], tdata1);
} else {
struct tdata2_cache *tdata2_cache = tdata2_cache_search(&tdata1_cache->tdata2_cache_head, tdata2);
if (tdata2_cache) {
list_move(&tdata2_cache->elem_tdata2, &tdata1_cache->tdata2_cache_head);
return;
}
}
tdata2_cache_alloc(&tdata1_cache->tdata2_cache_head, tdata2);
}
static bool wp_triggers_cache_search(struct target *target, unsigned int idx,
riscv_reg_t tdata1, riscv_reg_t tdata2)
{
RISCV_INFO(r);
struct tdata1_cache *tdata1_cache = tdata1_cache_search(&r->wp_triggers_negative_cache[idx], tdata1);
if (!tdata1_cache)
return false;
struct tdata2_cache *tdata2_cache = tdata2_cache_search(&tdata1_cache->tdata2_cache_head, tdata2);
if (!tdata2_cache)
return false;
assert(tdata1_cache->tdata1 == tdata1 && tdata2_cache->tdata2 == tdata2);
return true;
}
static int try_use_trigger_and_cache_result(struct target *target, unsigned int idx, riscv_reg_t tdata1,
riscv_reg_t tdata2, riscv_reg_t tdata1_ignore_mask)
{
if (wp_triggers_cache_search(target, idx, tdata1, tdata2))
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
int ret = set_trigger(target, idx, tdata1, tdata2, tdata1_ignore_mask);
/* Add these values to the cache to remember that they are not supported. */
if (ret == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
wp_triggers_cache_add(target, idx, tdata1, tdata2, ret);
return ret;
}
static int try_setup_single_match_trigger(struct target *target,
struct trigger *trigger, struct trigger_request_info trig_info)
{
LOG_TARGET_DEBUG(target, "trying to set up a match trigger");
log_trigger_request_info(trig_info);
int trigger_type =
get_field(trig_info.tdata1, CSR_MCONTROL_TYPE(riscv_xlen(target)));
int ret = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
RISCV_INFO(r);
/* Find the first trigger, supporting required tdata1 value */
for (unsigned int idx = 0;
find_next_free_trigger(target, trigger_type, false, &idx) == ERROR_OK;
++idx) {
ret = try_use_trigger_and_cache_result(target, idx, trig_info.tdata1, trig_info.tdata2,
trig_info.tdata1_ignore_mask);
if (ret == ERROR_OK) {
r->trigger_unique_id[idx] = trigger->unique_id;
return ERROR_OK;
}
if (ret != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
return ret;
}
return ret;
}
static int try_setup_chained_match_triggers(struct target *target,
struct trigger *trigger, struct trigger_request_info t1,
struct trigger_request_info t2)
{
LOG_TARGET_DEBUG(target, "trying to set up a chain of match triggers");
log_trigger_request_info(t1);
log_trigger_request_info(t2);
int trigger_type =
get_field(t1.tdata1, CSR_MCONTROL_TYPE(riscv_xlen(target)));
int ret = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
RISCV_INFO(r);
/* Find the first 2 consecutive triggers, supporting required tdata1 values */
for (unsigned int idx = 0;
find_next_free_trigger(target, trigger_type, true, &idx) == ERROR_OK;
++idx) {
ret = try_use_trigger_and_cache_result(target, idx, t1.tdata1, t1.tdata2,
t1.tdata1_ignore_mask);
if (ret == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
continue;
else if (ret != ERROR_OK)
return ret;
ret = try_use_trigger_and_cache_result(target, idx + 1, t2.tdata1, t2.tdata2,
t2.tdata1_ignore_mask);
if (ret == ERROR_OK) {
r->trigger_unique_id[idx] = trigger->unique_id;
r->trigger_unique_id[idx + 1] = trigger->unique_id;
return ERROR_OK;
}
/* Undo the setting of the previous trigger */
int ret_undo = set_trigger(target, idx, 0, 0, 0);
if (ret_undo != ERROR_OK)
return ret_undo;
if (ret != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
return ret;
}
return ret;
}
struct match_triggers_tdata1_fields {
riscv_reg_t common;
struct {
/* Other values are available for this field,
* but currently only `any` is needed.
*/
riscv_reg_t any;
} size;
struct {
riscv_reg_t enable;
riscv_reg_t disable;
} chain;
struct {
riscv_reg_t napot;
riscv_reg_t lt;
riscv_reg_t ge;
riscv_reg_t eq;
} match;
riscv_reg_t tdata1_ignore_mask;
};
static struct match_triggers_tdata1_fields fill_match_triggers_tdata1_fields_t2(struct target *target,
struct trigger *trigger)
{
RISCV_INFO(r);
struct match_triggers_tdata1_fields result = {
.common =
field_value(CSR_MCONTROL_TYPE(riscv_xlen(target)), CSR_TDATA1_TYPE_MCONTROL) |
field_value(CSR_MCONTROL_DMODE(riscv_xlen(target)), 1) |
field_value(CSR_MCONTROL_ACTION, CSR_MCONTROL_ACTION_DEBUG_MODE) |
field_value(CSR_MCONTROL_M, 1) |
field_value(CSR_MCONTROL_S, !!(r->misa & BIT('S' - 'A'))) |
field_value(CSR_MCONTROL_U, !!(r->misa & BIT('U' - 'A'))) |
field_value(CSR_MCONTROL_EXECUTE, trigger->is_execute) |
field_value(CSR_MCONTROL_LOAD, trigger->is_read) |
field_value(CSR_MCONTROL_STORE, trigger->is_write),
.size = {
.any =
field_value(CSR_MCONTROL_SIZELO, CSR_MCONTROL_SIZELO_ANY & 3) |
field_value(CSR_MCONTROL_SIZEHI, (CSR_MCONTROL_SIZELO_ANY >> 2) & 3)
},
.chain = {
.enable = field_value(CSR_MCONTROL_CHAIN, CSR_MCONTROL_CHAIN_ENABLED),
.disable = field_value(CSR_MCONTROL_CHAIN, CSR_MCONTROL_CHAIN_DISABLED)
},
.match = {
.napot = field_value(CSR_MCONTROL_MATCH, CSR_MCONTROL_MATCH_NAPOT),
.lt = field_value(CSR_MCONTROL_MATCH, CSR_MCONTROL_MATCH_LT),
.ge = field_value(CSR_MCONTROL_MATCH, CSR_MCONTROL_MATCH_GE),
.eq = field_value(CSR_MCONTROL_MATCH, CSR_MCONTROL_MATCH_EQUAL)
},
.tdata1_ignore_mask = CSR_MCONTROL_MASKMAX(riscv_xlen(target))
};
return result;
}
static struct match_triggers_tdata1_fields fill_match_triggers_tdata1_fields_t6(struct target *target,
struct trigger *trigger)
{
bool misa_s = riscv_supports_extension(target, 'S');
bool misa_u = riscv_supports_extension(target, 'U');
bool misa_h = riscv_supports_extension(target, 'H');
struct match_triggers_tdata1_fields result = {
.common =
field_value(CSR_MCONTROL6_TYPE(riscv_xlen(target)), CSR_TDATA1_TYPE_MCONTROL6) |
field_value(CSR_MCONTROL6_DMODE(riscv_xlen(target)), 1) |
field_value(CSR_MCONTROL6_ACTION, CSR_MCONTROL_ACTION_DEBUG_MODE) |
field_value(CSR_MCONTROL6_M, 1) |
field_value(CSR_MCONTROL6_S, misa_s) |
field_value(CSR_MCONTROL6_U, misa_u) |
field_value(CSR_MCONTROL6_VS, misa_h && misa_s) |
field_value(CSR_MCONTROL6_VU, misa_h && misa_u) |
field_value(CSR_MCONTROL6_EXECUTE, trigger->is_execute) |
field_value(CSR_MCONTROL6_LOAD, trigger->is_read) |
field_value(CSR_MCONTROL6_STORE, trigger->is_write),
.size = {
.any = field_value(CSR_MCONTROL6_SIZE, CSR_MCONTROL6_SIZE_ANY)
},
.chain = {
.enable = field_value(CSR_MCONTROL6_CHAIN, CSR_MCONTROL6_CHAIN_ENABLED),
.disable = field_value(CSR_MCONTROL6_CHAIN, CSR_MCONTROL6_CHAIN_DISABLED)
},
.match = {
.napot = field_value(CSR_MCONTROL6_MATCH, CSR_MCONTROL6_MATCH_NAPOT),
.lt = field_value(CSR_MCONTROL6_MATCH, CSR_MCONTROL6_MATCH_LT),
.ge = field_value(CSR_MCONTROL6_MATCH, CSR_MCONTROL6_MATCH_GE),
.eq = field_value(CSR_MCONTROL6_MATCH, CSR_MCONTROL6_MATCH_EQUAL)
},
.tdata1_ignore_mask = 0
};
return result;
}
static int maybe_add_trigger_t2_t6_for_wp(struct target *target,
struct trigger *trigger, struct match_triggers_tdata1_fields fields)
{
RISCV_INFO(r);
int ret = ERROR_FAIL;
if (trigger->length > 0) {
/* Setting a load/store trigger ("watchpoint") on a range of addresses */
if (r->enable_napot_trigger && can_use_napot_match(trigger)) {
LOG_TARGET_DEBUG(target, "trying to setup NAPOT match trigger");
struct trigger_request_info napot = {
.tdata1 = fields.common | fields.size.any |
fields.chain.disable | fields.match.napot,
.tdata2 = trigger->address | ((trigger->length - 1) >> 1),
.tdata1_ignore_mask = fields.tdata1_ignore_mask
};
ret = try_setup_single_match_trigger(target, trigger, napot);
if (ret != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
return ret;
}
if (r->enable_ge_lt_trigger) {
LOG_TARGET_DEBUG(target, "trying to setup GE+LT chained match trigger pair");
struct trigger_request_info ge_1 = {
.tdata1 = fields.common | fields.size.any | fields.chain.enable |
fields.match.ge,
.tdata2 = trigger->address,
.tdata1_ignore_mask = fields.tdata1_ignore_mask
};
struct trigger_request_info lt_2 = {
.tdata1 = fields.common | fields.size.any | fields.chain.disable |
fields.match.lt,
.tdata2 = trigger->address + trigger->length,
.tdata1_ignore_mask = fields.tdata1_ignore_mask
};
ret = try_setup_chained_match_triggers(target, trigger, ge_1, lt_2);
if (ret != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
return ret;
LOG_TARGET_DEBUG(target, "trying to setup LT+GE chained match trigger pair");
struct trigger_request_info lt_1 = {
.tdata1 = fields.common | fields.size.any | fields.chain.enable |
fields.match.lt,
.tdata2 = trigger->address + trigger->length,
.tdata1_ignore_mask = fields.tdata1_ignore_mask
};
struct trigger_request_info ge_2 = {
.tdata1 = fields.common | fields.size.any | fields.chain.disable |
fields.match.ge,
.tdata2 = trigger->address,
.tdata1_ignore_mask = fields.tdata1_ignore_mask
};
ret = try_setup_chained_match_triggers(target, trigger, lt_1, ge_2);
if (ret != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
return ret;
}
}
if (r->enable_equality_match_trigger) {
LOG_TARGET_DEBUG(target, "trying to setup equality match trigger");
struct trigger_request_info eq = {
.tdata1 = fields.common | fields.size.any | fields.chain.disable |
fields.match.eq,
.tdata2 = trigger->address,
.tdata1_ignore_mask = fields.tdata1_ignore_mask
};
ret = try_setup_single_match_trigger(target, trigger, eq);
if (ret != ERROR_OK)
return ret;
}
if (ret == ERROR_OK && trigger->length > 1) {
LOG_TARGET_DEBUG(target, "Trigger will match accesses at address 0x%" TARGET_PRIxADDR
", but may not match accesses at addresses in the inclusive range from 0x%"
TARGET_PRIxADDR " to 0x%" TARGET_PRIxADDR ".", trigger->address,
trigger->address + 1, trigger->address + trigger->length - 1);
RISCV_INFO(info);
if (!info->range_trigger_fallback_encountered)
/* This message is displayed only once per target to avoid
* overwhelming the user with such messages on resume.
*/
LOG_TARGET_WARNING(target,
"Could not set a trigger that will match a whole address range. "
"As a fallback, this trigger (and maybe others) will only match "
"against the first address of the range.");
info->range_trigger_fallback_encountered = true;
}
return ret;
}
static int maybe_add_trigger_t2_t6_for_bp(struct target *target,
struct trigger *trigger, struct match_triggers_tdata1_fields fields)
{
LOG_TARGET_DEBUG(target, "trying to setup equality match trigger");
struct trigger_request_info eq = {
.tdata1 = fields.common | fields.size.any | fields.chain.disable |
fields.match.eq,
.tdata2 = trigger->address,
.tdata1_ignore_mask = fields.tdata1_ignore_mask
};
return try_setup_single_match_trigger(target, trigger, eq);
}
static int maybe_add_trigger_t2_t6(struct target *target,
struct trigger *trigger, struct match_triggers_tdata1_fields fields)
{
if (trigger->is_execute) {
assert(!trigger->is_read && !trigger->is_write);
return maybe_add_trigger_t2_t6_for_bp(target, trigger, fields);
}
assert(trigger->is_read || trigger->is_write);
return maybe_add_trigger_t2_t6_for_wp(target, trigger, fields);
}
static int maybe_add_trigger_t3(struct target *target, bool vs, bool vu,
bool m, bool s, bool u, bool pending, unsigned int count,
int unique_id)
{
int ret;
riscv_reg_t tdata1;
RISCV_INFO(r);
tdata1 = 0;
tdata1 = set_field(tdata1, CSR_ICOUNT_TYPE(riscv_xlen(target)), CSR_TDATA1_TYPE_ICOUNT);
tdata1 = set_field(tdata1, CSR_ICOUNT_DMODE(riscv_xlen(target)), 1);
tdata1 = set_field(tdata1, CSR_ICOUNT_ACTION, CSR_ICOUNT_ACTION_DEBUG_MODE);
tdata1 = set_field(tdata1, CSR_ICOUNT_VS, vs);
tdata1 = set_field(tdata1, CSR_ICOUNT_VU, vu);
tdata1 = set_field(tdata1, CSR_ICOUNT_PENDING, pending);
tdata1 = set_field(tdata1, CSR_ICOUNT_M, m);
tdata1 = set_field(tdata1, CSR_ICOUNT_S, s);
tdata1 = set_field(tdata1, CSR_ICOUNT_U, u);
tdata1 = set_field(tdata1, CSR_ICOUNT_COUNT, count);
unsigned int idx = 0;
ret = find_next_free_trigger(target, CSR_TDATA1_TYPE_ICOUNT, false, &idx);
if (ret != ERROR_OK)
return ret;
ret = set_trigger(target, idx, tdata1, 0, 0);
if (ret != ERROR_OK)
return ret;
r->trigger_unique_id[idx] = unique_id;
return ERROR_OK;
}
static int maybe_add_trigger_t4(struct target *target, bool vs, bool vu,
bool nmi, bool m, bool s, bool u, riscv_reg_t interrupts,
int unique_id)
{
int ret;
riscv_reg_t tdata1, tdata2;
RISCV_INFO(r);
tdata1 = 0;
tdata1 = set_field(tdata1, CSR_ITRIGGER_TYPE(riscv_xlen(target)), CSR_TDATA1_TYPE_ITRIGGER);
tdata1 = set_field(tdata1, CSR_ITRIGGER_DMODE(riscv_xlen(target)), 1);
tdata1 = set_field(tdata1, CSR_ITRIGGER_ACTION, CSR_ITRIGGER_ACTION_DEBUG_MODE);
tdata1 = set_field(tdata1, CSR_ITRIGGER_VS, vs);
tdata1 = set_field(tdata1, CSR_ITRIGGER_VU, vu);
tdata1 = set_field(tdata1, CSR_ITRIGGER_NMI, nmi);
tdata1 = set_field(tdata1, CSR_ITRIGGER_M, m);
tdata1 = set_field(tdata1, CSR_ITRIGGER_S, s);
tdata1 = set_field(tdata1, CSR_ITRIGGER_U, u);
tdata2 = interrupts;
unsigned int idx = 0;
ret = find_next_free_trigger(target, CSR_TDATA1_TYPE_ITRIGGER, false, &idx);
if (ret != ERROR_OK)
return ret;
ret = set_trigger(target, idx, tdata1, tdata2, 0);
if (ret != ERROR_OK)
return ret;
r->trigger_unique_id[idx] = unique_id;
return ERROR_OK;
}
static int maybe_add_trigger_t5(struct target *target, bool vs, bool vu,
bool m, bool s, bool u, riscv_reg_t exception_codes,
int unique_id)
{
int ret;
riscv_reg_t tdata1, tdata2;
RISCV_INFO(r);
tdata1 = 0;
tdata1 = set_field(tdata1, CSR_ETRIGGER_TYPE(riscv_xlen(target)), CSR_TDATA1_TYPE_ETRIGGER);
tdata1 = set_field(tdata1, CSR_ETRIGGER_DMODE(riscv_xlen(target)), 1);
tdata1 = set_field(tdata1, CSR_ETRIGGER_ACTION, CSR_ETRIGGER_ACTION_DEBUG_MODE);
tdata1 = set_field(tdata1, CSR_ETRIGGER_VS, vs);
tdata1 = set_field(tdata1, CSR_ETRIGGER_VU, vu);
tdata1 = set_field(tdata1, CSR_ETRIGGER_M, m);
tdata1 = set_field(tdata1, CSR_ETRIGGER_S, s);
tdata1 = set_field(tdata1, CSR_ETRIGGER_U, u);
tdata2 = exception_codes;
unsigned int idx = 0;
ret = find_next_free_trigger(target, CSR_TDATA1_TYPE_ETRIGGER, false, &idx);
if (ret != ERROR_OK)
return ret;
ret = set_trigger(target, idx, tdata1, tdata2, 0);
if (ret != ERROR_OK)
return ret;
r->trigger_unique_id[idx] = unique_id;
return ERROR_OK;
}
static int add_trigger(struct target *target, struct trigger *trigger)
{
int ret;
riscv_reg_t tselect;
ret = riscv_enumerate_triggers(target);
if (ret != ERROR_OK)
return ret;
ret = riscv_get_register(target, &tselect, GDB_REGNO_TSELECT);
if (ret != ERROR_OK)
return ret;
do {
ret = maybe_add_trigger_t1(target, trigger);
if (ret == ERROR_OK)
break;
ret = maybe_add_trigger_t2_t6(target, trigger,
fill_match_triggers_tdata1_fields_t2(target, trigger));
if (ret == ERROR_OK)
break;
ret = maybe_add_trigger_t2_t6(target, trigger,
fill_match_triggers_tdata1_fields_t6(target, trigger));
if (ret == ERROR_OK)
break;
} while (0);
if (riscv_set_register(target, GDB_REGNO_TSELECT, tselect) != ERROR_OK &&
ret == ERROR_OK)
return ERROR_FAIL;
return ret;
}
/**
* Write one memory item of given "size". Use memory access of given "access_size".
* Utilize read-modify-write, if needed.
* */
static int write_by_given_size(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer, uint32_t access_size)
{
assert(size == 1 || size == 2 || size == 4 || size == 8);
assert(access_size == 1 || access_size == 2 || access_size == 4 || access_size == 8);
if (access_size <= size && address % access_size == 0)
/* Can do the memory access directly without a helper buffer. */
return target_write_memory(target, address, access_size, size / access_size, buffer);
unsigned int offset_head = address % access_size;
unsigned int n_blocks = ((size + offset_head) <= access_size) ? 1 : 2;
uint8_t helper_buf[n_blocks * access_size];
/* Read from memory */
if (target_read_memory(target, address - offset_head, access_size, n_blocks, helper_buf) != ERROR_OK)
return ERROR_FAIL;
/* Modify and write back */
memcpy(helper_buf + offset_head, buffer, size);
return target_write_memory(target, address - offset_head, access_size, n_blocks, helper_buf);
}
/**
* Read one memory item of given "size". Use memory access of given "access_size".
* Read larger section of memory and pick out the required portion, if needed.
* */
static int read_by_given_size(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer, uint32_t access_size)
{
assert(size == 1 || size == 2 || size == 4 || size == 8);
assert(access_size == 1 || access_size == 2 || access_size == 4 || access_size == 8);
if (access_size <= size && address % access_size == 0)
/* Can do the memory access directly without a helper buffer. */
return target_read_memory(target, address, access_size, size / access_size, buffer);
unsigned int offset_head = address % access_size;
unsigned int n_blocks = ((size + offset_head) <= access_size) ? 1 : 2;
uint8_t helper_buf[n_blocks * access_size];
/* Read from memory */
if (target_read_memory(target, address - offset_head, access_size, n_blocks, helper_buf) != ERROR_OK)
return ERROR_FAIL;
/* Pick the requested portion from the buffer */
memcpy(buffer, helper_buf + offset_head, size);
return ERROR_OK;
}
/**
* Write one memory item using any memory access size that will work.
* Utilize read-modify-write, if needed.
* */
int riscv_write_by_any_size(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
{
assert(size == 1 || size == 2 || size == 4 || size == 8);
/* Find access size that correspond to data size and the alignment. */
unsigned int preferred_size = size;
while (address % preferred_size != 0)
preferred_size /= 2;
/* First try the preferred (most natural) access size. */
if (write_by_given_size(target, address, size, buffer, preferred_size) == ERROR_OK)
return ERROR_OK;
/* On failure, try other access sizes.
Minimize the number of accesses by trying first the largest size. */
for (unsigned int access_size = 8; access_size > 0; access_size /= 2) {
if (access_size == preferred_size)
/* Already tried this size. */
continue;
if (write_by_given_size(target, address, size, buffer, access_size) == ERROR_OK)
return ERROR_OK;
}
/* No access attempt succeeded. */
return ERROR_FAIL;
}
/**
* Read one memory item using any memory access size that will work.
* Read larger section of memory and pick out the required portion, if needed.
* */
int riscv_read_by_any_size(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
{
assert(size == 1 || size == 2 || size == 4 || size == 8);
/* Find access size that correspond to data size and the alignment. */
unsigned int preferred_size = size;
while (address % preferred_size != 0)
preferred_size /= 2;
/* First try the preferred (most natural) access size. */
if (read_by_given_size(target, address, size, buffer, preferred_size) == ERROR_OK)
return ERROR_OK;
/* On failure, try other access sizes.
Minimize the number of accesses by trying first the largest size. */
for (unsigned int access_size = 8; access_size > 0; access_size /= 2) {
if (access_size == preferred_size)
/* Already tried this size. */
continue;
if (read_by_given_size(target, address, size, buffer, access_size) == ERROR_OK)
return ERROR_OK;
}
/* No access attempt succeeded. */
return ERROR_FAIL;
}
static int riscv_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
LOG_TARGET_DEBUG(target, "@0x%" TARGET_PRIxADDR, breakpoint->address);
assert(breakpoint);
if (breakpoint->type == BKPT_SOFT) {
/** @todo check RVC for size/alignment */
if (!(breakpoint->length == 4 || breakpoint->length == 2)) {
LOG_TARGET_ERROR(target, "Invalid breakpoint length %d", breakpoint->length);
return ERROR_FAIL;
}
if (0 != (breakpoint->address % 2)) {
LOG_TARGET_ERROR(target, "Invalid breakpoint alignment for address 0x%" TARGET_PRIxADDR,
breakpoint->address);
return ERROR_FAIL;
}
/* Read the original instruction. */
if (riscv_read_by_any_size(
target, breakpoint->address, breakpoint->length, breakpoint->orig_instr) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read original instruction at 0x%" TARGET_PRIxADDR,
breakpoint->address);
return ERROR_FAIL;
}
uint8_t buff[4] = { 0 };
buf_set_u32(buff, 0, breakpoint->length * CHAR_BIT, breakpoint->length == 4 ? ebreak() : ebreak_c());
/* Write the ebreak instruction. */
if (riscv_write_by_any_size(target, breakpoint->address, breakpoint->length, buff) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to write %d-byte breakpoint instruction at 0x%"
TARGET_PRIxADDR, breakpoint->length, breakpoint->address);
return ERROR_FAIL;
}
} else if (breakpoint->type == BKPT_HARD) {
struct trigger trigger;
trigger_from_breakpoint(&trigger, breakpoint);
int const result = add_trigger(target, &trigger);
if (result != ERROR_OK)
return result;
} else {
LOG_TARGET_INFO(target, "OpenOCD only supports hardware and software breakpoints.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
breakpoint->is_set = true;
return ERROR_OK;
}
static int remove_trigger(struct target *target, int unique_id)
{
RISCV_INFO(r);
if (riscv_enumerate_triggers(target) != ERROR_OK)
return ERROR_FAIL;
riscv_reg_t tselect;
int result = riscv_get_register(target, &tselect, GDB_REGNO_TSELECT);
if (result != ERROR_OK)
return result;
bool done = false;
for (unsigned int i = 0; i < r->trigger_count; i++) {
if (r->trigger_unique_id[i] == unique_id) {
riscv_set_register(target, GDB_REGNO_TSELECT, i);
riscv_set_register(target, GDB_REGNO_TDATA1, 0);
r->trigger_unique_id[i] = -1;
LOG_TARGET_DEBUG(target, "Stop using resource %d for bp %d",
i, unique_id);
done = true;
}
}
if (!done) {
LOG_TARGET_ERROR(target,
"Couldn't find the hardware resources used by hardware trigger.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
riscv_set_register(target, GDB_REGNO_TSELECT, tselect);
return ERROR_OK;
}
static int riscv_remove_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
if (breakpoint->type == BKPT_SOFT) {
/* Write the original instruction. */
if (riscv_write_by_any_size(
target, breakpoint->address, breakpoint->length, breakpoint->orig_instr) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to restore instruction for %d-byte breakpoint at "
"0x%" TARGET_PRIxADDR, breakpoint->length, breakpoint->address);
return ERROR_FAIL;
}
} else if (breakpoint->type == BKPT_HARD) {
struct trigger trigger;
trigger_from_breakpoint(&trigger, breakpoint);
int result = remove_trigger(target, trigger.unique_id);
if (result != ERROR_OK)
return result;
} else {
LOG_TARGET_INFO(target, "OpenOCD only supports hardware and software breakpoints.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
breakpoint->is_set = false;
return ERROR_OK;
}
static void trigger_from_watchpoint(struct trigger *trigger,
const struct watchpoint *watchpoint)
{
trigger->address = watchpoint->address;
trigger->length = watchpoint->length;
trigger->mask = watchpoint->mask;
trigger->value = watchpoint->value;
trigger->is_read = (watchpoint->rw == WPT_READ || watchpoint->rw == WPT_ACCESS);
trigger->is_write = (watchpoint->rw == WPT_WRITE || watchpoint->rw == WPT_ACCESS);
trigger->is_execute = false;
/* unique_id is unique across both breakpoints and watchpoints. */
trigger->unique_id = watchpoint->unique_id;
}
int riscv_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
if (watchpoint->mask != WATCHPOINT_IGNORE_DATA_VALUE_MASK) {
LOG_TARGET_ERROR(target, "Watchpoints on data values are not implemented");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
struct trigger trigger;
trigger_from_watchpoint(&trigger, watchpoint);
int result = add_trigger(target, &trigger);
if (result != ERROR_OK)
return result;
watchpoint->is_set = true;
return ERROR_OK;
}
int riscv_remove_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
LOG_TARGET_DEBUG(target, "Removing watchpoint @0x%" TARGET_PRIxADDR, watchpoint->address);
struct trigger trigger;
trigger_from_watchpoint(&trigger, watchpoint);
int result = remove_trigger(target, trigger.unique_id);
if (result != ERROR_OK)
return result;
watchpoint->is_set = false;
return ERROR_OK;
}
/**
* Look at the trigger hit bits to find out which trigger is the reason we're
* halted. Sets *unique_id to the unique ID of that trigger. If *unique_id is
* ~0, no match was found.
*/
static int riscv_hit_trigger_hit_bit(struct target *target, uint32_t *unique_id)
{
RISCV_INFO(r);
riscv_reg_t tselect;
if (riscv_get_register(target, &tselect, GDB_REGNO_TSELECT) != ERROR_OK)
return ERROR_FAIL;
*unique_id = ~0;
for (unsigned int i = 0; i < r->trigger_count; i++) {
if (r->trigger_unique_id[i] == -1)
continue;
if (riscv_set_register(target, GDB_REGNO_TSELECT, i) != ERROR_OK)
return ERROR_FAIL;
uint64_t tdata1;
if (riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1) != ERROR_OK)
return ERROR_FAIL;
int type = get_field(tdata1, CSR_TDATA1_TYPE(riscv_xlen(target)));
uint64_t hit_mask = 0;
switch (type) {
case CSR_TDATA1_TYPE_LEGACY:
/* Doesn't support hit bit. */
break;
case CSR_TDATA1_TYPE_MCONTROL:
hit_mask = CSR_MCONTROL_HIT;
break;
case CSR_TDATA1_TYPE_MCONTROL6:
hit_mask = CSR_MCONTROL6_HIT0 | CSR_MCONTROL6_HIT1;
break;
case CSR_TDATA1_TYPE_ICOUNT:
hit_mask = CSR_ICOUNT_HIT;
break;
case CSR_TDATA1_TYPE_ITRIGGER:
hit_mask = CSR_ITRIGGER_HIT(riscv_xlen(target));
break;
case CSR_TDATA1_TYPE_ETRIGGER:
hit_mask = CSR_ETRIGGER_HIT(riscv_xlen(target));
break;
default:
LOG_TARGET_DEBUG(target, "Trigger %d has unknown type %d", i, type);
continue;
}
/* Note: If we ever use chained triggers, then this logic needs
* to be changed to ignore triggers that are not the last one in
* the chain. */
if (tdata1 & hit_mask) {
LOG_TARGET_DEBUG(target, "Trigger %d (unique_id=%d) has hit bit set.", i, r->trigger_unique_id[i]);
if (riscv_set_register(target, GDB_REGNO_TDATA1, tdata1 & ~hit_mask) != ERROR_OK)
return ERROR_FAIL;
*unique_id = r->trigger_unique_id[i];
break;
}
}
if (riscv_set_register(target, GDB_REGNO_TSELECT, tselect) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
/* Sets *hit_watchpoint to the first watchpoint identified as causing the
* current halt.
*
* The GDB server uses this information to tell GDB what data address has
* been hit, which enables GDB to print the hit variable along with its old
* and new value. */
static int riscv_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint)
{
RISCV_INFO(r);
LOG_TARGET_DEBUG(target, "Hit Watchpoint");
/* If we identified which trigger caused the halt earlier, then just use
* that. */
for (struct watchpoint *wp = target->watchpoints; wp; wp = wp->next) {
if (wp->unique_id == r->trigger_hit) {
*hit_watchpoint = wp;
return ERROR_OK;
}
}
riscv_reg_t dpc;
riscv_get_register(target, &dpc, GDB_REGNO_DPC);
const uint8_t length = 4;
LOG_TARGET_DEBUG(target, "dpc is 0x%" PRIx64, dpc);
/* fetch the instruction at dpc */
uint8_t buffer[length];
if (target_read_buffer(target, dpc, length, buffer) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read instruction at dpc 0x%" PRIx64, dpc);
return ERROR_FAIL;
}
uint32_t instruction = 0;
for (int i = 0; i < length; i++) {
LOG_TARGET_DEBUG(target, "Next byte is %x", buffer[i]);
instruction += (buffer[i] << 8 * i);
}
LOG_TARGET_DEBUG(target, "Full instruction is %x", instruction);
/* find out which memory address is accessed by the instruction at dpc */
/* opcode is first 7 bits of the instruction */
uint8_t opcode = instruction & 0x7F;
uint32_t rs1;
int16_t imm;
riscv_reg_t mem_addr;
if (opcode == MATCH_LB || opcode == MATCH_SB) {
rs1 = (instruction & 0xf8000) >> 15;
riscv_get_register(target, &mem_addr, rs1);
if (opcode == MATCH_SB) {
LOG_TARGET_DEBUG(target, "%x is store instruction", instruction);
imm = ((instruction & 0xf80) >> 7) | ((instruction & 0xfe000000) >> 20);
} else {
LOG_TARGET_DEBUG(target, "%x is load instruction", instruction);
imm = (instruction & 0xfff00000) >> 20;
}
/* sign extend 12-bit imm to 16-bits */
if (imm & (1 << 11))
imm |= 0xf000;
mem_addr += imm;
LOG_TARGET_DEBUG(target, "Memory address=0x%" PRIx64, mem_addr);
} else {
LOG_TARGET_DEBUG(target, "%x is not a RV32I load or store", instruction);
return ERROR_FAIL;
}
struct watchpoint *wp = target->watchpoints;
while (wp) {
/*TODO support length/mask */
if (wp->address == mem_addr) {
*hit_watchpoint = wp;
LOG_TARGET_DEBUG(target, "Hit address=%" TARGET_PRIxADDR, wp->address);
return ERROR_OK;
}
wp = wp->next;
}
/* No match found - either we hit a watchpoint caused by an instruction that
* this function does not yet disassemble, or we hit a breakpoint.
*
* OpenOCD will behave as if this function had never been implemented i.e.
* report the halt to GDB with no address information. */
return ERROR_FAIL;
}
static int oldriscv_step(struct target *target, int current, uint32_t address,
int handle_breakpoints)
{
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
return tt->step(target, current, address, handle_breakpoints);
}
static int old_or_new_riscv_step(struct target *target, int current,
target_addr_t address, int handle_breakpoints)
{
RISCV_INFO(r);
LOG_TARGET_DEBUG(target, "handle_breakpoints=%d", handle_breakpoints);
if (!r->get_hart_state)
return oldriscv_step(target, current, address, handle_breakpoints);
else
return riscv_openocd_step(target, current, address, handle_breakpoints);
}
static int riscv_examine(struct target *target)
{
LOG_TARGET_DEBUG(target, "Starting examination");
if (target_was_examined(target)) {
LOG_TARGET_DEBUG(target, "Target was already examined.");
return ERROR_OK;
}
/* Don't need to select dbus, since the first thing we do is read dtmcontrol. */
RISCV_INFO(info);
uint32_t dtmcontrol;
if (dtmcontrol_scan(target, 0, &dtmcontrol) != ERROR_OK || dtmcontrol == 0) {
LOG_TARGET_ERROR(target, "Could not read dtmcontrol. Check JTAG connectivity/board power.");
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "dtmcontrol=0x%x", dtmcontrol);
info->dtm_version = get_field(dtmcontrol, DTMCONTROL_VERSION);
LOG_TARGET_DEBUG(target, "version=0x%x", info->dtm_version);
int examine_status = ERROR_FAIL;
struct target_type *tt = get_target_type(target);
if (!tt)
goto examine_fail;
examine_status = tt->init_target(info->cmd_ctx, target);
if (examine_status != ERROR_OK)
goto examine_fail;
examine_status = tt->examine(target);
if (examine_status != ERROR_OK)
goto examine_fail;
return ERROR_OK;
examine_fail:
info->dtm_version = DTM_DTMCS_VERSION_UNKNOWN;
return examine_status;
}
static int oldriscv_poll(struct target *target)
{
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
return tt->poll(target);
}
static int old_or_new_riscv_poll(struct target *target)
{
RISCV_INFO(r);
if (!r->get_hart_state)
return oldriscv_poll(target);
else
return riscv_openocd_poll(target);
}
static struct reg *get_reg_cache_entry(struct target *target,
unsigned int number)
{
assert(target->reg_cache);
assert(target->reg_cache->reg_list);
assert(number < target->reg_cache->num_regs);
return &target->reg_cache->reg_list[number];
}
int riscv_flush_registers(struct target *target)
{
RISCV_INFO(r);
if (!target->reg_cache)
return ERROR_OK;
LOG_TARGET_DEBUG(target, "Flushing register cache");
/* Writing non-GPR registers may require progbuf execution, and some GPRs
* may become dirty in the process (e.g. S0, S1). For that reason, flush
* registers in reverse order, so that GPRs are flushed last.
*/
for (unsigned int number = target->reg_cache->num_regs; number-- > 0; ) {
struct reg *reg = get_reg_cache_entry(target, number);
if (reg->valid && reg->dirty) {
riscv_reg_t value = buf_get_u64(reg->value, 0, reg->size);
LOG_TARGET_DEBUG(target, "%s is dirty; write back 0x%" PRIx64,
reg->name, value);
if (r->set_register(target, number, value) != ERROR_OK)
return ERROR_FAIL;
reg->dirty = false;
}
}
LOG_TARGET_DEBUG(target, "Flush of register cache completed");
return ERROR_OK;
}
/**
* Set OpenOCD's generic debug reason from the RISC-V halt reason.
*/
static int set_debug_reason(struct target *target, enum riscv_halt_reason halt_reason)
{
RISCV_INFO(r);
r->trigger_hit = -1;
switch (halt_reason) {
case RISCV_HALT_EBREAK:
target->debug_reason = DBG_REASON_BREAKPOINT;
break;
case RISCV_HALT_TRIGGER:
if (riscv_hit_trigger_hit_bit(target, &r->trigger_hit) != ERROR_OK)
return ERROR_FAIL;
target->debug_reason = DBG_REASON_WATCHPOINT;
/* Check if we hit a hardware breakpoint. */
for (struct breakpoint *bp = target->breakpoints; bp; bp = bp->next) {
if (bp->unique_id == r->trigger_hit)
target->debug_reason = DBG_REASON_BREAKPOINT;
}
break;
case RISCV_HALT_INTERRUPT:
case RISCV_HALT_GROUP:
target->debug_reason = DBG_REASON_DBGRQ;
break;
case RISCV_HALT_SINGLESTEP:
target->debug_reason = DBG_REASON_SINGLESTEP;
break;
case RISCV_HALT_UNKNOWN:
target->debug_reason = DBG_REASON_UNDEFINED;
break;
case RISCV_HALT_ERROR:
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "debug_reason=%d", target->debug_reason);
return ERROR_OK;
}
static int halt_prep(struct target *target)
{
RISCV_INFO(r);
LOG_TARGET_DEBUG(target, "prep hart, debug_reason=%d", target->debug_reason);
r->prepped = false;
if (target->state == TARGET_HALTED) {
LOG_TARGET_DEBUG(target, "Hart is already halted.");
} else if (target->state == TARGET_UNAVAILABLE) {
LOG_TARGET_DEBUG(target, "Hart is unavailable.");
} else {
if (r->halt_prep(target) != ERROR_OK)
return ERROR_FAIL;
r->prepped = true;
}
return ERROR_OK;
}
static int riscv_halt_go_all_harts(struct target *target)
{
RISCV_INFO(r);
enum riscv_hart_state state;
if (riscv_get_hart_state(target, &state) != ERROR_OK)
return ERROR_FAIL;
if (state == RISCV_STATE_HALTED) {
LOG_TARGET_DEBUG(target, "Hart is already halted.");
} else {
if (r->halt_go(target) != ERROR_OK)
return ERROR_FAIL;
riscv_invalidate_register_cache(target);
}
return ERROR_OK;
}
static int halt_go(struct target *target)
{
RISCV_INFO(r);
int result;
if (!r->get_hart_state) {
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
result = tt->halt(target);
} else {
result = riscv_halt_go_all_harts(target);
}
if (target->debug_reason == DBG_REASON_NOTHALTED)
target->debug_reason = DBG_REASON_DBGRQ;
return result;
}
static int halt_finish(struct target *target)
{
return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}
int riscv_halt(struct target *target)
{
RISCV_INFO(r);
if (!r->get_hart_state) {
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
return tt->halt(target);
}
LOG_TARGET_DEBUG(target, "halting all harts");
int result = ERROR_OK;
if (target->smp) {
struct target_list *tlist;
foreach_smp_target(tlist, target->smp_targets) {
struct target *t = tlist->target;
if (halt_prep(t) != ERROR_OK)
result = ERROR_FAIL;
}
foreach_smp_target(tlist, target->smp_targets) {
struct target *t = tlist->target;
struct riscv_info *i = riscv_info(t);
if (i->prepped) {
if (halt_go(t) != ERROR_OK)
result = ERROR_FAIL;
}
}
foreach_smp_target(tlist, target->smp_targets) {
struct target *t = tlist->target;
if (halt_finish(t) != ERROR_OK)
return ERROR_FAIL;
}
} else {
if (halt_prep(target) != ERROR_OK)
result = ERROR_FAIL;
if (halt_go(target) != ERROR_OK)
result = ERROR_FAIL;
if (halt_finish(target) != ERROR_OK)
return ERROR_FAIL;
}
return result;
}
static int riscv_assert_reset(struct target *target)
{
LOG_TARGET_DEBUG(target, "");
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
riscv_invalidate_register_cache(target);
return tt->assert_reset(target);
}
static int riscv_deassert_reset(struct target *target)
{
LOG_TARGET_DEBUG(target, "");
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
return tt->deassert_reset(target);
}
/* state must be riscv_reg_t state[RISCV_MAX_HWBPS] = {0}; */
static int disable_triggers(struct target *target, riscv_reg_t *state)
{
RISCV_INFO(r);
LOG_TARGET_DEBUG(target, "Disabling triggers.");
if (riscv_enumerate_triggers(target) != ERROR_OK)
return ERROR_FAIL;
if (r->manual_hwbp_set) {
/* Look at every trigger that may have been set. */
riscv_reg_t tselect;
if (riscv_get_register(target, &tselect, GDB_REGNO_TSELECT) != ERROR_OK)
return ERROR_FAIL;
for (unsigned int t = 0; t < r->trigger_count; t++) {
if (riscv_set_register(target, GDB_REGNO_TSELECT, t) != ERROR_OK)
return ERROR_FAIL;
riscv_reg_t tdata1;
if (riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1) != ERROR_OK)
return ERROR_FAIL;
if (tdata1 & CSR_TDATA1_DMODE(riscv_xlen(target))) {
state[t] = tdata1;
if (riscv_set_register(target, GDB_REGNO_TDATA1, 0) != ERROR_OK)
return ERROR_FAIL;
}
}
if (riscv_set_register(target, GDB_REGNO_TSELECT, tselect) != ERROR_OK)
return ERROR_FAIL;
} else {
/* Just go through the triggers we manage. */
struct watchpoint *watchpoint = target->watchpoints;
int i = 0;
while (watchpoint) {
LOG_TARGET_DEBUG(target, "Watchpoint %d: set=%d", i, watchpoint->is_set);
state[i] = watchpoint->is_set;
if (watchpoint->is_set) {
if (riscv_remove_watchpoint(target, watchpoint) != ERROR_OK)
return ERROR_FAIL;
}
watchpoint = watchpoint->next;
i++;
}
}
return ERROR_OK;
}
static int enable_triggers(struct target *target, riscv_reg_t *state)
{
RISCV_INFO(r);
if (r->manual_hwbp_set) {
/* Look at every trigger that may have been set. */
riscv_reg_t tselect;
if (riscv_get_register(target, &tselect, GDB_REGNO_TSELECT) != ERROR_OK)
return ERROR_FAIL;
for (unsigned int t = 0; t < r->trigger_count; t++) {
if (state[t] != 0) {
if (riscv_set_register(target, GDB_REGNO_TSELECT, t) != ERROR_OK)
return ERROR_FAIL;
if (riscv_set_register(target, GDB_REGNO_TDATA1, state[t]) != ERROR_OK)
return ERROR_FAIL;
}
}
if (riscv_set_register(target, GDB_REGNO_TSELECT, tselect) != ERROR_OK)
return ERROR_FAIL;
} else {
struct watchpoint *watchpoint = target->watchpoints;
int i = 0;
while (watchpoint) {
LOG_TARGET_DEBUG(target, "Watchpoint %d: cleared=%" PRId64, i, state[i]);
if (state[i]) {
if (riscv_add_watchpoint(target, watchpoint) != ERROR_OK)
return ERROR_FAIL;
}
watchpoint = watchpoint->next;
i++;
}
}
return ERROR_OK;
}
/**
* Get everything ready to resume.
*/
static int resume_prep(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
{
assert(target->state == TARGET_HALTED);
RISCV_INFO(r);
if (!current && riscv_set_register(target, GDB_REGNO_PC, address) != ERROR_OK)
return ERROR_FAIL;
if (handle_breakpoints) {
/* To be able to run off a trigger, we perform a step operation and then
* resume. If handle_breakpoints is true then step temporarily disables
* pending breakpoints so we can safely perform the step. */
if (old_or_new_riscv_step(target, current, address, handle_breakpoints) != ERROR_OK)
return ERROR_FAIL;
}
if (r->get_hart_state) {
if (r->resume_prep(target) != ERROR_OK)
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "Mark as prepped.");
r->prepped = true;
return ERROR_OK;
}
/**
* Resume all the harts that have been prepped, as close to instantaneous as
* possible.
*/
static int resume_go(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
{
assert(target->state == TARGET_HALTED);
RISCV_INFO(r);
int result;
if (!r->get_hart_state) {
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
result = tt->resume(target, current, address, handle_breakpoints,
debug_execution);
} else {
result = riscv_resume_go_all_harts(target);
}
return result;
}
static int resume_finish(struct target *target, int debug_execution)
{
assert(target->state == TARGET_HALTED);
register_cache_invalidate(target->reg_cache);
target->state = debug_execution ? TARGET_DEBUG_RUNNING : TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
return target_call_event_callbacks(target,
debug_execution ? TARGET_EVENT_DEBUG_RESUMED : TARGET_EVENT_RESUMED);
}
/**
* @par single_hart When true, only resume a single hart even if SMP is
* configured. This is used to run algorithms on just one hart.
*/
static int riscv_resume(
struct target *target,
int current,
target_addr_t address,
int handle_breakpoints,
int debug_execution,
bool single_hart)
{
int result = ERROR_OK;
struct list_head *targets;
LIST_HEAD(single_target_list);
struct target_list single_target_entry = {
.lh = {NULL, NULL},
.target = target
};
if (target->smp && !single_hart) {
targets = target->smp_targets;
} else {
/* Make a list that just contains a single target, so we can
* share code below. */
list_add(&single_target_entry.lh, &single_target_list);
targets = &single_target_list;
}
LOG_TARGET_DEBUG(target, "current=%s, address=0x%"
TARGET_PRIxADDR ", handle_breakpoints=%s, debug_exec=%s",
current ? "true" : "false",
address,
handle_breakpoints ? "true" : "false",
debug_execution ? "true" : "false");
struct target_list *tlist;
foreach_smp_target_direction(resume_order == RO_NORMAL, tlist, targets) {
struct target *t = tlist->target;
LOG_TARGET_DEBUG(t, "target->state=%s", target_state_name(t));
if (t->state != TARGET_HALTED)
LOG_TARGET_DEBUG(t, "skipping this target: target not halted");
else if (resume_prep(t, current, address, handle_breakpoints,
debug_execution) != ERROR_OK)
result = ERROR_FAIL;
}
foreach_smp_target_direction(resume_order == RO_NORMAL, tlist, targets) {
struct target *t = tlist->target;
struct riscv_info *i = riscv_info(t);
if (i->prepped) {
if (resume_go(t, current, address, handle_breakpoints,
debug_execution) != ERROR_OK)
result = ERROR_FAIL;
}
}
foreach_smp_target_direction(resume_order == RO_NORMAL, tlist, targets) {
struct target *t = tlist->target;
if (t->state == TARGET_HALTED) {
if (resume_finish(t, debug_execution) != ERROR_OK)
result = ERROR_FAIL;
}
}
return result;
}
static int riscv_target_resume(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
{
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "Not halted.");
return ERROR_TARGET_NOT_HALTED;
}
return riscv_resume(target, current, address, handle_breakpoints,
debug_execution, false);
}
static int riscv_effective_privilege_mode(struct target *target, int *v_mode, int *effective_mode)
{
riscv_reg_t priv;
if (riscv_get_register(target, &priv, GDB_REGNO_PRIV) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read priv register.");
return ERROR_FAIL;
}
*v_mode = get_field(priv, VIRT_PRIV_V);
riscv_reg_t mstatus;
if (riscv_get_register(target, &mstatus, GDB_REGNO_MSTATUS) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read mstatus register.");
return ERROR_FAIL;
}
if (get_field(mstatus, MSTATUS_MPRV))
*effective_mode = get_field(mstatus, MSTATUS_MPP);
else
*effective_mode = get_field(priv, VIRT_PRIV_PRV);
LOG_TARGET_DEBUG(target, "Effective mode=%d; v=%d", *effective_mode, *v_mode);
return ERROR_OK;
}
static int riscv_mmu(struct target *target, int *enabled)
{
*enabled = 0;
if (!riscv_enable_virt2phys)
return ERROR_OK;
/* Don't use MMU in explicit or effective M (machine) mode */
riscv_reg_t priv;
if (riscv_get_register(target, &priv, GDB_REGNO_PRIV) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read priv register.");
return ERROR_FAIL;
}
int effective_mode;
int v_mode;
if (riscv_effective_privilege_mode(target, &v_mode, &effective_mode) != ERROR_OK)
return ERROR_FAIL;
unsigned int xlen = riscv_xlen(target);
if (v_mode) {
/* vsatp and hgatp registers are considered active for the
* purposes of the address-translation algorithm unless the
* effective privilege mode is U and hstatus.HU=0. */
if (effective_mode == PRV_U) {
riscv_reg_t hstatus;
if (riscv_get_register(target, &hstatus, GDB_REGNO_HSTATUS) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read hstatus register.");
return ERROR_FAIL;
}
if (get_field(hstatus, HSTATUS_HU) == 0)
/* In hypervisor mode regular satp translation
* doesn't happen. */
return ERROR_OK;
}
riscv_reg_t vsatp;
if (riscv_get_register(target, &vsatp, GDB_REGNO_VSATP) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read vsatp register; priv=0x%" PRIx64,
priv);
return ERROR_FAIL;
}
/* vsatp is identical to satp, so we can use the satp macros. */
if (RISCV_SATP_MODE(xlen) != SATP_MODE_OFF) {
LOG_TARGET_DEBUG(target, "VS-stage translation is enabled.");
*enabled = 1;
return ERROR_OK;
}
riscv_reg_t hgatp;
if (riscv_get_register(target, &hgatp, GDB_REGNO_HGATP) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read hgatp register; priv=0x%" PRIx64,
priv);
return ERROR_FAIL;
}
if (RISCV_HGATP_MODE(xlen) != HGATP_MODE_OFF) {
LOG_TARGET_DEBUG(target, "G-stage address translation is enabled.");
*enabled = 1;
} else {
LOG_TARGET_DEBUG(target, "No V-mode address translation enabled.");
}
return ERROR_OK;
}
/* Don't use MMU in explicit or effective M (machine) mode */
if (effective_mode == PRV_M) {
LOG_TARGET_DEBUG(target, "SATP/MMU ignored in Machine mode.");
return ERROR_OK;
}
riscv_reg_t satp;
if (riscv_get_register(target, &satp, GDB_REGNO_SATP) != ERROR_OK) {
LOG_TARGET_DEBUG(target, "Couldn't read SATP.");
/* If we can't read SATP, then there must not be an MMU. */
return ERROR_OK;
}
if (get_field(satp, RISCV_SATP_MODE(xlen)) == SATP_MODE_OFF) {
LOG_TARGET_DEBUG(target, "MMU is disabled.");
} else {
LOG_TARGET_DEBUG(target, "MMU is enabled.");
*enabled = 1;
}
return ERROR_OK;
}
/* Translate address from virtual to physical, using info and ppn.
* If extra_info is non-NULL, then translate page table accesses for the primary
* translation using extra_info and extra_ppn. */
static int riscv_address_translate(struct target *target,
const virt2phys_info_t *info, target_addr_t ppn,
const virt2phys_info_t *extra_info, target_addr_t extra_ppn,
target_addr_t virtual, target_addr_t *physical)
{
RISCV_INFO(r);
unsigned int xlen = riscv_xlen(target);
LOG_TARGET_DEBUG(target, "mode=%s; ppn=0x%" TARGET_PRIxADDR "; virtual=0x%" TARGET_PRIxADDR,
info->name, ppn, virtual);
/* verify bits xlen-1:va_bits-1 are all equal */
assert(xlen >= info->va_bits);
target_addr_t mask = ((target_addr_t)1 << (xlen - (info->va_bits - 1))) - 1;
target_addr_t masked_msbs = (virtual >> (info->va_bits - 1)) & mask;
if (masked_msbs != 0 && masked_msbs != mask) {
LOG_TARGET_ERROR(target, "Virtual address 0x%" TARGET_PRIxADDR " is not sign-extended "
"for %s mode.", virtual, info->name);
return ERROR_FAIL;
}
uint64_t pte = 0;
target_addr_t table_address = ppn << RISCV_PGSHIFT;
int i = info->level - 1;
while (i >= 0) {
uint64_t vpn = virtual >> info->vpn_shift[i];
vpn &= info->vpn_mask[i];
target_addr_t pte_address = table_address + (vpn << info->pte_shift);
if (extra_info) {
/* Perform extra stage translation. */
if (riscv_address_translate(target, extra_info, extra_ppn,
NULL, 0, pte_address, &pte_address) != ERROR_OK)
return ERROR_FAIL;
}
uint8_t buffer[8];
assert(info->pte_shift <= 3);
int retval = r->read_memory(target, pte_address,
4, (1 << info->pte_shift) / 4, buffer, 4);
if (retval != ERROR_OK)
return ERROR_FAIL;
if (info->pte_shift == 2)
pte = buf_get_u32(buffer, 0, 32);
else
pte = buf_get_u64(buffer, 0, 64);
LOG_TARGET_DEBUG(target, "i=%d; PTE @0x%" TARGET_PRIxADDR " = 0x%" PRIx64, i,
pte_address, pte);
if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
LOG_TARGET_ERROR(target, "invalid PTE @0x%" TARGET_PRIxADDR ": 0x%" PRIx64
"; mode=%s; i=%d", pte_address, pte, info->name, i);
return ERROR_FAIL;
}
if ((pte & PTE_R) || (pte & PTE_W) || (pte & PTE_X)) /* Found leaf PTE. */
break;
i--;
if (i < 0)
break;
ppn = pte >> PTE_PPN_SHIFT;
table_address = ppn << RISCV_PGSHIFT;
}
if (i < 0) {
LOG_TARGET_ERROR(target, "Couldn't find the PTE.");
return ERROR_FAIL;
}
/* Make sure to clear out the high bits that may be set. */
*physical = virtual & (((target_addr_t)1 << info->va_bits) - 1);
while (i < info->level) {
ppn = pte >> info->pte_ppn_shift[i];
ppn &= info->pte_ppn_mask[i];
*physical &= ~(((target_addr_t)info->pa_ppn_mask[i]) <<
info->pa_ppn_shift[i]);
*physical |= (ppn << info->pa_ppn_shift[i]);
i++;
}
LOG_TARGET_DEBUG(target, "mode=%s; 0x%" TARGET_PRIxADDR " -> 0x%" TARGET_PRIxADDR,
info->name, virtual, *physical);
return ERROR_OK;
}
/* Virtual to physical translation for hypervisor mode. */
static int riscv_virt2phys_v(struct target *target, target_addr_t virtual, target_addr_t *physical)
{
riscv_reg_t vsatp;
if (riscv_get_register(target, &vsatp, GDB_REGNO_VSATP) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read vsatp register.");
return ERROR_FAIL;
}
/* vsatp is identical to satp, so we can use the satp macros. */
unsigned int xlen = riscv_xlen(target);
int vsatp_mode = get_field(vsatp, RISCV_SATP_MODE(xlen));
LOG_TARGET_DEBUG(target, "VS-stage translation mode: %d", vsatp_mode);
riscv_reg_t hgatp;
if (riscv_get_register(target, &hgatp, GDB_REGNO_HGATP) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read hgatp register.");
return ERROR_FAIL;
}
int hgatp_mode = get_field(hgatp, RISCV_HGATP_MODE(xlen));
LOG_TARGET_DEBUG(target, "G-stage translation mode: %d", hgatp_mode);
const virt2phys_info_t *vsatp_info;
/* VS-stage address translation. */
switch (vsatp_mode) {
case SATP_MODE_SV32:
vsatp_info = &sv32;
break;
case SATP_MODE_SV39:
vsatp_info = &sv39;
break;
case SATP_MODE_SV48:
vsatp_info = &sv48;
break;
case SATP_MODE_SV57:
vsatp_info = &sv57;
break;
case SATP_MODE_OFF:
vsatp_info = NULL;
LOG_TARGET_DEBUG(target, "vsatp mode is %d. No VS-stage translation. (vsatp: 0x%" PRIx64 ")",
vsatp_mode, vsatp);
break;
default:
LOG_TARGET_ERROR(target,
"vsatp mode %d is not supported. (vsatp: 0x%" PRIx64 ")",
vsatp_mode, vsatp);
return ERROR_FAIL;
}
const virt2phys_info_t *hgatp_info;
/* G-stage address translation. */
switch (hgatp_mode) {
case HGATP_MODE_SV32X4:
hgatp_info = &sv32x4;
break;
case HGATP_MODE_SV39X4:
hgatp_info = &sv39x4;
break;
case HGATP_MODE_SV48X4:
hgatp_info = &sv48x4;
break;
case HGATP_MODE_SV57X4:
hgatp_info = &sv57x4;
break;
case HGATP_MODE_OFF:
hgatp_info = NULL;
LOG_TARGET_DEBUG(target, "hgatp mode is %d. No G-stage translation. (hgatp: 0x%" PRIx64 ")",
hgatp_mode, hgatp);
break;
default:
LOG_TARGET_ERROR(target,
"hgatp mode %d is not supported. (hgatp: 0x%" PRIx64 ")",
hgatp_mode, hgatp);
return ERROR_FAIL;
}
/* For any virtual memory access, the original virtual address is
* converted in the first stage by VS-level address translation,
* as controlled by the vsatp register, into a guest physical
* address. */
target_addr_t guest_physical;
if (vsatp_info) {
/* When V=1, memory accesses that would normally bypass
* address translation are subject to G- stage address
* translation alone. This includes memory accesses made
* in support of VS-stage address translation, such as
* reads and writes of VS-level page tables. */
if (riscv_address_translate(target,
vsatp_info, get_field(vsatp, RISCV_SATP_PPN(xlen)),
hgatp_info, get_field(hgatp, RISCV_SATP_PPN(xlen)),
virtual, &guest_physical) != ERROR_OK)
return ERROR_FAIL;
} else {
guest_physical = virtual;
}
/* The guest physical address is then converted in the second
* stage by guest physical address translation, as controlled by
* the hgatp register, into a supervisor physical address. */
if (hgatp_info) {
if (riscv_address_translate(target,
hgatp_info, get_field(hgatp, RISCV_HGATP_PPN(xlen)),
NULL, 0,
guest_physical, physical) != ERROR_OK)
return ERROR_FAIL;
} else {
*physical = guest_physical;
}
return ERROR_OK;
}
static int riscv_virt2phys(struct target *target, target_addr_t virtual, target_addr_t *physical)
{
int enabled;
if (riscv_mmu(target, &enabled) != ERROR_OK)
return ERROR_FAIL;
if (!enabled) {
*physical = virtual;
LOG_TARGET_DEBUG(target, "MMU is disabled. 0x%" TARGET_PRIxADDR " -> 0x%" TARGET_PRIxADDR, virtual, *physical);
return ERROR_OK;
}
riscv_reg_t priv;
if (riscv_get_register(target, &priv, GDB_REGNO_PRIV) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read priv register.");
return ERROR_FAIL;
}
if (priv & VIRT_PRIV_V)
return riscv_virt2phys_v(target, virtual, physical);
riscv_reg_t satp_value;
if (riscv_get_register(target, &satp_value, GDB_REGNO_SATP) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to read SATP register.");
return ERROR_FAIL;
}
unsigned int xlen = riscv_xlen(target);
int satp_mode = get_field(satp_value, RISCV_SATP_MODE(xlen));
const virt2phys_info_t *satp_info;
switch (satp_mode) {
case SATP_MODE_SV32:
satp_info = &sv32;
break;
case SATP_MODE_SV39:
satp_info = &sv39;
break;
case SATP_MODE_SV48:
satp_info = &sv48;
break;
case SATP_MODE_SV57:
satp_info = &sv57;
break;
case SATP_MODE_OFF:
LOG_TARGET_ERROR(target, "No translation or protection."
" (satp: 0x%" PRIx64 ")", satp_value);
return ERROR_FAIL;
default:
LOG_TARGET_ERROR(target, "The translation mode is not supported."
" (satp: 0x%" PRIx64 ")", satp_value);
return ERROR_FAIL;
}
return riscv_address_translate(target,
satp_info, get_field(satp_value, RISCV_SATP_PPN(xlen)),
NULL, 0,
virtual, physical);
}
static int riscv_read_phys_memory(struct target *target, target_addr_t phys_address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
RISCV_INFO(r);
return r->read_memory(target, phys_address, size, count, buffer, size);
}
static int riscv_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
if (count == 0) {
LOG_TARGET_WARNING(target, "0-length read from 0x%" TARGET_PRIxADDR, address);
return ERROR_OK;
}
target_addr_t physical_addr;
int result = target->type->virt2phys(target, address, &physical_addr);
if (result != ERROR_OK) {
LOG_TARGET_ERROR(target, "Address translation failed.");
return result;
}
RISCV_INFO(r);
return r->read_memory(target, physical_addr, size, count, buffer, size);
}
static int riscv_write_phys_memory(struct target *target, target_addr_t phys_address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
return tt->write_memory(target, phys_address, size, count, buffer);
}
static int riscv_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
if (count == 0) {
LOG_TARGET_WARNING(target, "0-length write to 0x%" TARGET_PRIxADDR, address);
return ERROR_OK;
}
target_addr_t physical_addr;
int result = target->type->virt2phys(target, address, &physical_addr);
if (result != ERROR_OK) {
LOG_TARGET_ERROR(target, "Address translation failed.");
return result;
}
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
return tt->write_memory(target, physical_addr, size, count, buffer);
}
static const char *riscv_get_gdb_arch(struct target *target)
{
switch (riscv_xlen(target)) {
case 32:
return "riscv:rv32";
case 64:
return "riscv:rv64";
}
LOG_TARGET_ERROR(target, "Unsupported xlen: %d", riscv_xlen(target));
return NULL;
}
static int riscv_get_gdb_reg_list_internal(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class, bool is_read)
{
LOG_TARGET_DEBUG(target, "reg_class=%d, read=%d", reg_class, is_read);
if (!target->reg_cache) {
LOG_TARGET_ERROR(target, "Target not initialized. Return ERROR_FAIL.");
return ERROR_FAIL;
}
switch (reg_class) {
case REG_CLASS_GENERAL:
*reg_list_size = 33;
break;
case REG_CLASS_ALL:
*reg_list_size = target->reg_cache->num_regs;
break;
default:
LOG_TARGET_ERROR(target, "Unsupported reg_class: %d", reg_class);
return ERROR_FAIL;
}
*reg_list = calloc(*reg_list_size, sizeof(struct reg *));
if (!*reg_list)
return ERROR_FAIL;
for (int i = 0; i < *reg_list_size; i++) {
assert(!target->reg_cache->reg_list[i].valid ||
target->reg_cache->reg_list[i].size > 0);
(*reg_list)[i] = &target->reg_cache->reg_list[i];
if (is_read &&
target->reg_cache->reg_list[i].exist &&
!target->reg_cache->reg_list[i].valid) {
if (target->reg_cache->reg_list[i].type->get(
&target->reg_cache->reg_list[i]) != ERROR_OK)
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int riscv_get_gdb_reg_list_noread(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
return riscv_get_gdb_reg_list_internal(target, reg_list, reg_list_size,
reg_class, false);
}
static int riscv_get_gdb_reg_list(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
return riscv_get_gdb_reg_list_internal(target, reg_list, reg_list_size,
reg_class, true);
}
static int riscv_arch_state(struct target *target)
{
struct target_type *tt = get_target_type(target);
if (!tt)
return ERROR_FAIL;
return tt->arch_state(target);
}
/* Algorithm must end with a software breakpoint instruction. */
static int riscv_run_algorithm(struct target *target, int num_mem_params,
struct mem_param *mem_params, int num_reg_params,
struct reg_param *reg_params, target_addr_t entry_point,
target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
{
RISCV_INFO(info);
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "not halted (run target algo)");
return ERROR_TARGET_NOT_HALTED;
}
/* Write memory parameters to the target memory */
for (int i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction == PARAM_OUT ||
mem_params[i].direction == PARAM_IN_OUT) {
int retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "Couldn't write input mem param into the memory, addr=0x%" TARGET_PRIxADDR
" size=0x%" PRIx32, mem_params[i].address, mem_params[i].size);
return retval;
}
}
}
/* Save registers */
struct reg *reg_pc = register_get_by_name(target->reg_cache, "pc", true);
if (!reg_pc || reg_pc->type->get(reg_pc) != ERROR_OK)
return ERROR_FAIL;
uint64_t saved_pc = buf_get_u64(reg_pc->value, 0, reg_pc->size);
LOG_TARGET_DEBUG(target, "saved_pc=0x%" PRIx64, saved_pc);
uint64_t saved_regs[32];
for (int i = 0; i < num_reg_params; i++) {
LOG_TARGET_DEBUG(target, "save %s", reg_params[i].reg_name);
struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, false);
if (!r) {
LOG_TARGET_ERROR(target, "Couldn't find register named '%s'", reg_params[i].reg_name);
return ERROR_FAIL;
}
if (r->size != reg_params[i].size) {
LOG_TARGET_ERROR(target, "Register %s is %d bits instead of %d bits.",
reg_params[i].reg_name, r->size, reg_params[i].size);
return ERROR_FAIL;
}
if (r->number > GDB_REGNO_XPR31) {
LOG_TARGET_ERROR(target, "Only GPRs can be use as argument registers.");
return ERROR_FAIL;
}
if (r->type->get(r) != ERROR_OK)
return ERROR_FAIL;
saved_regs[r->number] = buf_get_u64(r->value, 0, r->size);
if (reg_params[i].direction == PARAM_OUT || reg_params[i].direction == PARAM_IN_OUT) {
if (r->type->set(r, reg_params[i].value) != ERROR_OK)
return ERROR_FAIL;
}
}
/* Disable Interrupts before attempting to run the algorithm. */
uint64_t current_mstatus;
uint64_t irq_disabled_mask = MSTATUS_MIE | MSTATUS_HIE | MSTATUS_SIE | MSTATUS_UIE;
if (riscv_interrupts_disable(target, irq_disabled_mask, &current_mstatus) != ERROR_OK)
return ERROR_FAIL;
/* Run algorithm */
LOG_TARGET_DEBUG(target, "Resume at 0x%" TARGET_PRIxADDR, entry_point);
if (riscv_resume(target, 0, entry_point, 0, 1, true) != ERROR_OK)
return ERROR_FAIL;
int64_t start = timeval_ms();
while (target->state != TARGET_HALTED) {
LOG_TARGET_DEBUG(target, "poll()");
int64_t now = timeval_ms();
if (now - start > timeout_ms) {
LOG_TARGET_ERROR(target, "Algorithm timed out after %" PRId64 " ms.", now - start);
riscv_halt(target);
old_or_new_riscv_poll(target);
enum gdb_regno regnums[] = {
GDB_REGNO_RA, GDB_REGNO_SP, GDB_REGNO_GP, GDB_REGNO_TP,
GDB_REGNO_T0, GDB_REGNO_T1, GDB_REGNO_T2, GDB_REGNO_FP,
GDB_REGNO_S1, GDB_REGNO_A0, GDB_REGNO_A1, GDB_REGNO_A2,
GDB_REGNO_A3, GDB_REGNO_A4, GDB_REGNO_A5, GDB_REGNO_A6,
GDB_REGNO_A7, GDB_REGNO_S2, GDB_REGNO_S3, GDB_REGNO_S4,
GDB_REGNO_S5, GDB_REGNO_S6, GDB_REGNO_S7, GDB_REGNO_S8,
GDB_REGNO_S9, GDB_REGNO_S10, GDB_REGNO_S11, GDB_REGNO_T3,
GDB_REGNO_T4, GDB_REGNO_T5, GDB_REGNO_T6,
GDB_REGNO_PC,
GDB_REGNO_MSTATUS, GDB_REGNO_MEPC, GDB_REGNO_MCAUSE,
};
for (unsigned i = 0; i < ARRAY_SIZE(regnums); i++) {
enum gdb_regno regno = regnums[i];
riscv_reg_t reg_value;
if (riscv_get_register(target, &reg_value, regno) != ERROR_OK)
break;
LOG_TARGET_ERROR(target, "%s = 0x%" PRIx64, gdb_regno_name(target, regno), reg_value);
}
return ERROR_TARGET_TIMEOUT;
}
int result = old_or_new_riscv_poll(target);
if (result != ERROR_OK)
return result;
}
/* TODO: The current hart id might have been changed in poll(). */
/* if (riscv_select_current_hart(target) != ERROR_OK)
return ERROR_FAIL; */
if (reg_pc->type->get(reg_pc) != ERROR_OK)
return ERROR_FAIL;
uint64_t final_pc = buf_get_u64(reg_pc->value, 0, reg_pc->size);
if (exit_point && final_pc != exit_point) {
LOG_TARGET_ERROR(target, "PC ended up at 0x%" PRIx64 " instead of 0x%"
TARGET_PRIxADDR, final_pc, exit_point);
return ERROR_FAIL;
}
/* Restore Interrupts */
if (riscv_interrupts_restore(target, current_mstatus) != ERROR_OK)
return ERROR_FAIL;
/* Restore registers */
uint8_t buf[8] = { 0 };
buf_set_u64(buf, 0, info->xlen, saved_pc);
if (reg_pc->type->set(reg_pc, buf) != ERROR_OK)
return ERROR_FAIL;
for (int i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction == PARAM_IN ||
reg_params[i].direction == PARAM_IN_OUT) {
struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, false);
if (r->type->get(r) != ERROR_OK) {
LOG_TARGET_ERROR(target, "get(%s) failed", r->name);
return ERROR_FAIL;
}
buf_cpy(r->value, reg_params[i].value, reg_params[i].size);
}
LOG_TARGET_DEBUG(target, "restore %s", reg_params[i].reg_name);
struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, false);
buf_set_u64(buf, 0, info->xlen, saved_regs[r->number]);
if (r->type->set(r, buf) != ERROR_OK) {
LOG_TARGET_ERROR(target, "set(%s) failed", r->name);
return ERROR_FAIL;
}
}
/* Read memory parameters from the target memory */
for (int i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction == PARAM_IN ||
mem_params[i].direction == PARAM_IN_OUT) {
int retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "Couldn't read output mem param from the memory, "
"addr=0x%" TARGET_PRIxADDR " size=0x%" PRIx32,
mem_params[i].address, mem_params[i].size);
return retval;
}
}
}
return ERROR_OK;
}
static int riscv_checksum_memory(struct target *target,
target_addr_t address, uint32_t count,
uint32_t *checksum)
{
struct working_area *crc_algorithm;
struct reg_param reg_params[2];
int retval;
LOG_TARGET_DEBUG(target, "address=0x%" TARGET_PRIxADDR "; count=0x%" PRIx32, address, count);
static const uint8_t riscv32_crc_code[] = {
#include "../../../contrib/loaders/checksum/riscv32_crc.inc"
};
static const uint8_t riscv64_crc_code[] = {
#include "../../../contrib/loaders/checksum/riscv64_crc.inc"
};
static const uint8_t *crc_code;
unsigned xlen = riscv_xlen(target);
unsigned crc_code_size;
if (xlen == 32) {
crc_code = riscv32_crc_code;
crc_code_size = sizeof(riscv32_crc_code);
} else {
crc_code = riscv64_crc_code;
crc_code_size = sizeof(riscv64_crc_code);
}
if (count < crc_code_size * 4) {
/* Don't use the algorithm for relatively small buffers. It's faster
* just to read the memory. target_checksum_memory() will take care of
* that if we fail. */
return ERROR_FAIL;
}
retval = target_alloc_working_area(target, crc_code_size, &crc_algorithm);
if (retval != ERROR_OK)
return retval;
if (crc_algorithm->address + crc_algorithm->size > address &&
crc_algorithm->address < address + count) {
/* Region to checksum overlaps with the work area we've been assigned.
* Bail. (Would be better to manually checksum what we read there, and
* use the algorithm for the rest.) */
target_free_working_area(target, crc_algorithm);
return ERROR_FAIL;
}
retval = target_write_buffer(target, crc_algorithm->address, crc_code_size,
crc_code);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to write code to " TARGET_ADDR_FMT ": %d",
crc_algorithm->address, retval);
target_free_working_area(target, crc_algorithm);
return retval;
}
init_reg_param(&reg_params[0], "a0", xlen, PARAM_IN_OUT);
init_reg_param(&reg_params[1], "a1", xlen, PARAM_OUT);
buf_set_u64(reg_params[0].value, 0, xlen, address);
buf_set_u64(reg_params[1].value, 0, xlen, count);
/* 20 second timeout/megabyte */
unsigned int timeout = 20000 * (1 + (count / (1024 * 1024)));
retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
crc_algorithm->address,
0, /* Leave exit point unspecified because we don't know. */
timeout, NULL);
if (retval == ERROR_OK)
*checksum = buf_get_u32(reg_params[0].value, 0, 32);
else
LOG_TARGET_ERROR(target, "Error executing RISC-V CRC algorithm.");
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
target_free_working_area(target, crc_algorithm);
LOG_TARGET_DEBUG(target, "checksum=0x%" PRIx32 ", result=%d", *checksum, retval);
return retval;
}
/*** OpenOCD Helper Functions ***/
enum riscv_next_action {
RPH_NONE,
RPH_RESUME,
RPH_REMAIN_HALTED
};
static int riscv_poll_hart(struct target *target, enum riscv_next_action *next_action)
{
RISCV_INFO(r);
LOG_TARGET_DEBUG(target, "polling, target->state=%d", target->state);
*next_action = RPH_NONE;
enum riscv_hart_state previous_riscv_state = 0;
enum target_state previous_target_state = target->state;
switch (target->state) {
case TARGET_UNKNOWN:
/* Special case, handled further down. */
previous_riscv_state = RISCV_STATE_UNAVAILABLE; /* Need to assign something. */
break;
case TARGET_RUNNING:
previous_riscv_state = RISCV_STATE_RUNNING;
break;
case TARGET_HALTED:
previous_riscv_state = RISCV_STATE_HALTED;
break;
case TARGET_RESET:
previous_riscv_state = RISCV_STATE_HALTED;
break;
case TARGET_DEBUG_RUNNING:
previous_riscv_state = RISCV_STATE_RUNNING;
break;
case TARGET_UNAVAILABLE:
previous_riscv_state = RISCV_STATE_UNAVAILABLE;
break;
}
/* If OpenOCD thinks we're running but this hart is halted then it's time
* to raise an event. */
enum riscv_hart_state state;
if (riscv_get_hart_state(target, &state) != ERROR_OK)
return ERROR_FAIL;
if (state == RISCV_STATE_NON_EXISTENT) {
LOG_TARGET_ERROR(target, "Hart is non-existent!");
return ERROR_FAIL;
}
if (state == RISCV_STATE_HALTED && timeval_ms() - r->last_activity > 100) {
/* If we've been idle for a while, flush the register cache. Just in case
* OpenOCD is going to be disconnected without shutting down cleanly. */
if (riscv_flush_registers(target) != ERROR_OK)
return ERROR_FAIL;
}
if (target->state == TARGET_UNKNOWN || state != previous_riscv_state) {
switch (state) {
case RISCV_STATE_HALTED:
if (previous_riscv_state == RISCV_STATE_UNAVAILABLE)
LOG_TARGET_INFO(target, "became available (halted)");
LOG_TARGET_DEBUG(target, " triggered a halt; previous_target_state=%d",
previous_target_state);
target->state = TARGET_HALTED;
enum riscv_halt_reason halt_reason = riscv_halt_reason(target);
if (set_debug_reason(target, halt_reason) != ERROR_OK)
return ERROR_FAIL;
if (halt_reason == RISCV_HALT_EBREAK) {
int retval;
/* Detect if this EBREAK is a semihosting request. If so, handle it. */
switch (riscv_semihosting(target, &retval)) {
case SEMIHOSTING_NONE:
break;
case SEMIHOSTING_WAITING:
/* This hart should remain halted. */
*next_action = RPH_REMAIN_HALTED;
break;
case SEMIHOSTING_HANDLED:
/* This hart should be resumed, along with any other
* harts that halted due to haltgroups. */
*next_action = RPH_RESUME;
return ERROR_OK;
case SEMIHOSTING_ERROR:
return retval;
}
}
if (r->handle_became_halted &&
r->handle_became_halted(target, previous_riscv_state) != ERROR_OK)
return ERROR_FAIL;
/* We shouldn't do the callbacks yet. What if
* there are multiple harts that halted at the
* same time? We need to set debug reason on each
* of them before calling a callback, which is
* going to figure out the "current thread". */
r->halted_needs_event_callback = true;
if (previous_target_state == TARGET_DEBUG_RUNNING)
r->halted_callback_event = TARGET_EVENT_DEBUG_HALTED;
else
r->halted_callback_event = TARGET_EVENT_HALTED;
break;
case RISCV_STATE_RUNNING:
if (previous_riscv_state == RISCV_STATE_UNAVAILABLE)
LOG_TARGET_INFO(target, "became available (running)");
LOG_TARGET_DEBUG(target, " triggered running");
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
if (r->handle_became_running &&
r->handle_became_running(target, previous_riscv_state) != ERROR_OK)
return ERROR_FAIL;
break;
case RISCV_STATE_UNAVAILABLE:
LOG_TARGET_DEBUG(target, " became unavailable");
LOG_TARGET_INFO(target, "became unavailable.");
target->state = TARGET_UNAVAILABLE;
if (r->handle_became_unavailable &&
r->handle_became_unavailable(target, previous_riscv_state) != ERROR_OK)
return ERROR_FAIL;
break;
case RISCV_STATE_NON_EXISTENT:
LOG_TARGET_ERROR(target, "Hart is non-existent!");
target->state = TARGET_UNAVAILABLE;
break;
}
}
return ERROR_OK;
}
static int sample_memory(struct target *target)
{
RISCV_INFO(r);
if (!r->sample_buf.buf || !r->sample_config.enabled)
return ERROR_OK;
LOG_TARGET_DEBUG(target, "buf used/size: %d/%d", r->sample_buf.used, r->sample_buf.size);
uint64_t start = timeval_ms();
riscv_sample_buf_maybe_add_timestamp(target, true);
int result = ERROR_OK;
if (r->sample_memory) {
result = r->sample_memory(target, &r->sample_buf, &r->sample_config,
start + TARGET_DEFAULT_POLLING_INTERVAL);
if (result != ERROR_NOT_IMPLEMENTED)
goto exit;
}
/* Default slow path. */
while (timeval_ms() - start < TARGET_DEFAULT_POLLING_INTERVAL) {
for (unsigned int i = 0; i < ARRAY_SIZE(r->sample_config.bucket); i++) {
if (r->sample_config.bucket[i].enabled &&
r->sample_buf.used + 1 + r->sample_config.bucket[i].size_bytes < r->sample_buf.size) {
assert(i < RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE);
r->sample_buf.buf[r->sample_buf.used] = i;
result = riscv_read_phys_memory(
target, r->sample_config.bucket[i].address,
r->sample_config.bucket[i].size_bytes, 1,
r->sample_buf.buf + r->sample_buf.used + 1);
if (result == ERROR_OK)
r->sample_buf.used += 1 + r->sample_config.bucket[i].size_bytes;
else
goto exit;
}
}
}
exit:
riscv_sample_buf_maybe_add_timestamp(target, false);
if (result != ERROR_OK) {
LOG_TARGET_INFO(target, "Turning off memory sampling because it failed.");
r->sample_config.enabled = false;
}
return result;
}
/*** OpenOCD Interface ***/
int riscv_openocd_poll(struct target *target)
{
LOG_TARGET_DEBUG(target, "Polling all harts.");
struct list_head *targets;
LIST_HEAD(single_target_list);
struct target_list single_target_entry = {
.lh = {NULL, NULL},
.target = target
};
if (target->smp) {
targets = target->smp_targets;
} else {
/* Make a list that just contains a single target, so we can
* share code below. */
list_add(&single_target_entry.lh, &single_target_list);
targets = &single_target_list;
}
unsigned int should_remain_halted = 0;
unsigned int should_resume = 0;
unsigned int halted = 0;
unsigned int running = 0;
struct target_list *entry;
foreach_smp_target(entry, targets) {
struct target *t = entry->target;
struct riscv_info *info = riscv_info(t);
/* Clear here just in case there were errors and we never got to
* check this flag further down. */
info->halted_needs_event_callback = false;
if (!target_was_examined(t))
continue;
enum riscv_next_action next_action;
if (riscv_poll_hart(t, &next_action) != ERROR_OK)
return ERROR_FAIL;
switch (next_action) {
case RPH_NONE:
if (t->state == TARGET_HALTED)
halted++;
if (t->state == TARGET_RUNNING ||
t->state == TARGET_DEBUG_RUNNING)
running++;
break;
case RPH_REMAIN_HALTED:
should_remain_halted++;
break;
case RPH_RESUME:
should_resume++;
break;
}
}
LOG_TARGET_DEBUG(target, "should_remain_halted=%d, should_resume=%d",
should_remain_halted, should_resume);
if (should_remain_halted && should_resume) {
LOG_TARGET_WARNING(target, "%d harts should remain halted, and %d should resume.",
should_remain_halted, should_resume);
}
if (should_remain_halted) {
LOG_TARGET_DEBUG(target, "halt all; should_remain_halted=%d",
should_remain_halted);
riscv_halt(target);
} else if (should_resume) {
LOG_TARGET_DEBUG(target, "resume all");
riscv_resume(target, true, 0, 0, 0, false);
} else if (halted && running) {
LOG_TARGET_DEBUG(target, "halt all; halted=%d",
halted);
riscv_halt(target);
} else {
/* For targets that were discovered to be halted, call the
* appropriate callback. */
foreach_smp_target(entry, targets)
{
struct target *t = entry->target;
struct riscv_info *info = riscv_info(t);
if (info->halted_needs_event_callback) {
target_call_event_callbacks(t, info->halted_callback_event);
info->halted_needs_event_callback = false;
}
}
}
/* Call tick() for every hart. What happens in tick() is opaque to this
* layer. The reason it's outside the previous loop is that at this point
* the state of every hart has settled, so any side effects happening in
* tick() won't affect the delicate poll() code. */
foreach_smp_target(entry, targets) {
struct target *t = entry->target;
struct riscv_info *info = riscv_info(t);
if (info->tick && info->tick(t) != ERROR_OK)
return ERROR_FAIL;
}
/* Sample memory if any target is running. */
foreach_smp_target(entry, targets) {
struct target *t = entry->target;
if (t->state == TARGET_RUNNING) {
sample_memory(target);
break;
}
}
return ERROR_OK;
}
int riscv_openocd_step(struct target *target, int current,
target_addr_t address, int handle_breakpoints)
{
LOG_TARGET_DEBUG(target, "stepping hart");
if (!current) {
if (riscv_set_register(target, GDB_REGNO_PC, address) != ERROR_OK)
return ERROR_FAIL;
}
struct breakpoint *breakpoint = NULL;
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
if (current) {
if (riscv_get_register(target, &address, GDB_REGNO_PC) != ERROR_OK)
return ERROR_FAIL;
}
breakpoint = breakpoint_find(target, address);
if (breakpoint && (riscv_remove_breakpoint(target, breakpoint) != ERROR_OK))
return ERROR_FAIL;
}
riscv_reg_t trigger_state[RISCV_MAX_HWBPS] = {0};
if (disable_triggers(target, trigger_state) != ERROR_OK)
return ERROR_FAIL;
bool success = true;
uint64_t current_mstatus;
RISCV_INFO(info);
if (info->isrmask_mode == RISCV_ISRMASK_STEPONLY) {
/* Disable Interrupts before stepping. */
uint64_t irq_disabled_mask = MSTATUS_MIE | MSTATUS_HIE | MSTATUS_SIE | MSTATUS_UIE;
if (riscv_interrupts_disable(target, irq_disabled_mask,
&current_mstatus) != ERROR_OK) {
success = false;
LOG_TARGET_ERROR(target, "Unable to disable interrupts.");
goto _exit;
}
}
if (riscv_step_rtos_hart(target) != ERROR_OK) {
success = false;
LOG_TARGET_ERROR(target, "Unable to step rtos hart.");
}
register_cache_invalidate(target->reg_cache);
if (info->isrmask_mode == RISCV_ISRMASK_STEPONLY)
if (riscv_interrupts_restore(target, current_mstatus) != ERROR_OK) {
success = false;
LOG_TARGET_ERROR(target, "Unable to restore interrupts.");
}
_exit:
if (enable_triggers(target, trigger_state) != ERROR_OK) {
success = false;
LOG_TARGET_ERROR(target, "Unable to enable triggers.");
}
if (breakpoint && (riscv_add_breakpoint(target, breakpoint) != ERROR_OK)) {
success = false;
LOG_TARGET_ERROR(target, "Unable to restore the disabled breakpoint.");
}
if (success) {
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_SINGLESTEP;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}
return success ? ERROR_OK : ERROR_FAIL;
}
/* Command Handlers */
COMMAND_HANDLER(riscv_set_command_timeout_sec)
{
if (CMD_ARGC != 1) {
LOG_ERROR("Command takes exactly 1 parameter.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
int timeout = atoi(CMD_ARGV[0]);
if (timeout <= 0) {
LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]);
return ERROR_FAIL;
}
riscv_command_timeout_sec = timeout;
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_reset_timeout_sec)
{
if (CMD_ARGC != 1) {
LOG_ERROR("Command takes exactly 1 parameter.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
int timeout = atoi(CMD_ARGV[0]);
if (timeout <= 0) {
LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]);
return ERROR_FAIL;
}
riscv_reset_timeout_sec = timeout;
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_mem_access)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
int progbuf_cnt = 0;
int sysbus_cnt = 0;
int abstract_cnt = 0;
if (CMD_ARGC < 1 || CMD_ARGC > RISCV_NUM_MEM_ACCESS_METHODS) {
LOG_ERROR("Command takes 1 to %d parameters", RISCV_NUM_MEM_ACCESS_METHODS);
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* Check argument validity */
for (unsigned int i = 0; i < CMD_ARGC; i++) {
if (strcmp("progbuf", CMD_ARGV[i]) == 0) {
progbuf_cnt++;
} else if (strcmp("sysbus", CMD_ARGV[i]) == 0) {
sysbus_cnt++;
} else if (strcmp("abstract", CMD_ARGV[i]) == 0) {
abstract_cnt++;
} else {
LOG_ERROR("Unknown argument '%s'. "
"Must be one of: 'progbuf', 'sysbus' or 'abstract'.", CMD_ARGV[i]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
if (progbuf_cnt > 1 || sysbus_cnt > 1 || abstract_cnt > 1) {
LOG_ERROR("Syntax error - duplicate arguments to `riscv set_mem_access`.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* Args are valid, store them */
for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++)
r->mem_access_methods[i] = RISCV_MEM_ACCESS_UNSPECIFIED;
for (unsigned int i = 0; i < CMD_ARGC; i++) {
if (strcmp("progbuf", CMD_ARGV[i]) == 0)
r->mem_access_methods[i] = RISCV_MEM_ACCESS_PROGBUF;
else if (strcmp("sysbus", CMD_ARGV[i]) == 0)
r->mem_access_methods[i] = RISCV_MEM_ACCESS_SYSBUS;
else if (strcmp("abstract", CMD_ARGV[i]) == 0)
r->mem_access_methods[i] = RISCV_MEM_ACCESS_ABSTRACT;
}
/* Reset warning flags */
r->mem_access_progbuf_warn = true;
r->mem_access_sysbus_warn = true;
r->mem_access_abstract_warn = true;
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_enable_virtual)
{
if (CMD_ARGC != 1) {
LOG_ERROR("Command takes exactly 1 parameter");
return ERROR_COMMAND_SYNTAX_ERROR;
}
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_enable_virtual);
return ERROR_OK;
}
static int parse_ranges(struct list_head *ranges, const char *tcl_arg, const char *reg_type, unsigned int max_val)
{
char *args = strdup(tcl_arg);
if (!args)
return ERROR_FAIL;
/* For backward compatibility, allow multiple parameters within one TCL argument, separated by ',' */
char *arg = strtok(args, ",");
while (arg) {
unsigned low = 0;
unsigned high = 0;
char *name = NULL;
char *dash = strchr(arg, '-');
char *equals = strchr(arg, '=');
unsigned int pos;
if (!dash && !equals) {
/* Expecting single register number. */
if (sscanf(arg, "%u%n", &low, &pos) != 1 || pos != strlen(arg)) {
LOG_ERROR("Failed to parse single register number from '%s'.", arg);
free(args);
return ERROR_COMMAND_SYNTAX_ERROR;
}
} else if (dash && !equals) {
/* Expecting register range - two numbers separated by a dash: ##-## */
*dash = 0;
dash++;
if (sscanf(arg, "%u%n", &low, &pos) != 1 || pos != strlen(arg)) {
LOG_ERROR("Failed to parse single register number from '%s'.", arg);
free(args);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (sscanf(dash, "%u%n", &high, &pos) != 1 || pos != strlen(dash)) {
LOG_ERROR("Failed to parse single register number from '%s'.", dash);
free(args);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (high < low) {
LOG_ERROR("Incorrect range encountered [%u, %u].", low, high);
free(args);
return ERROR_FAIL;
}
} else if (!dash && equals) {
/* Expecting single register number with textual name specified: ##=name */
*equals = 0;
equals++;
if (sscanf(arg, "%u%n", &low, &pos) != 1 || pos != strlen(arg)) {
LOG_ERROR("Failed to parse single register number from '%s'.", arg);
free(args);
return ERROR_COMMAND_SYNTAX_ERROR;
}
name = calloc(1, strlen(equals) + strlen(reg_type) + 2);
if (!name) {
LOG_ERROR("Failed to allocate register name.");
free(args);
return ERROR_FAIL;
}
/* Register prefix: "csr_" or "custom_" */
strcpy(name, reg_type);
name[strlen(reg_type)] = '_';
if (sscanf(equals, "%[_a-zA-Z0-9]%n", name + strlen(reg_type) + 1, &pos) != 1 || pos != strlen(equals)) {
LOG_ERROR("Failed to parse register name from '%s'.", equals);
free(args);
free(name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
} else {
LOG_ERROR("Invalid argument '%s'.", arg);
free(args);
return ERROR_COMMAND_SYNTAX_ERROR;
}
high = high > low ? high : low;
if (high > max_val) {
LOG_ERROR("Cannot expose %s register number %u, maximum allowed value is %u.", reg_type, high, max_val);
free(name);
free(args);
return ERROR_FAIL;
}
/* Check for overlap, name uniqueness. */
range_list_t *entry;
list_for_each_entry(entry, ranges, list) {
if ((entry->low <= high) && (low <= entry->high)) {
if (low == high)
LOG_WARNING("Duplicate %s register number - "
"Register %u has already been exposed previously", reg_type, low);
else
LOG_WARNING("Overlapping register ranges - Register range starting from %u overlaps "
"with already exposed register/range at %u.", low, entry->low);
}
if (entry->name && name && (strcasecmp(entry->name, name) == 0)) {
LOG_ERROR("Duplicate register name \"%s\" found.", name);
free(name);
free(args);
return ERROR_FAIL;
}
}
range_list_t *range = calloc(1, sizeof(range_list_t));
if (!range) {
LOG_ERROR("Failed to allocate range list.");
free(name);
free(args);
return ERROR_FAIL;
}
range->low = low;
range->high = high;
range->name = name;
list_add(&range->list, ranges);
arg = strtok(NULL, ",");
}
free(args);
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_expose_csrs)
{
if (CMD_ARGC == 0) {
LOG_ERROR("Command expects parameters.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(info);
int ret = ERROR_OK;
for (unsigned int i = 0; i < CMD_ARGC; i++) {
ret = parse_ranges(&info->expose_csr, CMD_ARGV[i], "csr", 0xfff);
if (ret != ERROR_OK)
break;
}
return ret;
}
COMMAND_HANDLER(riscv_set_expose_custom)
{
if (CMD_ARGC == 0) {
LOG_ERROR("Command expects parameters.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(info);
int ret = ERROR_OK;
for (unsigned int i = 0; i < CMD_ARGC; i++) {
ret = parse_ranges(&info->expose_custom, CMD_ARGV[i], "custom", 0x3fff);
if (ret != ERROR_OK)
break;
}
return ret;
}
COMMAND_HANDLER(riscv_hide_csrs)
{
if (CMD_ARGC == 0) {
LOG_ERROR("Command expects parameters");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(info);
int ret = ERROR_OK;
for (unsigned int i = 0; i < CMD_ARGC; i++) {
ret = parse_ranges(&info->hide_csr, CMD_ARGV[i], "csr", 0xfff);
if (ret != ERROR_OK)
break;
}
return ret;
}
COMMAND_HANDLER(riscv_authdata_read)
{
unsigned int index = 0;
if (CMD_ARGC == 0) {
/* nop */
} else if (CMD_ARGC == 1) {
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], index);
} else {
LOG_ERROR("Command takes at most one parameter.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
if (!target) {
LOG_ERROR("target is NULL!");
return ERROR_FAIL;
}
RISCV_INFO(r);
if (!r) {
LOG_TARGET_ERROR(target, "riscv_info is NULL!");
return ERROR_FAIL;
}
if (r->authdata_read) {
uint32_t value;
if (r->authdata_read(target, &value, index) != ERROR_OK)
return ERROR_FAIL;
command_print_sameline(CMD, "0x%08" PRIx32, value);
return ERROR_OK;
} else {
LOG_TARGET_ERROR(target, "authdata_read is not implemented for this target.");
return ERROR_FAIL;
}
}
COMMAND_HANDLER(riscv_authdata_write)
{
uint32_t value;
unsigned int index = 0;
if (CMD_ARGC == 0 || CMD_ARGC > 2)
return ERROR_COMMAND_SYNTAX_ERROR;
if (CMD_ARGC == 1) {
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], value);
} else {
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], index);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
}
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (!r->authdata_write) {
LOG_TARGET_ERROR(target, "authdata_write is not implemented for this target.");
return ERROR_FAIL;
}
return r->authdata_write(target, value, index);
}
COMMAND_HANDLER(riscv_dmi_read)
{
if (CMD_ARGC != 1) {
LOG_ERROR("Command takes 1 parameter");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
if (!target) {
LOG_ERROR("target is NULL!");
return ERROR_FAIL;
}
RISCV_INFO(r);
if (!r) {
LOG_TARGET_ERROR(target, "riscv_info is NULL!");
return ERROR_FAIL;
}
if (r->dmi_read) {
uint32_t address, value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
if (r->dmi_read(target, &value, address) != ERROR_OK)
return ERROR_FAIL;
command_print(CMD, "0x%" PRIx32, value);
} else {
LOG_TARGET_ERROR(target, "dmi_read is not implemented for this target.");
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(riscv_dmi_write)
{
if (CMD_ARGC != 2) {
LOG_ERROR("Command takes exactly 2 arguments");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
uint32_t address, value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
if (r->dmi_write) {
/* Perform the DMI write */
int retval = r->dmi_write(target, address, value);
/* Invalidate our cached progbuf copy:
- if the user tinkered directly with a progbuf register
- if debug module was reset, in which case progbuf registers
may not retain their value.
*/
bool progbuf_touched = (address >= DM_PROGBUF0 && address <= DM_PROGBUF15);
bool dm_deactivated = (address == DM_DMCONTROL && (value & DM_DMCONTROL_DMACTIVE) == 0);
if (progbuf_touched || dm_deactivated) {
if (r->invalidate_cached_progbuf)
r->invalidate_cached_progbuf(target);
}
return retval;
}
LOG_TARGET_ERROR(target, "dmi_write is not implemented for this target.");
return ERROR_FAIL;
}
COMMAND_HANDLER(riscv_dm_read)
{
if (CMD_ARGC != 1) {
LOG_ERROR("Command takes 1 parameter");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
if (!target) {
LOG_ERROR("target is NULL!");
return ERROR_FAIL;
}
RISCV_INFO(r);
if (!r) {
LOG_TARGET_ERROR(target, "riscv_info is NULL!");
return ERROR_FAIL;
}
if (r->dm_read) {
uint32_t address, value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
if (r->dm_read(target, &value, address) != ERROR_OK)
return ERROR_FAIL;
command_print(CMD, "0x%" PRIx32, value);
} else {
LOG_TARGET_ERROR(target, "dm_read is not implemented for this target.");
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(riscv_dm_write)
{
if (CMD_ARGC != 2) {
LOG_ERROR("Command takes exactly 2 arguments");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
uint32_t address, value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
if (r->dm_write) {
/* Perform the DM write */
int retval = r->dm_write(target, address, value);
/* Invalidate our cached progbuf copy:
- if the user tinkered directly with a progbuf register
- if debug module was reset, in which case progbuf registers
may not retain their value.
*/
bool progbuf_touched = (address >= DM_PROGBUF0 && address <= DM_PROGBUF15);
bool dm_deactivated = (address == DM_DMCONTROL && (value & DM_DMCONTROL_DMACTIVE) == 0);
if (progbuf_touched || dm_deactivated) {
if (r->invalidate_cached_progbuf)
r->invalidate_cached_progbuf(target);
}
return retval;
}
LOG_TARGET_ERROR(target, "dm_write is not implemented for this target.");
return ERROR_FAIL;
}
COMMAND_HANDLER(riscv_reset_delays)
{
int wait = 0;
if (CMD_ARGC > 1) {
LOG_ERROR("Command takes at most one argument");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (CMD_ARGC == 1)
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], wait);
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
r->reset_delays_wait = wait;
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_ir)
{
if (CMD_ARGC != 2) {
LOG_ERROR("Command takes exactly 2 arguments");
return ERROR_COMMAND_SYNTAX_ERROR;
}
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
if (!strcmp(CMD_ARGV[0], "idcode"))
buf_set_u32(ir_idcode, 0, 32, value);
else if (!strcmp(CMD_ARGV[0], "dtmcs"))
buf_set_u32(ir_dtmcontrol, 0, 32, value);
else if (!strcmp(CMD_ARGV[0], "dmi"))
buf_set_u32(ir_dbus, 0, 32, value);
else
return ERROR_FAIL;
return ERROR_OK;
}
COMMAND_HANDLER(riscv_resume_order)
{
if (CMD_ARGC > 1) {
LOG_ERROR("Command takes at most one argument");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (!strcmp(CMD_ARGV[0], "normal")) {
resume_order = RO_NORMAL;
} else if (!strcmp(CMD_ARGV[0], "reversed")) {
resume_order = RO_REVERSED;
} else {
LOG_ERROR("Unsupported resume order: %s", CMD_ARGV[0]);
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(riscv_use_bscan_tunnel)
{
int irwidth = 0;
int tunnel_type = BSCAN_TUNNEL_NESTED_TAP;
if (CMD_ARGC > 2) {
LOG_ERROR("Command takes at most two arguments");
return ERROR_COMMAND_SYNTAX_ERROR;
} else if (CMD_ARGC == 1) {
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], irwidth);
} else if (CMD_ARGC == 2) {
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], irwidth);
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], tunnel_type);
}
if (tunnel_type == BSCAN_TUNNEL_NESTED_TAP)
LOG_INFO("Nested Tap based Bscan Tunnel Selected");
else if (tunnel_type == BSCAN_TUNNEL_DATA_REGISTER)
LOG_INFO("Simple Register based Bscan Tunnel Selected");
else
LOG_INFO("Invalid Tunnel type selected ! : selecting default Nested Tap Type");
bscan_tunnel_type = tunnel_type;
bscan_tunnel_ir_width = irwidth;
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_bscan_tunnel_ir)
{
int ir_id = 0;
if (CMD_ARGC > 1) {
LOG_ERROR("Command takes at most one arguments");
return ERROR_COMMAND_SYNTAX_ERROR;
} else if (CMD_ARGC == 1) {
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], ir_id);
}
LOG_INFO("Bscan tunnel IR 0x%x selected", ir_id);
bscan_tunnel_ir_id = ir_id;
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_maskisr)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(info);
static const struct jim_nvp nvp_maskisr_modes[] = {
{ .name = "off", .value = RISCV_ISRMASK_OFF },
{ .name = "steponly", .value = RISCV_ISRMASK_STEPONLY },
{ .name = NULL, .value = -1 },
};
const struct jim_nvp *n;
if (CMD_ARGC > 0) {
n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
if (!n->name)
return ERROR_COMMAND_SYNTAX_ERROR;
info->isrmask_mode = n->value;
} else {
n = jim_nvp_value2name_simple(nvp_maskisr_modes, info->isrmask_mode);
command_print(CMD, "riscv interrupt mask %s", n->name);
}
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_enable_virt2phys)
{
if (CMD_ARGC != 1) {
LOG_ERROR("Command takes exactly 1 parameter");
return ERROR_COMMAND_SYNTAX_ERROR;
}
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_enable_virt2phys);
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_ebreakm)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (CMD_ARGC == 0) {
command_print(CMD, "riscv_ebreakm enabled: %s", r->riscv_ebreakm ? "on" : "off");
return ERROR_OK;
} else if (CMD_ARGC == 1) {
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], r->riscv_ebreakm);
return ERROR_OK;
}
LOG_ERROR("Command takes 0 or 1 parameters");
return ERROR_COMMAND_SYNTAX_ERROR;
}
COMMAND_HANDLER(riscv_set_ebreaks)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (CMD_ARGC == 0) {
command_print(CMD, "riscv_ebreaks enabled: %s", r->riscv_ebreaks ? "on" : "off");
return ERROR_OK;
} else if (CMD_ARGC == 1) {
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], r->riscv_ebreaks);
return ERROR_OK;
}
LOG_ERROR("Command takes 0 or 1 parameters");
return ERROR_COMMAND_SYNTAX_ERROR;
}
COMMAND_HANDLER(riscv_set_ebreaku)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (CMD_ARGC == 0) {
command_print(CMD, "riscv_ebreaku enabled: %s", r->riscv_ebreaku ? "on" : "off");
return ERROR_OK;
} else if (CMD_ARGC == 1) {
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], r->riscv_ebreaku);
return ERROR_OK;
}
LOG_ERROR("Command takes 0 or 1 parameters");
return ERROR_COMMAND_SYNTAX_ERROR;
}
COMMAND_HELPER(riscv_clear_trigger, int trigger_id, const char *name)
{
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC != 1) {
LOG_ERROR("clear command takes no extra arguments.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (find_first_trigger_by_id(target, trigger_id) < 0) {
LOG_TARGET_ERROR(target, "No %s is set. Nothing to clear.", name);
return ERROR_FAIL;
}
return remove_trigger(target, trigger_id);
}
COMMAND_HANDLER(riscv_itrigger)
{
if (CMD_ARGC < 1) {
LOG_ERROR("Command takes at least 1 parameter");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
const int ITRIGGER_UNIQUE_ID = -CSR_TDATA1_TYPE_ITRIGGER;
if (riscv_enumerate_triggers(target) != ERROR_OK)
return ERROR_FAIL;
if (!strcmp(CMD_ARGV[0], "set")) {
if (find_first_trigger_by_id(target, ITRIGGER_UNIQUE_ID) >= 0) {
LOG_TARGET_ERROR(target, "An itrigger is already set, and OpenOCD "
"doesn't support setting more than one at a time.");
return ERROR_FAIL;
}
bool vs = false;
bool vu = false;
bool nmi = false;
bool m = false;
bool s = false;
bool u = false;
riscv_reg_t interrupts = 0;
for (unsigned int i = 1; i < CMD_ARGC; i++) {
if (!strcmp(CMD_ARGV[i], "vs"))
vs = true;
else if (!strcmp(CMD_ARGV[i], "vu"))
vu = true;
else if (!strcmp(CMD_ARGV[i], "nmi"))
nmi = true;
else if (!strcmp(CMD_ARGV[i], "m"))
m = true;
else if (!strcmp(CMD_ARGV[i], "s"))
s = true;
else if (!strcmp(CMD_ARGV[i], "u"))
u = true;
else
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[i], interrupts);
}
if (!nmi && interrupts == 0) {
LOG_ERROR("Doesn't make sense to set itrigger with "
"mie_bits=0 and without nmi.");
return ERROR_FAIL;
} else if (!vs && !vu && !m && !s && !u) {
LOG_ERROR("Doesn't make sense to set itrigger without at "
"least one of vs, vu, m, s, or u.");
return ERROR_FAIL;
}
int result = maybe_add_trigger_t4(target, vs, vu, nmi, m, s, u, interrupts, ITRIGGER_UNIQUE_ID);
if (result != ERROR_OK)
LOG_TARGET_ERROR(target, "Failed to set requested itrigger.");
return result;
} else if (!strcmp(CMD_ARGV[0], "clear")) {
return riscv_clear_trigger(CMD, ITRIGGER_UNIQUE_ID, "itrigger");
} else {
LOG_ERROR("First argument must be either 'set' or 'clear'.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
COMMAND_HANDLER(riscv_icount)
{
if (CMD_ARGC < 1) {
LOG_ERROR("Command takes at least 1 parameter");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
const int ICOUNT_UNIQUE_ID = -CSR_TDATA1_TYPE_ICOUNT;
if (riscv_enumerate_triggers(target) != ERROR_OK)
return ERROR_FAIL;
if (!strcmp(CMD_ARGV[0], "set")) {
if (find_first_trigger_by_id(target, ICOUNT_UNIQUE_ID) >= 0) {
LOG_TARGET_ERROR(target, "An icount trigger is already set, and OpenOCD "
"doesn't support setting more than one at a time.");
return ERROR_FAIL;
}
bool vs = false;
bool vu = false;
bool m = false;
bool s = false;
bool u = false;
bool pending = false;
unsigned int count = 0;
for (unsigned int i = 1; i < CMD_ARGC; i++) {
if (!strcmp(CMD_ARGV[i], "vs"))
vs = true;
else if (!strcmp(CMD_ARGV[i], "vu"))
vu = true;
else if (!strcmp(CMD_ARGV[i], "pending"))
pending = true;
else if (!strcmp(CMD_ARGV[i], "m"))
m = true;
else if (!strcmp(CMD_ARGV[i], "s"))
s = true;
else if (!strcmp(CMD_ARGV[i], "u"))
u = true;
else
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[i], count);
}
if (count == 0) {
LOG_ERROR("Doesn't make sense to set icount trigger with "
"count=0.");
return ERROR_FAIL;
} else if (!vs && !vu && !m && !s && !u) {
LOG_ERROR("Doesn't make sense to set itrigger without at "
"least one of vs, vu, m, s, or u.");
return ERROR_FAIL;
}
int result = maybe_add_trigger_t3(target, vs, vu, m, s, u, pending, count, ICOUNT_UNIQUE_ID);
if (result != ERROR_OK)
LOG_TARGET_ERROR(target, "Failed to set requested icount trigger.");
return result;
} else if (!strcmp(CMD_ARGV[0], "clear")) {
return riscv_clear_trigger(CMD, ICOUNT_UNIQUE_ID, "icount trigger");
} else {
LOG_ERROR("First argument must be either 'set' or 'clear'.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
COMMAND_HANDLER(riscv_etrigger)
{
if (CMD_ARGC < 1) {
LOG_ERROR("Command takes at least 1 parameter");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
const int ETRIGGER_UNIQUE_ID = -CSR_TDATA1_TYPE_ETRIGGER;
if (riscv_enumerate_triggers(target) != ERROR_OK)
return ERROR_FAIL;
if (!strcmp(CMD_ARGV[0], "set")) {
if (find_first_trigger_by_id(target, ETRIGGER_UNIQUE_ID) >= 0) {
LOG_TARGET_ERROR(target, "An etrigger is already set, and OpenOCD "
"doesn't support setting more than one at a time.");
return ERROR_FAIL;
}
bool vs = false;
bool vu = false;
bool m = false;
bool s = false;
bool u = false;
riscv_reg_t exception_codes = 0;
for (unsigned int i = 1; i < CMD_ARGC; i++) {
if (!strcmp(CMD_ARGV[i], "vs"))
vs = true;
else if (!strcmp(CMD_ARGV[i], "vu"))
vu = true;
else if (!strcmp(CMD_ARGV[i], "m"))
m = true;
else if (!strcmp(CMD_ARGV[i], "s"))
s = true;
else if (!strcmp(CMD_ARGV[i], "u"))
u = true;
else
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[i], exception_codes);
}
if (exception_codes == 0) {
LOG_ERROR("Doesn't make sense to set etrigger with "
"exception_codes=0.");
return ERROR_FAIL;
} else if (!vs && !vu && !m && !s && !u) {
LOG_ERROR("Doesn't make sense to set etrigger without at "
"least one of vs, vu, m, s, or u.");
return ERROR_FAIL;
}
int result = maybe_add_trigger_t5(target, vs, vu, m, s, u, exception_codes, ETRIGGER_UNIQUE_ID);
if (result != ERROR_OK)
LOG_TARGET_ERROR(target, "Failed to set requested etrigger.");
return result;
} else if (!strcmp(CMD_ARGV[0], "clear")) {
return riscv_clear_trigger(CMD, ETRIGGER_UNIQUE_ID, "etrigger");
} else {
LOG_ERROR("First argument must be either 'set' or 'clear'.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_repeat_read)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (CMD_ARGC < 2) {
LOG_ERROR("Command requires at least count and address arguments.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (CMD_ARGC > 3) {
LOG_ERROR("Command takes at most 3 arguments.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
uint32_t count;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], count);
target_addr_t address;
COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
uint32_t size = 4;
if (CMD_ARGC > 2)
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
if (count == 0)
return ERROR_OK;
uint8_t *buffer = malloc(size * count);
if (!buffer) {
LOG_ERROR("malloc failed");
return ERROR_FAIL;
}
int result = r->read_memory(target, address, size, count, buffer, 0);
if (result == ERROR_OK) {
target_handle_md_output(cmd, target, address, size, count, buffer,
false);
}
free(buffer);
return result;
}
COMMAND_HANDLER(handle_memory_sample_command)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (CMD_ARGC == 0) {
command_print(CMD, "Memory sample configuration for %s:", target_name(target));
for (unsigned int i = 0; i < ARRAY_SIZE(r->sample_config.bucket); i++) {
if (r->sample_config.bucket[i].enabled) {
command_print(CMD, "bucket %d; address=0x%" TARGET_PRIxADDR "; size=%d", i,
r->sample_config.bucket[i].address,
r->sample_config.bucket[i].size_bytes);
} else {
command_print(CMD, "bucket %d; disabled", i);
}
}
return ERROR_OK;
}
if (CMD_ARGC < 2) {
LOG_ERROR("Command requires at least bucket and address arguments.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
uint32_t bucket;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], bucket);
if (bucket > ARRAY_SIZE(r->sample_config.bucket)) {
LOG_TARGET_ERROR(target, "Max bucket number is %zd.", ARRAY_SIZE(r->sample_config.bucket));
return ERROR_COMMAND_ARGUMENT_INVALID;
}
if (!strcmp(CMD_ARGV[1], "clear")) {
r->sample_config.bucket[bucket].enabled = false;
} else {
COMMAND_PARSE_ADDRESS(CMD_ARGV[1], r->sample_config.bucket[bucket].address);
if (CMD_ARGC > 2) {
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], r->sample_config.bucket[bucket].size_bytes);
if (r->sample_config.bucket[bucket].size_bytes != 4 &&
r->sample_config.bucket[bucket].size_bytes != 8) {
LOG_TARGET_ERROR(target, "Only 4-byte and 8-byte sizes are supported.");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
} else {
r->sample_config.bucket[bucket].size_bytes = 4;
}
r->sample_config.bucket[bucket].enabled = true;
}
if (!r->sample_buf.buf) {
r->sample_buf.size = 1024 * 1024;
r->sample_buf.buf = malloc(r->sample_buf.size);
}
/* Clear the buffer when the configuration is changed. */
r->sample_buf.used = 0;
r->sample_config.enabled = true;
return ERROR_OK;
}
COMMAND_HANDLER(handle_dump_sample_buf_command)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (CMD_ARGC > 1) {
LOG_ERROR("Command takes at most 1 arguments.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
bool base64 = false;
if (CMD_ARGC > 0) {
if (!strcmp(CMD_ARGV[0], "base64")) {
base64 = true;
} else {
LOG_ERROR("Unknown argument: %s", CMD_ARGV[0]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
int result = ERROR_OK;
if (base64) {
unsigned char *encoded = base64_encode(r->sample_buf.buf,
r->sample_buf.used, NULL);
if (!encoded) {
LOG_TARGET_ERROR(target, "Failed base64 encode!");
result = ERROR_FAIL;
goto error;
}
command_print(CMD, "%s", encoded);
free(encoded);
} else {
unsigned int i = 0;
while (i < r->sample_buf.used) {
uint8_t command = r->sample_buf.buf[i++];
if (command == RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE) {
uint32_t timestamp = buf_get_u32(r->sample_buf.buf + i, 0, 32);
i += 4;
command_print(CMD, "timestamp before: %u", timestamp);
} else if (command == RISCV_SAMPLE_BUF_TIMESTAMP_AFTER) {
uint32_t timestamp = buf_get_u32(r->sample_buf.buf + i, 0, 32);
i += 4;
command_print(CMD, "timestamp after: %u", timestamp);
} else if (command < ARRAY_SIZE(r->sample_config.bucket)) {
command_print_sameline(CMD, "0x%" TARGET_PRIxADDR ": ",
r->sample_config.bucket[command].address);
if (r->sample_config.bucket[command].size_bytes == 4) {
uint32_t value = buf_get_u32(r->sample_buf.buf + i, 0, 32);
i += 4;
command_print(CMD, "0x%08" PRIx32, value);
} else if (r->sample_config.bucket[command].size_bytes == 8) {
uint64_t value = buf_get_u64(r->sample_buf.buf + i, 0, 64);
i += 8;
command_print(CMD, "0x%016" PRIx64, value);
} else {
LOG_TARGET_ERROR(target, "Found invalid size in bucket %d: %d", command,
r->sample_config.bucket[command].size_bytes);
result = ERROR_FAIL;
goto error;
}
} else {
LOG_TARGET_ERROR(target, "Found invalid command byte in sample buf: 0x%2x at offset 0x%x",
command, i - 1);
result = ERROR_FAIL;
goto error;
}
}
}
error:
/* Clear the sample buffer even when there was an error. */
r->sample_buf.used = 0;
return result;
}
static COMMAND_HELPER(riscv_print_info_line_if_available, const char *section,
const char *key, unsigned int value, bool is_available)
{
char full_key[80];
snprintf(full_key, sizeof(full_key), "%s.%s", section, key);
if (is_available)
command_print(CMD, "%-21s %3d", full_key, value);
else
command_print(CMD, "%-21s unavailable", full_key);
return 0;
}
COMMAND_HELPER(riscv_print_info_line, const char *section, const char *key,
unsigned int value)
{
return CALL_COMMAND_HANDLER(riscv_print_info_line_if_available, section,
key, value, /*is_available*/ true);
}
COMMAND_HANDLER(handle_info)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
/* This output format can be fed directly into TCL's "array set". */
riscv_print_info_line(CMD, "hart", "xlen", riscv_xlen(target));
const bool trigger_count_available =
riscv_enumerate_triggers(target) == ERROR_OK;
riscv_print_info_line_if_available(CMD, "hart", "trigger_count",
r->trigger_count, trigger_count_available);
if (r->print_info)
return CALL_COMMAND_HANDLER(r->print_info, target);
return 0;
}
COMMAND_HANDLER(riscv_exec_progbuf)
{
if (CMD_ARGC < 1 || CMD_ARGC > 16) {
LOG_ERROR("Command 'exec_progbuf' takes 1 to 16 arguments.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (r->dtm_version != DTM_DTMCS_VERSION_1_0) {
LOG_TARGET_ERROR(target, "exec_progbuf: Program buffer is "
"only supported on v0.13 or v1.0 targets.");
return ERROR_FAIL;
}
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "exec_progbuf: Can't execute "
"program buffer, target not halted.");
return ERROR_FAIL;
}
if (riscv_progbuf_size(target) == 0) {
LOG_TARGET_ERROR(target, "exec_progbuf: Program buffer not implemented "
"in the target.");
return ERROR_FAIL;
}
struct riscv_program prog;
riscv_program_init(&prog, target);
for (unsigned int i = 0; i < CMD_ARGC; i++) {
riscv_insn_t instr;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[i], instr);
if (riscv_program_insert(&prog, instr) != ERROR_OK)
return ERROR_FAIL;
}
if (riscv_flush_registers(target) != ERROR_OK)
return ERROR_FAIL;
int error = riscv_program_exec(&prog, target);
riscv_invalidate_register_cache(target);
if (error != ERROR_OK) {
LOG_TARGET_ERROR(target, "exec_progbuf: Program buffer execution failed.");
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "exec_progbuf: Program buffer execution successful.");
return ERROR_OK;
}
COMMAND_HANDLER(riscv_set_enable_eq_match_trigger)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (CMD_ARGC == 0) {
command_print(CMD, "equality match trigger enabled: %s", r->enable_equality_match_trigger ? "on" : "off");
return ERROR_OK;
} else if (CMD_ARGC == 1) {
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], r->enable_equality_match_trigger);
return ERROR_OK;
}
LOG_ERROR("Command takes 0 or 1 parameters");
return ERROR_COMMAND_SYNTAX_ERROR;
}
COMMAND_HANDLER(riscv_set_enable_napot_trigger)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (CMD_ARGC == 0) {
command_print(CMD, "NAPOT trigger enabled: %s", r->enable_napot_trigger ? "on" : "off");
return ERROR_OK;
} else if (CMD_ARGC == 1) {
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], r->enable_napot_trigger);
return ERROR_OK;
}
LOG_ERROR("Command takes 0 or 1 parameters");
return ERROR_COMMAND_SYNTAX_ERROR;
}
COMMAND_HANDLER(riscv_set_enable_ge_lt_trigger)
{
struct target *target = get_current_target(CMD_CTX);
RISCV_INFO(r);
if (CMD_ARGC == 0) {
command_print(CMD, "ge-lt triggers enabled: %s", r->enable_ge_lt_trigger ? "on" : "off");
return ERROR_OK;
} else if (CMD_ARGC == 1) {
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], r->enable_ge_lt_trigger);
return ERROR_OK;
}
LOG_ERROR("Command takes 0 or 1 parameters");
return ERROR_COMMAND_SYNTAX_ERROR;
}
static const struct command_registration riscv_exec_command_handlers[] = {
{
.name = "dump_sample_buf",
.handler = handle_dump_sample_buf_command,
.mode = COMMAND_ANY,
.usage = "[base64]",
.help = "Print the contents of the sample buffer, and clear the buffer."
},
{
.name = "info",
.handler = handle_info,
.mode = COMMAND_ANY,
.usage = "",
.help = "Displays some information OpenOCD detected about the target."
},
{
.name = "memory_sample",
.handler = handle_memory_sample_command,
.mode = COMMAND_ANY,
.usage = "bucket address|clear [size=4]",
.help = "Causes OpenOCD to frequently read size bytes at the given address."
},
{
.name = "repeat_read",
.handler = handle_repeat_read,
.mode = COMMAND_ANY,
.usage = "count address [size=4]",
.help = "Repeatedly read the value at address."
},
{
.name = "set_command_timeout_sec",
.handler = riscv_set_command_timeout_sec,
.mode = COMMAND_ANY,
.usage = "[sec]",
.help = "Set the wall-clock timeout (in seconds) for individual commands"
},
{
.name = "set_reset_timeout_sec",
.handler = riscv_set_reset_timeout_sec,
.mode = COMMAND_ANY,
.usage = "[sec]",
.help = "Set the wall-clock timeout (in seconds) after reset is deasserted"
},
{
.name = "set_mem_access",
.handler = riscv_set_mem_access,
.mode = COMMAND_ANY,
.usage = "method1 [method2] [method3]",
.help = "Set which memory access methods shall be used and in which order "
"of priority. Method can be one of: 'progbuf', 'sysbus' or 'abstract'."
},
{
.name = "set_enable_virtual",
.handler = riscv_set_enable_virtual,
.mode = COMMAND_ANY,
.usage = "on|off",
.help = "When on, memory accesses are performed on physical or virtual "
"memory depending on the current system configuration. "
"When off (default), all memory accessses are performed on physical memory."
},
{
.name = "expose_csrs",
.handler = riscv_set_expose_csrs,
.mode = COMMAND_CONFIG,
.usage = "n0[-m0|=name0][,n1[-m1|=name1]]...",
.help = "Configure a list of inclusive ranges for CSRs to expose in "
"addition to the standard ones. This must be executed before "
"`init`."
},
{
.name = "expose_custom",
.handler = riscv_set_expose_custom,
.mode = COMMAND_CONFIG,
.usage = "n0[-m0|=name0][,n1[-m1|=name1]]...",
.help = "Configure a list of inclusive ranges for custom registers to "
"expose. custom0 is accessed as abstract register number 0xc000, "
"etc. This must be executed before `init`."
},
{
.name = "hide_csrs",
.handler = riscv_hide_csrs,
.mode = COMMAND_CONFIG,
.usage = "{n0|n-m0}[,n1|n-m1]......",
.help = "Configure a list of inclusive ranges for CSRs to hide from gdb. "
"Hidden registers are still available, but are not listed in "
"gdb target description and `reg` command output. "
"This must be executed before `init`."
},
{
.name = "authdata_read",
.handler = riscv_authdata_read,
.usage = "[index]",
.mode = COMMAND_ANY,
.help = "Return the 32-bit value read from authdata or authdata0 "
"(index=0), or authdata1 (index=1)."
},
{
.name = "authdata_write",
.handler = riscv_authdata_write,
.mode = COMMAND_ANY,
.usage = "[index] value",
.help = "Write the 32-bit value to authdata or authdata0 (index=0), "
"or authdata1 (index=1)."
},
{
.name = "dmi_read",
.handler = riscv_dmi_read,
.mode = COMMAND_ANY,
.usage = "address",
.help = "Perform a 32-bit DMI read at address, returning the value."
},
{
.name = "dmi_write",
.handler = riscv_dmi_write,
.mode = COMMAND_ANY,
.usage = "address value",
.help = "Perform a 32-bit DMI write of value at address."
},
{
.name = "dm_read",
.handler = riscv_dm_read,
.mode = COMMAND_ANY,
.usage = "reg_address",
.help = "Perform a 32-bit read from DM register at reg_address, returning the value."
},
{
.name = "dm_write",
.handler = riscv_dm_write,
.mode = COMMAND_ANY,
.usage = "reg_address value",
.help = "Write a 32-bit value to the DM register at reg_address."
},
{
.name = "reset_delays",
.handler = riscv_reset_delays,
.mode = COMMAND_ANY,
.usage = "[wait]",
.help = "OpenOCD learns how many Run-Test/Idle cycles are required "
"between scans to avoid encountering the target being busy. This "
"command resets those learned values after `wait` scans. It's only "
"useful for testing OpenOCD itself."
},
{
.name = "resume_order",
.handler = riscv_resume_order,
.mode = COMMAND_ANY,
.usage = "normal|reversed",
.help = "Choose the order that harts are resumed in when `hasel` is not "
"supported. Normal order is from lowest hart index to highest. "
"Reversed order is from highest hart index to lowest."
},
{
.name = "set_ir",
.handler = riscv_set_ir,
.mode = COMMAND_ANY,
.usage = "[idcode|dtmcs|dmi] value",
.help = "Set IR value for specified JTAG register."
},
{
.name = "use_bscan_tunnel",
.handler = riscv_use_bscan_tunnel,
.mode = COMMAND_ANY,
.usage = "value [type]",
.help = "Enable or disable use of a BSCAN tunnel to reach DM. Supply "
"the width of the DM transport TAP's instruction register to "
"enable. Supply a value of 0 to disable. Pass A second argument "
"(optional) to indicate Bscan Tunnel Type {0:(default) NESTED_TAP , "
"1: DATA_REGISTER}"
},
{
.name = "set_bscan_tunnel_ir",
.handler = riscv_set_bscan_tunnel_ir,
.mode = COMMAND_ANY,
.usage = "value",
.help = "Specify the JTAG TAP IR used to access the bscan tunnel. "
"By default it is 0x23 << (ir_length - 6), which map some "
"Xilinx FPGA (IR USER4)"
},
{
.name = "set_maskisr",
.handler = riscv_set_maskisr,
.mode = COMMAND_EXEC,
.help = "mask riscv interrupts",
.usage = "['off'|'steponly']",
},
{
.name = "set_enable_virt2phys",
.handler = riscv_set_enable_virt2phys,
.mode = COMMAND_ANY,
.usage = "on|off",
.help = "When on (default), enable translation from virtual address to "
"physical address."
},
{
.name = "set_ebreakm",
.handler = riscv_set_ebreakm,
.mode = COMMAND_ANY,
.usage = "[on|off]",
.help = "Control dcsr.ebreakm. When off, M-mode ebreak instructions "
"don't trap to OpenOCD. Defaults to on."
},
{
.name = "set_ebreaks",
.handler = riscv_set_ebreaks,
.mode = COMMAND_ANY,
.usage = "[on|off]",
.help = "Control dcsr.ebreaks. When off, S-mode ebreak instructions "
"don't trap to OpenOCD. Defaults to on."
},
{
.name = "set_ebreaku",
.handler = riscv_set_ebreaku,
.mode = COMMAND_ANY,
.usage = "[on|off]",
.help = "Control dcsr.ebreaku. When off, U-mode ebreak instructions "
"don't trap to OpenOCD. Defaults to on."
},
{
.name = "etrigger",
.handler = riscv_etrigger,
.mode = COMMAND_EXEC,
.usage = "set [vs] [vu] [m] [s] [u] <exception_codes>|clear",
.help = "Set or clear a single exception trigger."
},
{
.name = "icount",
.handler = riscv_icount,
.mode = COMMAND_EXEC,
.usage = "set [vs] [vu] [m] [s] [u] [pending] <count>|clear",
.help = "Set or clear a single instruction count trigger."
},
{
.name = "itrigger",
.handler = riscv_itrigger,
.mode = COMMAND_EXEC,
.usage = "set [vs] [vu] [nmi] [m] [s] [u] <mie_bits>|clear",
.help = "Set or clear a single interrupt trigger."
},
{
.name = "exec_progbuf",
.handler = riscv_exec_progbuf,
.mode = COMMAND_EXEC,
.usage = "instr1 [instr2 [... instr16]]",
.help = "Execute a sequence of 32-bit instructions using the program buffer. "
"The final ebreak instruction is added automatically, if needed."
},
{
.name = "set_enable_eq_match_trigger",
.handler = riscv_set_enable_eq_match_trigger,
.mode = COMMAND_CONFIG,
.usage = "[on|off]",
.help = "When on, allow OpenOCD to use equality match trigger in wp."
},
{
.name = "set_enable_napot_trigger",
.handler = riscv_set_enable_napot_trigger,
.mode = COMMAND_CONFIG,
.usage = "[on|off]",
.help = "When on, allow OpenOCD to use NAPOT trigger in wp."
},
{
.name = "set_enable_ge_lt_trigger",
.handler = riscv_set_enable_ge_lt_trigger,
.mode = COMMAND_CONFIG,
.usage = "[on|off]",
.help = "When on, allow OpenOCD to use GE/LT triggers in wp."
},
COMMAND_REGISTRATION_DONE
};
/*
* To be noted that RISC-V targets use the same semihosting commands as
* ARM targets.
*
* The main reason is compatibility with existing tools. For example the
* Eclipse OpenOCD/SEGGER J-Link/QEMU plug-ins have several widgets to
* configure semihosting, which generate commands like `arm semihosting
* enable`.
* A secondary reason is the fact that the protocol used is exactly the
* one specified by ARM. If RISC-V will ever define its own semihosting
* protocol, then a command like `riscv semihosting enable` will make
* sense, but for now all semihosting commands are prefixed with `arm`.
*/
static const struct command_registration riscv_command_handlers[] = {
{
.name = "riscv",
.mode = COMMAND_ANY,
.help = "RISC-V Command Group",
.usage = "",
.chain = riscv_exec_command_handlers
},
{
.name = "arm",
.mode = COMMAND_ANY,
.help = "ARM Command Group",
.usage = "",
.chain = semihosting_common_handlers
},
{
.chain = smp_command_handlers
},
COMMAND_REGISTRATION_DONE
};
static unsigned int riscv_xlen_nonconst(struct target *target)
{
return riscv_xlen(target);
}
static unsigned int riscv_data_bits(struct target *target)
{
RISCV_INFO(r);
if (r->data_bits)
return r->data_bits(target);
return riscv_xlen(target);
}
struct target_type riscv_target = {
.name = "riscv",
.target_create = riscv_create_target,
.init_target = riscv_init_target,
.deinit_target = riscv_deinit_target,
.examine = riscv_examine,
/* poll current target status */
.poll = old_or_new_riscv_poll,
.halt = riscv_halt,
.resume = riscv_target_resume,
.step = old_or_new_riscv_step,
.assert_reset = riscv_assert_reset,
.deassert_reset = riscv_deassert_reset,
.read_memory = riscv_read_memory,
.write_memory = riscv_write_memory,
.read_phys_memory = riscv_read_phys_memory,
.write_phys_memory = riscv_write_phys_memory,
.checksum_memory = riscv_checksum_memory,
.mmu = riscv_mmu,
.virt2phys = riscv_virt2phys,
.get_gdb_arch = riscv_get_gdb_arch,
.get_gdb_reg_list = riscv_get_gdb_reg_list,
.get_gdb_reg_list_noread = riscv_get_gdb_reg_list_noread,
.add_breakpoint = riscv_add_breakpoint,
.remove_breakpoint = riscv_remove_breakpoint,
.add_watchpoint = riscv_add_watchpoint,
.remove_watchpoint = riscv_remove_watchpoint,
.hit_watchpoint = riscv_hit_watchpoint,
.arch_state = riscv_arch_state,
.run_algorithm = riscv_run_algorithm,
.commands = riscv_command_handlers,
.address_bits = riscv_xlen_nonconst,
.data_bits = riscv_data_bits
};
/*** RISC-V Interface ***/
/* Initializes the shared RISC-V structure. */
static void riscv_info_init(struct target *target, struct riscv_info *r)
{
memset(r, 0, sizeof(*r));
r->common_magic = RISCV_COMMON_MAGIC;
r->dtm_version = DTM_DTMCS_VERSION_UNKNOWN;
r->version_specific = NULL;
memset(r->trigger_unique_id, 0xff, sizeof(r->trigger_unique_id));
r->xlen = -1;
r->isrmask_mode = RISCV_ISRMASK_OFF;
r->mem_access_methods[0] = RISCV_MEM_ACCESS_PROGBUF;
r->mem_access_methods[1] = RISCV_MEM_ACCESS_SYSBUS;
r->mem_access_methods[2] = RISCV_MEM_ACCESS_ABSTRACT;
r->mem_access_progbuf_warn = true;
r->mem_access_sysbus_warn = true;
r->mem_access_abstract_warn = true;
INIT_LIST_HEAD(&r->expose_csr);
INIT_LIST_HEAD(&r->expose_custom);
INIT_LIST_HEAD(&r->hide_csr);
r->vsew64_supported = YNM_MAYBE;
r->riscv_ebreakm = true;
r->riscv_ebreaks = true;
r->riscv_ebreaku = true;
r->enable_equality_match_trigger = true;
r->enable_ge_lt_trigger = true;
r->enable_napot_trigger = true;
}
static int riscv_resume_go_all_harts(struct target *target)
{
RISCV_INFO(r);
LOG_TARGET_DEBUG(target, "Resuming hart, state=%d.", target->state);
if (target->state == TARGET_HALTED) {
if (r->resume_go(target) != ERROR_OK)
return ERROR_FAIL;
} else {
LOG_TARGET_DEBUG(target, "Hart requested resume, but was already resumed.");
}
riscv_invalidate_register_cache(target);
return ERROR_OK;
}
int riscv_interrupts_disable(struct target *target, uint64_t irq_mask, uint64_t *old_mstatus)
{
LOG_TARGET_DEBUG(target, "Disabling interrupts.");
struct reg *reg_mstatus = register_get_by_name(target->reg_cache,
"mstatus", true);
if (!reg_mstatus) {
LOG_TARGET_ERROR(target, "Couldn't find mstatus!");
return ERROR_FAIL;
}
int retval = reg_mstatus->type->get(reg_mstatus);
if (retval != ERROR_OK)
return retval;
RISCV_INFO(info);
uint8_t mstatus_bytes[8] = { 0 };
uint64_t current_mstatus = buf_get_u64(reg_mstatus->value, 0, reg_mstatus->size);
buf_set_u64(mstatus_bytes, 0, info->xlen, set_field(current_mstatus,
irq_mask, 0));
retval = reg_mstatus->type->set(reg_mstatus, mstatus_bytes);
if (retval != ERROR_OK)
return retval;
if (old_mstatus)
*old_mstatus = current_mstatus;
return ERROR_OK;
}
int riscv_interrupts_restore(struct target *target, uint64_t old_mstatus)
{
LOG_TARGET_DEBUG(target, "Restoring interrupts.");
struct reg *reg_mstatus = register_get_by_name(target->reg_cache,
"mstatus", true);
if (!reg_mstatus) {
LOG_TARGET_ERROR(target, "Couldn't find mstatus!");
return ERROR_FAIL;
}
RISCV_INFO(info);
uint8_t mstatus_bytes[8];
buf_set_u64(mstatus_bytes, 0, info->xlen, old_mstatus);
return reg_mstatus->type->set(reg_mstatus, mstatus_bytes);
}
static int riscv_step_rtos_hart(struct target *target)
{
RISCV_INFO(r);
LOG_TARGET_DEBUG(target, "Stepping.");
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "Hart isn't halted before single step!");
return ERROR_FAIL;
}
r->on_step(target);
if (r->step_current_hart(target) != ERROR_OK)
return ERROR_FAIL;
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "Hart was not halted after single step!");
return ERROR_FAIL;
}
return ERROR_OK;
}
bool riscv_supports_extension(struct target *target, char letter)
{
RISCV_INFO(r);
unsigned num;
if (letter >= 'a' && letter <= 'z')
num = letter - 'a';
else if (letter >= 'A' && letter <= 'Z')
num = letter - 'A';
else
return false;
return r->misa & BIT(num);
}
unsigned riscv_xlen(const struct target *target)
{
RISCV_INFO(r);
return r->xlen;
}
static void riscv_invalidate_register_cache(struct target *target)
{
/* Do not invalidate the register cache if it is not yet set up
* (e.g. when the target failed to get examined). */
if (!target->reg_cache)
return;
LOG_TARGET_DEBUG(target, "Invalidating register cache.");
register_cache_invalidate(target->reg_cache);
}
unsigned int riscv_count_harts(struct target *target)
{
if (!target)
return 1;
RISCV_INFO(r);
if (!r || !r->hart_count)
return 1;
return r->hart_count(target);
}
/**
* If write is true:
* return true iff we are guaranteed that the register will contain exactly
* the value we just wrote when it's read.
* If write is false:
* return true iff we are guaranteed that the register will read the same
* value in the future as the value we just read.
*/
static bool gdb_regno_cacheable(enum gdb_regno regno, bool is_write)
{
if (regno == GDB_REGNO_ZERO)
return !is_write;
/* GPRs, FPRs, vector registers are just normal data stores. */
if (regno <= GDB_REGNO_XPR31 ||
(regno >= GDB_REGNO_FPR0 && regno <= GDB_REGNO_FPR31) ||
(regno >= GDB_REGNO_V0 && regno <= GDB_REGNO_V31))
return true;
/* Most CSRs won't change value on us, but we can't assume it about arbitrary
* CSRs. */
switch (regno) {
case GDB_REGNO_DPC:
case GDB_REGNO_VSTART:
case GDB_REGNO_VXSAT:
case GDB_REGNO_VXRM:
case GDB_REGNO_VLENB:
case GDB_REGNO_VL:
case GDB_REGNO_VTYPE:
case GDB_REGNO_MISA:
case GDB_REGNO_DCSR:
case GDB_REGNO_DSCRATCH0:
case GDB_REGNO_MSTATUS:
case GDB_REGNO_MEPC:
case GDB_REGNO_MCAUSE:
case GDB_REGNO_SATP:
/*
* WARL registers might not contain the value we just wrote, but
* these ones won't spontaneously change their value either. *
*/
return !is_write;
case GDB_REGNO_TSELECT: /* I think this should be above, but then it doesn't work. */
case GDB_REGNO_TDATA1: /* Changes value when tselect is changed. */
case GDB_REGNO_TDATA2: /* Changes value when tselect is changed. */
default:
return false;
}
}
/**
* This function is used internally by functions that change register values.
* If `write_through` is true, it is ensured that the value of the target's
* register is set to be equal to the `value` argument. The cached value is
* updated if the register is cacheable.
*/
static int riscv_set_or_write_register(struct target *target,
enum gdb_regno regid, riscv_reg_t value, bool write_through)
{
RISCV_INFO(r);
assert(r->set_register);
keep_alive();
if (openocd_is_shutdown_pending())
return ERROR_SERVER_INTERRUPTED;
if (regid == GDB_REGNO_PC) {
return riscv_set_or_write_register(target, GDB_REGNO_DPC, value, write_through);
} else if (regid == GDB_REGNO_PRIV) {
riscv_reg_t dcsr;
if (riscv_get_register(target, &dcsr, GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
dcsr = set_field(dcsr, CSR_DCSR_PRV, get_field(value, VIRT_PRIV_PRV));
dcsr = set_field(dcsr, CSR_DCSR_V, get_field(value, VIRT_PRIV_V));
return riscv_set_or_write_register(target, GDB_REGNO_DCSR, dcsr, write_through);
}
if (!target->reg_cache) {
assert(!target_was_examined(target));
LOG_TARGET_DEBUG(target,
"No cache, writing to target: %s <- 0x%" PRIx64,
gdb_regno_name(target, regid), value);
return r->set_register(target, regid, value);
}
struct reg *reg = get_reg_cache_entry(target, regid);
if (!reg->exist) {
LOG_TARGET_DEBUG(target, "Register %s does not exist.", reg->name);
return ERROR_FAIL;
}
if (target->state != TARGET_HALTED) {
LOG_TARGET_DEBUG(target,
"Target not halted, writing to target: %s <- 0x%" PRIx64,
reg->name, value);
return r->set_register(target, regid, value);
}
const bool need_to_write = !reg->valid || reg->dirty ||
value != buf_get_u64(reg->value, 0, reg->size);
const bool cacheable = gdb_regno_cacheable(regid, need_to_write);
if (!cacheable || (write_through && need_to_write)) {
LOG_TARGET_DEBUG(target,
"Writing to target: %s <- 0x%" PRIx64 " (cacheable=%s, valid=%s, dirty=%s)",
reg->name, value, cacheable ? "true" : "false",
reg->valid ? "true" : "false",
reg->dirty ? "true" : "false");
if (r->set_register(target, regid, value) != ERROR_OK)
return ERROR_FAIL;
reg->dirty = false;
} else {
reg->dirty = need_to_write;
}
buf_set_u64(reg->value, 0, reg->size, value);
reg->valid = cacheable;
LOG_TARGET_DEBUG(target,
"Wrote 0x%" PRIx64 " to %s (cacheable=%s, valid=%s, dirty=%s)",
value, reg->name, cacheable ? "true" : "false",
reg->valid ? "true" : "false",
reg->dirty ? "true" : "false");
return ERROR_OK;
}
/**
* This function is used to change the value of a register. The new value may
* be cached, and may not be written until the hart is resumed.
*/
int riscv_set_register(struct target *target, enum gdb_regno regid,
riscv_reg_t value)
{
return riscv_set_or_write_register(target, regid, value,
/* write_through */ false);
}
/**
* This function is used to change the value of a register. The new value may
* be cached, but it will be written to hart immediately.
*/
int riscv_write_register(struct target *target, enum gdb_regno regid,
riscv_reg_t value)
{
return riscv_set_or_write_register(target, regid, value,
/* write_through */ true);
}
/**
* This function is used to get the value of a register. If possible, the value
* in cache will be updated.
*/
int riscv_get_register(struct target *target, riscv_reg_t *value,
enum gdb_regno regid)
{
RISCV_INFO(r);
assert(r->get_register);
keep_alive();
if (openocd_is_shutdown_pending())
return ERROR_SERVER_INTERRUPTED;
if (regid == GDB_REGNO_PC) {
return riscv_get_register(target, value, GDB_REGNO_DPC);
} else if (regid == GDB_REGNO_PRIV) {
uint64_t dcsr;
if (riscv_get_register(target, &dcsr, GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
*value = set_field(0, VIRT_PRIV_V, get_field(dcsr, CSR_DCSR_V));
*value = set_field(*value, VIRT_PRIV_PRV, get_field(dcsr, CSR_DCSR_PRV));
return ERROR_OK;
}
if (!target->reg_cache) {
assert(!target_was_examined(target));
LOG_TARGET_DEBUG(target, "No cache, reading %s from target",
gdb_regno_name(target, regid));
return r->get_register(target, value, regid);
}
struct reg *reg = get_reg_cache_entry(target, regid);
if (!reg->exist) {
LOG_TARGET_DEBUG(target, "Register %s does not exist.", reg->name);
return ERROR_FAIL;
}
if (reg->valid) {
*value = buf_get_u64(reg->value, 0, reg->size);
LOG_TARGET_DEBUG(target, "Read %s: 0x%" PRIx64 " (cached)", reg->name,
*value);
return ERROR_OK;
}
LOG_TARGET_DEBUG(target, "Reading %s from target", reg->name);
if (r->get_register(target, value, regid) != ERROR_OK)
return ERROR_FAIL;
buf_set_u64(reg->value, 0, reg->size, *value);
reg->valid = gdb_regno_cacheable(regid, /* is write? */ false);
reg->dirty = false;
LOG_TARGET_DEBUG(target, "Read %s: 0x%" PRIx64, reg->name, *value);
return ERROR_OK;
}
/**
* This function is used to save the value of a register in cache. The register
* is marked as dirty, and writeback is delayed for as long as possible.
*/
int riscv_save_register(struct target *target, enum gdb_regno regid)
{
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "Can't save register %s on a hart that is not halted.",
gdb_regno_name(target, regid));
return ERROR_FAIL;
}
assert(gdb_regno_cacheable(regid, /* is write? */ false) &&
"Only cacheable registers can be saved.");
RISCV_INFO(r);
riscv_reg_t value;
if (!target->reg_cache) {
assert(!target_was_examined(target));
/* To create register cache it is needed to examine the target first,
* therefore during examine, any changed register needs to be saved
* and restored manually.
*/
return ERROR_OK;
}
struct reg *reg = get_reg_cache_entry(target, regid);
LOG_TARGET_DEBUG(target, "Saving %s", reg->name);
if (riscv_get_register(target, &value, regid) != ERROR_OK)
return ERROR_FAIL;
assert(reg->valid &&
"The register is cacheable, so the cache entry must be valid now.");
/* Mark the register dirty. We assume that this function is called
* because the caller is about to mess with the underlying value of the
* register. */
reg->dirty = true;
r->last_activity = timeval_ms();
return ERROR_OK;
}
int riscv_get_hart_state(struct target *target, enum riscv_hart_state *state)
{
RISCV_INFO(r);
assert(r->get_hart_state);
return r->get_hart_state(target, state);
}
static enum riscv_halt_reason riscv_halt_reason(struct target *target)
{
RISCV_INFO(r);
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "Hart is not halted!");
return RISCV_HALT_UNKNOWN;
}
return r->halt_reason(target);
}
size_t riscv_progbuf_size(struct target *target)
{
RISCV_INFO(r);
return r->progbuf_size;
}
int riscv_write_progbuf(struct target *target, int index, riscv_insn_t insn)
{
RISCV_INFO(r);
r->write_progbuf(target, index, insn);
return ERROR_OK;
}
riscv_insn_t riscv_read_progbuf(struct target *target, int index)
{
RISCV_INFO(r);
return r->read_progbuf(target, index);
}
int riscv_execute_progbuf(struct target *target, uint32_t *cmderr)
{
RISCV_INFO(r);
return r->execute_progbuf(target, cmderr);
}
void riscv_fill_dm_write_u64(struct target *target, char *buf, int a, uint64_t d)
{
RISCV_INFO(r);
r->fill_dm_write_u64(target, buf, a, d);
}
void riscv_fill_dm_read_u64(struct target *target, char *buf, int a)
{
RISCV_INFO(r);
r->fill_dm_read_u64(target, buf, a);
}
void riscv_fill_dm_nop_u64(struct target *target, char *buf)
{
RISCV_INFO(r);
r->fill_dm_nop_u64(target, buf);
}
int riscv_dmi_write_u64_bits(struct target *target)
{
RISCV_INFO(r);
return r->dmi_write_u64_bits(target);
}
static int check_if_trigger_exists(struct target *target, unsigned int index)
{
/* If we can't write tselect, then this hart does not support triggers. */
if (riscv_set_register(target, GDB_REGNO_TSELECT, index) != ERROR_OK)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
riscv_reg_t tselect_rb;
if (riscv_get_register(target, &tselect_rb, GDB_REGNO_TSELECT) != ERROR_OK)
return ERROR_FAIL;
/* Mask off the top bit, which is used as tdrmode in legacy RISC-V Debug Spec
* (old revisions of v0.11 spec). */
tselect_rb &= ~(1ULL << (riscv_xlen(target) - 1));
if (tselect_rb != index)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
return ERROR_OK;
}
/**
* This function reads `tinfo` or `tdata1`, when reading `tinfo` fails,
* to determine trigger types supported by a trigger.
* It is assumed that the trigger is already selected via writing `tselect`.
*/
static int get_trigger_types(struct target *target, unsigned int *trigger_tinfo,
riscv_reg_t tdata1)
{
assert(trigger_tinfo);
riscv_reg_t tinfo;
if (riscv_get_register(target, &tinfo, GDB_REGNO_TINFO) == ERROR_OK) {
/* tinfo.INFO == 1: trigger doesnt exist
* tinfo == 0 or tinfo.INFO != 1 and tinfo LSB is set: invalid tinfo */
if (tinfo == 0 || tinfo & 0x1)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
*trigger_tinfo = tinfo;
return ERROR_OK;
}
const unsigned int type = get_field(tdata1, CSR_TDATA1_TYPE(riscv_xlen(target)));
if (type == 0)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
*trigger_tinfo = 1 << type;
return ERROR_OK;
}
static int disable_trigger_if_dmode(struct target *target, riscv_reg_t tdata1)
{
bool dmode_is_set = false;
switch (get_field(tdata1, CSR_TDATA1_TYPE(riscv_xlen(target)))) {
case CSR_TDATA1_TYPE_LEGACY:
/* On these older cores we don't support software using
* triggers. */
dmode_is_set = true;
break;
case CSR_TDATA1_TYPE_MCONTROL:
dmode_is_set = tdata1 & CSR_MCONTROL_DMODE(riscv_xlen(target));
break;
case CSR_TDATA1_TYPE_MCONTROL6:
dmode_is_set = tdata1 & CSR_MCONTROL6_DMODE(riscv_xlen(target));
break;
case CSR_TDATA1_TYPE_ICOUNT:
dmode_is_set = tdata1 & CSR_ICOUNT_DMODE(riscv_xlen(target));
break;
case CSR_TDATA1_TYPE_ITRIGGER:
dmode_is_set = tdata1 & CSR_ITRIGGER_DMODE(riscv_xlen(target));
break;
case CSR_TDATA1_TYPE_ETRIGGER:
dmode_is_set = tdata1 & CSR_ETRIGGER_DMODE(riscv_xlen(target));
break;
}
if (!dmode_is_set)
/* Nothing to do */
return ERROR_OK;
return riscv_set_register(target, GDB_REGNO_TDATA1, 0);
}
/**
* Count triggers, and initialize trigger_count for each hart.
* trigger_count is initialized even if this function fails to discover
* something.
* Disable any hardware triggers that have dmode set. We can't have set them
* ourselves. Maybe they're left over from some killed debug session.
*/
int riscv_enumerate_triggers(struct target *target)
{
RISCV_INFO(r);
if (r->triggers_enumerated)
return ERROR_OK;
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "Unable to enumerate triggers: target not halted.");
return ERROR_FAIL;
}
riscv_reg_t orig_tselect;
int result = riscv_get_register(target, &orig_tselect, GDB_REGNO_TSELECT);
/* If tselect is not readable, the trigger module is likely not
* implemented. */
if (result != ERROR_OK) {
LOG_TARGET_INFO(target, "Cannot access tselect register. "
"Assuming that triggers are not implemented.");
r->triggers_enumerated = true;
r->trigger_count = 0;
return ERROR_OK;
}
unsigned int t = 0;
for (; t < ARRAY_SIZE(r->trigger_tinfo); ++t) {
result = check_if_trigger_exists(target, t);
if (result == ERROR_FAIL)
return ERROR_FAIL;
if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
break;
riscv_reg_t tdata1;
if (riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1) != ERROR_OK)
return ERROR_FAIL;
result = get_trigger_types(target, &r->trigger_tinfo[t], tdata1);
if (result == ERROR_FAIL)
return ERROR_FAIL;
if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
break;
LOG_TARGET_DEBUG(target, "Trigger %u: supported types (mask) = 0x%08x",
t, r->trigger_tinfo[t]);
if (disable_trigger_if_dmode(target, tdata1) != ERROR_OK)
return ERROR_FAIL;
}
if (riscv_set_register(target, GDB_REGNO_TSELECT, orig_tselect) != ERROR_OK)
return ERROR_FAIL;
r->triggers_enumerated = true;
r->trigger_count = t;
LOG_TARGET_INFO(target, "Found %d triggers", r->trigger_count);
create_wp_trigger_cache(target);
return ERROR_OK;
}
static char *init_reg_name(const char *name)
{
const int size_buf = strlen(name) + 1;
char * const buf = calloc(size_buf, sizeof(char));
if (!buf) {
LOG_ERROR("Failed to allocate memory for a register name.");
return NULL;
}
strcpy(buf, name);
return buf;
}
static char *init_reg_name_with_prefix(const char *name_prefix,
unsigned int num)
{
const int size_buf = snprintf(NULL, 0, "%s%d", name_prefix, num) + 1;
char * const buf = calloc(size_buf, sizeof(char));
if (!buf) {
LOG_ERROR("Failed to allocate memory for a register name.");
return NULL;
}
int result = snprintf(buf, size_buf, "%s%d", name_prefix, num);
assert(result > 0 && result <= (size_buf - 1));
return buf;
}
static const char * const default_reg_names[GDB_REGNO_COUNT] = {
[GDB_REGNO_ZERO] = "zero",
[GDB_REGNO_RA] = "ra",
[GDB_REGNO_SP] = "sp",
[GDB_REGNO_GP] = "gp",
[GDB_REGNO_TP] = "tp",
[GDB_REGNO_T0] = "t0",
[GDB_REGNO_T1] = "t1",
[GDB_REGNO_T2] = "t2",
[GDB_REGNO_FP] = "fp",
[GDB_REGNO_S1] = "s1",
[GDB_REGNO_A0] = "a0",
[GDB_REGNO_A1] = "a1",
[GDB_REGNO_A2] = "a2",
[GDB_REGNO_A3] = "a3",
[GDB_REGNO_A4] = "a4",
[GDB_REGNO_A5] = "a5",
[GDB_REGNO_A6] = "a6",
[GDB_REGNO_A7] = "a7",
[GDB_REGNO_S2] = "s2",
[GDB_REGNO_S3] = "s3",
[GDB_REGNO_S4] = "s4",
[GDB_REGNO_S5] = "s5",
[GDB_REGNO_S6] = "s6",
[GDB_REGNO_S7] = "s7",
[GDB_REGNO_S8] = "s8",
[GDB_REGNO_S9] = "s9",
[GDB_REGNO_S10] = "s10",
[GDB_REGNO_S11] = "s11",
[GDB_REGNO_T3] = "t3",
[GDB_REGNO_T4] = "t4",
[GDB_REGNO_T5] = "t5",
[GDB_REGNO_T6] = "t6",
[GDB_REGNO_PC] = "pc",
[GDB_REGNO_CSR0] = "csr0",
[GDB_REGNO_PRIV] = "priv",
[GDB_REGNO_FT0] = "ft0",
[GDB_REGNO_FT1] = "ft1",
[GDB_REGNO_FT2] = "ft2",
[GDB_REGNO_FT3] = "ft3",
[GDB_REGNO_FT4] = "ft4",
[GDB_REGNO_FT5] = "ft5",
[GDB_REGNO_FT6] = "ft6",
[GDB_REGNO_FT7] = "ft7",
[GDB_REGNO_FS0] = "fs0",
[GDB_REGNO_FS1] = "fs1",
[GDB_REGNO_FA0] = "fa0",
[GDB_REGNO_FA1] = "fa1",
[GDB_REGNO_FA2] = "fa2",
[GDB_REGNO_FA3] = "fa3",
[GDB_REGNO_FA4] = "fa4",
[GDB_REGNO_FA5] = "fa5",
[GDB_REGNO_FA6] = "fa6",
[GDB_REGNO_FA7] = "fa7",
[GDB_REGNO_FS2] = "fs2",
[GDB_REGNO_FS3] = "fs3",
[GDB_REGNO_FS4] = "fs4",
[GDB_REGNO_FS5] = "fs5",
[GDB_REGNO_FS6] = "fs6",
[GDB_REGNO_FS7] = "fs7",
[GDB_REGNO_FS8] = "fs8",
[GDB_REGNO_FS9] = "fs9",
[GDB_REGNO_FS10] = "fs10",
[GDB_REGNO_FS11] = "fs11",
[GDB_REGNO_FT8] = "ft8",
[GDB_REGNO_FT9] = "ft9",
[GDB_REGNO_FT10] = "ft10",
[GDB_REGNO_FT11] = "ft11",
#define DECLARE_CSR(csr_name, number)[(number) + GDB_REGNO_CSR0] = #csr_name,
#include "encoding.h"
#undef DECLARE_CSR
};
static void free_reg_names(struct target *target)
{
RISCV_INFO(info);
if (!info->reg_names)
return;
for (unsigned int i = 0; i < GDB_REGNO_COUNT; ++i)
free(info->reg_names[i]);
free(info->reg_names);
info->reg_names = NULL;
free_custom_register_names(target);
}
static void init_custom_csr_names(struct target *target)
{
RISCV_INFO(info);
range_list_t *entry;
list_for_each_entry(entry, &info->expose_csr, list) {
if (!entry->name)
continue;
assert(entry->low == entry->high);
const unsigned int regno = entry->low + GDB_REGNO_CSR0;
assert(regno <= GDB_REGNO_CSR4095);
if (info->reg_names[regno])
return;
info->reg_names[regno] = init_reg_name(entry->name);
}
}
const char *gdb_regno_name(struct target *target, enum gdb_regno regno)
{
RISCV_INFO(info);
if (regno >= GDB_REGNO_COUNT) {
assert(info->custom_register_names.reg_names);
assert(regno - GDB_REGNO_COUNT <= info->custom_register_names.num_entries);
return info->custom_register_names.reg_names[regno - GDB_REGNO_COUNT];
}
if (!info->reg_names)
info->reg_names = calloc(GDB_REGNO_COUNT, sizeof(char *));
if (info->reg_names[regno])
return info->reg_names[regno];
if (default_reg_names[regno])
return default_reg_names[regno];
if (regno <= GDB_REGNO_XPR31) {
info->reg_names[regno] = init_reg_name_with_prefix("x", regno - GDB_REGNO_ZERO);
return info->reg_names[regno];
}
if (regno <= GDB_REGNO_V31 && regno >= GDB_REGNO_V0) {
info->reg_names[regno] = init_reg_name_with_prefix("v", regno - GDB_REGNO_V0);
return info->reg_names[regno];
}
if (regno >= GDB_REGNO_CSR0 && regno <= GDB_REGNO_CSR4095) {
init_custom_csr_names(target);
info->reg_names[regno] = init_reg_name_with_prefix("csr", regno - GDB_REGNO_CSR0);
return info->reg_names[regno];
}
assert(!"Encountered uninitialized entry in reg_names table");
return NULL;
}
/**
* This function is the handler of user's request to read a register.
*/
static int register_get(struct reg *reg)
{
struct target *target = ((riscv_reg_info_t *)reg->arch_info)->target;
RISCV_INFO(r);
/* TODO: Hack to deal with gdb that thinks these registers still exist. */
if (reg->number > GDB_REGNO_XPR15 && reg->number <= GDB_REGNO_XPR31 &&
riscv_supports_extension(target, 'E')) {
buf_set_u64(reg->value, 0, reg->size, 0);
return ERROR_OK;
}
if (reg->number >= GDB_REGNO_V0 && reg->number <= GDB_REGNO_V31) {
if (!r->get_register_buf) {
LOG_TARGET_ERROR(target,
"Reading register %s not supported on this target.",
reg->name);
return ERROR_FAIL;
}
if (r->get_register_buf(target, reg->value, reg->number) != ERROR_OK)
return ERROR_FAIL;
reg->valid = gdb_regno_cacheable(reg->number, /* is write? */ false);
} else {
uint64_t value;
int result = riscv_get_register(target, &value, reg->number);
if (result != ERROR_OK)
return result;
buf_set_u64(reg->value, 0, reg->size, value);
}
char *str = buf_to_hex_str(reg->value, reg->size);
LOG_TARGET_DEBUG(target, "Read 0x%s from %s (valid=%d).", str, reg->name,
reg->valid);
free(str);
return ERROR_OK;
}
/**
* This function is the handler of user's request to write a register.
*/
static int register_set(struct reg *reg, uint8_t *buf)
{
struct target *target = ((riscv_reg_info_t *)reg->arch_info)->target;
RISCV_INFO(r);
char *str = buf_to_hex_str(buf, reg->size);
LOG_TARGET_DEBUG(target, "Write 0x%s to %s (valid=%d).", str, reg->name,
reg->valid);
free(str);
/* TODO: Hack to deal with gdb that thinks these registers still exist. */
if (reg->number > GDB_REGNO_XPR15 && reg->number <= GDB_REGNO_XPR31 &&
riscv_supports_extension(target, 'E') &&
buf_get_u64(buf, 0, reg->size) == 0)
return ERROR_OK;
if (reg->number == GDB_REGNO_TDATA1 ||
reg->number == GDB_REGNO_TDATA2) {
r->manual_hwbp_set = true;
/* When enumerating triggers, we clear any triggers with DMODE set,
* assuming they were left over from a previous debug session. So make
* sure that is done before a user might be setting their own triggers.
*/
if (riscv_enumerate_triggers(target) != ERROR_OK)
return ERROR_FAIL;
}
if (reg->number >= GDB_REGNO_V0 && reg->number <= GDB_REGNO_V31) {
if (!r->set_register_buf) {
LOG_TARGET_ERROR(target,
"Writing register %s not supported on this target.",
reg->name);
return ERROR_FAIL;
}
if (r->set_register_buf(target, reg->number, buf) != ERROR_OK)
return ERROR_FAIL;
memcpy(reg->value, buf, DIV_ROUND_UP(reg->size, 8));
reg->valid = gdb_regno_cacheable(reg->number, /* is write? */ true);
} else {
const riscv_reg_t value = buf_get_u64(buf, 0, reg->size);
if (riscv_set_register(target, reg->number, value) != ERROR_OK)
return ERROR_FAIL;
}
return ERROR_OK;
}
static struct reg_arch_type riscv_reg_arch_type = {
.get = register_get,
.set = register_set
};
static int init_custom_register_names(struct list_head *expose_custom,
struct reg_name_table *custom_register_names)
{
unsigned int custom_regs_num = 0;
if (!list_empty(expose_custom)) {
range_list_t *entry;
list_for_each_entry(entry, expose_custom, list)
custom_regs_num += entry->high - entry->low + 1;
}
if (!custom_regs_num)
return ERROR_OK;
custom_register_names->reg_names = calloc(custom_regs_num, sizeof(char *));
if (!custom_register_names->reg_names) {
LOG_ERROR("Failed to allocate memory for custom_register_names->reg_names");
return ERROR_FAIL;
}
custom_register_names->num_entries = custom_regs_num;
char **reg_names = custom_register_names->reg_names;
range_list_t *range;
unsigned int next_custom_reg_index = 0;
list_for_each_entry(range, expose_custom, list) {
for (unsigned int custom_number = range->low; custom_number <= range->high; ++custom_number) {
if (range->name)
reg_names[next_custom_reg_index] = init_reg_name(range->name);
else
reg_names[next_custom_reg_index] =
init_reg_name_with_prefix("custom", custom_number);
if (!reg_names[next_custom_reg_index])
return ERROR_FAIL;
++next_custom_reg_index;
}
}
return ERROR_OK;
}
static bool is_known_standard_csr(unsigned int csr_num)
{
static const bool is_csr_in_buf[GDB_REGNO_CSR4095 - GDB_REGNO_CSR0 + 1] = {
#define DECLARE_CSR(csr_name, number)[number] = true,
#include "encoding.h"
#undef DECLARE_CSR
};
assert(csr_num < ARRAY_SIZE(is_csr_in_buf));
return is_csr_in_buf[csr_num];
}
int riscv_init_registers(struct target *target)
{
RISCV_INFO(info);
riscv_free_registers(target);
target->reg_cache = calloc(1, sizeof(*target->reg_cache));
if (!target->reg_cache) {
LOG_TARGET_ERROR(target, "Failed to allocate memory for target->reg_cache");
return ERROR_FAIL;
}
target->reg_cache->name = "RISC-V Registers";
if (init_custom_register_names(&info->expose_custom, &info->custom_register_names) != ERROR_OK) {
LOG_TARGET_ERROR(target, "init_custom_register_names failed");
return ERROR_FAIL;
}
target->reg_cache->num_regs = GDB_REGNO_COUNT + info->custom_register_names.num_entries;
LOG_TARGET_DEBUG(target, "create register cache for %d registers",
target->reg_cache->num_regs);
target->reg_cache->reg_list =
calloc(target->reg_cache->num_regs, sizeof(struct reg));
if (!target->reg_cache->reg_list) {
LOG_TARGET_ERROR(target, "Failed to allocate memory for target->reg_cache->reg_list");
return ERROR_FAIL;
}
static struct reg_feature feature_cpu = {
.name = "org.gnu.gdb.riscv.cpu"
};
static struct reg_feature feature_fpu = {
.name = "org.gnu.gdb.riscv.fpu"
};
static struct reg_feature feature_csr = {
.name = "org.gnu.gdb.riscv.csr"
};
static struct reg_feature feature_vector = {
.name = "org.gnu.gdb.riscv.vector"
};
static struct reg_feature feature_virtual = {
.name = "org.gnu.gdb.riscv.virtual"
};
static struct reg_feature feature_custom = {
.name = "org.gnu.gdb.riscv.custom"
};
/* These types are built into gdb. */
static struct reg_data_type type_ieee_single = { .type = REG_TYPE_IEEE_SINGLE, .id = "ieee_single" };
static struct reg_data_type type_ieee_double = { .type = REG_TYPE_IEEE_DOUBLE, .id = "ieee_double" };
static struct reg_data_type_union_field single_double_fields[] = {
{"float", &type_ieee_single, single_double_fields + 1},
{"double", &type_ieee_double, NULL},
};
static struct reg_data_type_union single_double_union = {
.fields = single_double_fields
};
static struct reg_data_type type_ieee_single_double = {
.type = REG_TYPE_ARCH_DEFINED,
.id = "FPU_FD",
.type_class = REG_TYPE_CLASS_UNION,
.reg_type_union = &single_double_union
};
static struct reg_data_type type_uint8 = { .type = REG_TYPE_UINT8, .id = "uint8" };
static struct reg_data_type type_uint16 = { .type = REG_TYPE_UINT16, .id = "uint16" };
static struct reg_data_type type_uint32 = { .type = REG_TYPE_UINT32, .id = "uint32" };
static struct reg_data_type type_uint64 = { .type = REG_TYPE_UINT64, .id = "uint64" };
static struct reg_data_type type_uint128 = { .type = REG_TYPE_UINT128, .id = "uint128" };
/* This is roughly the XML we want:
* <vector id="bytes" type="uint8" count="16"/>
* <vector id="shorts" type="uint16" count="8"/>
* <vector id="words" type="uint32" count="4"/>
* <vector id="longs" type="uint64" count="2"/>
* <vector id="quads" type="uint128" count="1"/>
* <union id="riscv_vector_type">
* <field name="b" type="bytes"/>
* <field name="s" type="shorts"/>
* <field name="w" type="words"/>
* <field name="l" type="longs"/>
* <field name="q" type="quads"/>
* </union>
*/
info->vector_uint8.type = &type_uint8;
info->vector_uint8.count = info->vlenb;
info->type_uint8_vector.type = REG_TYPE_ARCH_DEFINED;
info->type_uint8_vector.id = "bytes";
info->type_uint8_vector.type_class = REG_TYPE_CLASS_VECTOR;
info->type_uint8_vector.reg_type_vector = &info->vector_uint8;
info->vector_uint16.type = &type_uint16;
info->vector_uint16.count = info->vlenb / 2;
info->type_uint16_vector.type = REG_TYPE_ARCH_DEFINED;
info->type_uint16_vector.id = "shorts";
info->type_uint16_vector.type_class = REG_TYPE_CLASS_VECTOR;
info->type_uint16_vector.reg_type_vector = &info->vector_uint16;
info->vector_uint32.type = &type_uint32;
info->vector_uint32.count = info->vlenb / 4;
info->type_uint32_vector.type = REG_TYPE_ARCH_DEFINED;
info->type_uint32_vector.id = "words";
info->type_uint32_vector.type_class = REG_TYPE_CLASS_VECTOR;
info->type_uint32_vector.reg_type_vector = &info->vector_uint32;
info->vector_uint64.type = &type_uint64;
info->vector_uint64.count = info->vlenb / 8;
info->type_uint64_vector.type = REG_TYPE_ARCH_DEFINED;
info->type_uint64_vector.id = "longs";
info->type_uint64_vector.type_class = REG_TYPE_CLASS_VECTOR;
info->type_uint64_vector.reg_type_vector = &info->vector_uint64;
info->vector_uint128.type = &type_uint128;
info->vector_uint128.count = info->vlenb / 16;
info->type_uint128_vector.type = REG_TYPE_ARCH_DEFINED;
info->type_uint128_vector.id = "quads";
info->type_uint128_vector.type_class = REG_TYPE_CLASS_VECTOR;
info->type_uint128_vector.reg_type_vector = &info->vector_uint128;
info->vector_fields[0].name = "b";
info->vector_fields[0].type = &info->type_uint8_vector;
if (info->vlenb >= 2) {
info->vector_fields[0].next = info->vector_fields + 1;
info->vector_fields[1].name = "s";
info->vector_fields[1].type = &info->type_uint16_vector;
} else {
info->vector_fields[0].next = NULL;
}
if (info->vlenb >= 4) {
info->vector_fields[1].next = info->vector_fields + 2;
info->vector_fields[2].name = "w";
info->vector_fields[2].type = &info->type_uint32_vector;
} else {
info->vector_fields[1].next = NULL;
}
if (info->vlenb >= 8) {
info->vector_fields[2].next = info->vector_fields + 3;
info->vector_fields[3].name = "l";
info->vector_fields[3].type = &info->type_uint64_vector;
} else {
info->vector_fields[2].next = NULL;
}
if (info->vlenb >= 16) {
info->vector_fields[3].next = info->vector_fields + 4;
info->vector_fields[4].name = "q";
info->vector_fields[4].type = &info->type_uint128_vector;
} else {
info->vector_fields[3].next = NULL;
}
info->vector_fields[4].next = NULL;
info->vector_union.fields = info->vector_fields;
info->type_vector.type = REG_TYPE_ARCH_DEFINED;
info->type_vector.id = "riscv_vector";
info->type_vector.type_class = REG_TYPE_CLASS_UNION;
info->type_vector.reg_type_union = &info->vector_union;
riscv_reg_info_t *shared_reg_info = calloc(1, sizeof(riscv_reg_info_t));
if (!shared_reg_info)
return ERROR_FAIL;
shared_reg_info->target = target;
int custom_within_range = 0;
/* When gdb requests register N, gdb_get_register_packet() assumes that this
* is register at index N in reg_list. So if there are certain registers
* that don't exist, we need to leave holes in the list (or renumber, but
* it would be nice not to have yet another set of numbers to translate
* between). */
for (uint32_t reg_num = 0; reg_num < target->reg_cache->num_regs; reg_num++) {
struct reg *r = &target->reg_cache->reg_list[reg_num];
r->dirty = false;
r->valid = false;
r->exist = true;
r->type = &riscv_reg_arch_type;
r->arch_info = shared_reg_info;
r->number = reg_num;
r->size = riscv_xlen(target);
/* r->size is set in riscv_invalidate_register_cache, maybe because the
* target is in theory allowed to change XLEN on us. But I expect a lot
* of other things to break in that case as well. */
r->name = gdb_regno_name(target, reg_num);
if (reg_num <= GDB_REGNO_XPR31) {
r->exist = reg_num <= GDB_REGNO_XPR15 ||
!riscv_supports_extension(target, 'E');
/* TODO: For now we fake that all GPRs exist because otherwise gdb
* doesn't work. */
r->exist = true;
r->caller_save = true;
r->group = "general";
r->feature = &feature_cpu;
} else if (reg_num == GDB_REGNO_PC) {
r->caller_save = true;
r->group = "general";
r->feature = &feature_cpu;
} else if (reg_num >= GDB_REGNO_FPR0 && reg_num <= GDB_REGNO_FPR31) {
r->caller_save = true;
if (riscv_supports_extension(target, 'D')) {
r->size = 64;
if (riscv_supports_extension(target, 'F'))
r->reg_data_type = &type_ieee_single_double;
else
r->reg_data_type = &type_ieee_double;
} else if (riscv_supports_extension(target, 'F')) {
r->reg_data_type = &type_ieee_single;
r->size = 32;
} else {
r->exist = false;
}
r->group = "float";
r->feature = &feature_fpu;
} else if (reg_num >= GDB_REGNO_CSR0 && reg_num <= GDB_REGNO_CSR4095) {
r->group = "csr";
r->feature = &feature_csr;
const unsigned int csr_num = reg_num - GDB_REGNO_CSR0;
if (!is_known_standard_csr(csr_num)) {
/* Assume unnamed registers don't exist, unless we have some
* configuration that tells us otherwise. That's important
* because eg. Eclipse crashes if a target has too many
* registers, and apparently has no way of only showing a
* subset of registers in any case. */
r->exist = false;
}
switch (csr_num) {
case CSR_DCSR:
case CSR_MVENDORID:
case CSR_MCOUNTINHIBIT:
r->size = 32;
break;
case CSR_FCSR:
r->size = 32;
/* fall through */
case CSR_FFLAGS:
case CSR_FRM:
r->exist = riscv_supports_extension(target, 'F');
r->group = "float";
r->feature = &feature_fpu;
break;
case CSR_SCOUNTEREN:
r->size = 32;
/* fall through */
case CSR_SSTATUS:
case CSR_STVEC:
case CSR_SIP:
case CSR_SIE:
case CSR_SSCRATCH:
case CSR_SEPC:
case CSR_SCAUSE:
case CSR_STVAL:
case CSR_SATP:
r->exist = riscv_supports_extension(target, 'S');
break;
case CSR_MEDELEG:
case CSR_MIDELEG:
/* "In systems with only M-mode, or with both M-mode and
* U-mode but without U-mode trap support, the medeleg and
* mideleg registers should not exist." */
r->exist = riscv_supports_extension(target, 'S') ||
riscv_supports_extension(target, 'N');
break;
case CSR_PMPCFG1:
case CSR_PMPCFG3:
case CSR_CYCLEH:
case CSR_TIMEH:
case CSR_INSTRETH:
case CSR_HPMCOUNTER3H:
case CSR_HPMCOUNTER4H:
case CSR_HPMCOUNTER5H:
case CSR_HPMCOUNTER6H:
case CSR_HPMCOUNTER7H:
case CSR_HPMCOUNTER8H:
case CSR_HPMCOUNTER9H:
case CSR_HPMCOUNTER10H:
case CSR_HPMCOUNTER11H:
case CSR_HPMCOUNTER12H:
case CSR_HPMCOUNTER13H:
case CSR_HPMCOUNTER14H:
case CSR_HPMCOUNTER15H:
case CSR_HPMCOUNTER16H:
case CSR_HPMCOUNTER17H:
case CSR_HPMCOUNTER18H:
case CSR_HPMCOUNTER19H:
case CSR_HPMCOUNTER20H:
case CSR_HPMCOUNTER21H:
case CSR_HPMCOUNTER22H:
case CSR_HPMCOUNTER23H:
case CSR_HPMCOUNTER24H:
case CSR_HPMCOUNTER25H:
case CSR_HPMCOUNTER26H:
case CSR_HPMCOUNTER27H:
case CSR_HPMCOUNTER28H:
case CSR_HPMCOUNTER29H:
case CSR_HPMCOUNTER30H:
case CSR_HPMCOUNTER31H:
case CSR_MCYCLEH:
case CSR_MINSTRETH:
case CSR_MHPMCOUNTER3H:
case CSR_MHPMCOUNTER4H:
case CSR_MHPMCOUNTER5H:
case CSR_MHPMCOUNTER6H:
case CSR_MHPMCOUNTER7H:
case CSR_MHPMCOUNTER8H:
case CSR_MHPMCOUNTER9H:
case CSR_MHPMCOUNTER10H:
case CSR_MHPMCOUNTER11H:
case CSR_MHPMCOUNTER12H:
case CSR_MHPMCOUNTER13H:
case CSR_MHPMCOUNTER14H:
case CSR_MHPMCOUNTER15H:
case CSR_MHPMCOUNTER16H:
case CSR_MHPMCOUNTER17H:
case CSR_MHPMCOUNTER18H:
case CSR_MHPMCOUNTER19H:
case CSR_MHPMCOUNTER20H:
case CSR_MHPMCOUNTER21H:
case CSR_MHPMCOUNTER22H:
case CSR_MHPMCOUNTER23H:
case CSR_MHPMCOUNTER24H:
case CSR_MHPMCOUNTER25H:
case CSR_MHPMCOUNTER26H:
case CSR_MHPMCOUNTER27H:
case CSR_MHPMCOUNTER28H:
case CSR_MHPMCOUNTER29H:
case CSR_MHPMCOUNTER30H:
case CSR_MHPMCOUNTER31H:
r->exist = riscv_xlen(target) == 32;
break;
case CSR_VSTART:
case CSR_VXSAT:
case CSR_VXRM:
case CSR_VL:
case CSR_VCSR:
case CSR_VTYPE:
case CSR_VLENB:
r->exist = (info->vlenb > 0);
break;
case CSR_MCOUNTEREN:
r->size = 32;
r->exist = riscv_supports_extension(target, 'U');
break;
/* Interrupts M-Mode CSRs. */
case CSR_MISELECT:
case CSR_MIREG:
case CSR_MTOPI:
case CSR_MVIEN:
case CSR_MVIP:
r->exist = info->mtopi_readable;
break;
case CSR_MTOPEI:
r->exist = info->mtopei_readable;
break;
case CSR_MIDELEGH:
case CSR_MVIENH:
case CSR_MVIPH:
r->exist = info->mtopi_readable &&
riscv_xlen(target) == 32 &&
riscv_supports_extension(target, 'S');
break;
case CSR_MIEH:
case CSR_MIPH:
r->exist = info->mtopi_readable;
break;
/* Interrupts S-Mode CSRs. */
case CSR_SISELECT:
case CSR_SIREG:
case CSR_STOPI:
r->exist = info->mtopi_readable &&
riscv_supports_extension(target, 'S');
break;
case CSR_STOPEI:
r->exist = info->mtopei_readable &&
riscv_supports_extension(target, 'S');
break;
case CSR_SIEH:
case CSR_SIPH:
r->exist = info->mtopi_readable &&
riscv_xlen(target) == 32 &&
riscv_supports_extension(target, 'S');
break;
/* Interrupts Hypervisor and VS CSRs. */
case CSR_HVIEN:
case CSR_HVICTL:
case CSR_HVIPRIO1:
case CSR_HVIPRIO2:
case CSR_VSISELECT:
case CSR_VSIREG:
case CSR_VSTOPI:
r->exist = info->mtopi_readable &&
riscv_supports_extension(target, 'H');
break;
case CSR_VSTOPEI:
r->exist = info->mtopei_readable &&
riscv_supports_extension(target, 'H');
break;
case CSR_HIDELEGH:
case CSR_HVIENH:
case CSR_HVIPH:
case CSR_HVIPRIO1H:
case CSR_HVIPRIO2H:
case CSR_VSIEH:
case CSR_VSIPH:
r->exist = info->mtopi_readable &&
riscv_xlen(target) == 32 &&
riscv_supports_extension(target, 'H');
break;
}
if (!r->exist && !list_empty(&info->expose_csr)) {
range_list_t *entry;
list_for_each_entry(entry, &info->expose_csr, list)
if (entry->low <= csr_num && csr_num <= entry->high) {
LOG_TARGET_DEBUG(target, "Exposing additional CSR %d (name=%s)",
csr_num, r->name);
r->exist = true;
break;
}
} else if (r->exist && !list_empty(&info->hide_csr)) {
range_list_t *entry;
list_for_each_entry(entry, &info->hide_csr, list)
if (entry->low <= csr_num && csr_num <= entry->high) {
LOG_TARGET_DEBUG(target, "Hiding CSR %d (name=%s).", csr_num, r->name);
r->hidden = true;
break;
}
}
} else if (reg_num == GDB_REGNO_PRIV) {
r->group = "general";
r->feature = &feature_virtual;
r->size = 8;
} else if (reg_num >= GDB_REGNO_V0 && reg_num <= GDB_REGNO_V31) {
r->caller_save = false;
r->exist = (info->vlenb > 0);
r->size = info->vlenb * 8;
r->group = "vector";
r->feature = &feature_vector;
r->reg_data_type = &info->type_vector;
} else if (reg_num >= GDB_REGNO_COUNT) {
/* Custom registers. */
const unsigned int custom_reg_index = reg_num - GDB_REGNO_COUNT;
assert(!list_empty(&info->expose_custom));
assert(custom_reg_index < info->custom_register_names.num_entries);
range_list_t *range = list_first_entry(&info->expose_custom, range_list_t, list);
const unsigned int custom_number = range->low + custom_within_range;
r->group = "custom";
r->feature = &feature_custom;
r->arch_info = calloc(1, sizeof(riscv_reg_info_t));
if (!r->arch_info) {
LOG_ERROR("Failed to allocate memory for r->arch_info");
return ERROR_FAIL;
}
((riscv_reg_info_t *)r->arch_info)->target = target;
((riscv_reg_info_t *)r->arch_info)->custom_number = custom_number;
char **reg_names = info->custom_register_names.reg_names;
r->name = reg_names[custom_reg_index];
LOG_TARGET_DEBUG(target, "Exposing additional custom register %d (name=%s)", reg_num, r->name);
custom_within_range++;
if (custom_within_range > range->high - range->low) {
custom_within_range = 0;
list_rotate_left(&info->expose_custom);
}
}
r->value = calloc(1, DIV_ROUND_UP(r->size, 8));
}
return ERROR_OK;
}
void riscv_add_bscan_tunneled_scan(struct target *target, struct scan_field *field,
riscv_bscan_tunneled_scan_context_t *ctxt)
{
jtag_add_ir_scan(target->tap, &select_user4, TAP_IDLE);
memset(ctxt->tunneled_dr, 0, sizeof(ctxt->tunneled_dr));
if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER) {
ctxt->tunneled_dr[3].num_bits = 1;
ctxt->tunneled_dr[3].out_value = bscan_one;
ctxt->tunneled_dr[2].num_bits = 7;
ctxt->tunneled_dr_width = field->num_bits;
ctxt->tunneled_dr[2].out_value = &ctxt->tunneled_dr_width;
/* for BSCAN tunnel, there is a one-TCK skew between shift in and shift out, so
scanning num_bits + 1, and then will right shift the input field after executing the queues */
ctxt->tunneled_dr[1].num_bits = field->num_bits + 1;
ctxt->tunneled_dr[1].out_value = field->out_value;
ctxt->tunneled_dr[1].in_value = field->in_value;
ctxt->tunneled_dr[0].num_bits = 3;
ctxt->tunneled_dr[0].out_value = bscan_zero;
} else {
/* BSCAN_TUNNEL_NESTED_TAP */
ctxt->tunneled_dr[0].num_bits = 1;
ctxt->tunneled_dr[0].out_value = bscan_one;
ctxt->tunneled_dr[1].num_bits = 7;
ctxt->tunneled_dr_width = field->num_bits;
ctxt->tunneled_dr[1].out_value = &ctxt->tunneled_dr_width;
/* for BSCAN tunnel, there is a one-TCK skew between shift in and shift out, so
scanning num_bits + 1, and then will right shift the input field after executing the queues */
ctxt->tunneled_dr[2].num_bits = field->num_bits + 1;
ctxt->tunneled_dr[2].out_value = field->out_value;
ctxt->tunneled_dr[2].in_value = field->in_value;
ctxt->tunneled_dr[3].num_bits = 3;
ctxt->tunneled_dr[3].out_value = bscan_zero;
}
jtag_add_dr_scan(target->tap, ARRAY_SIZE(ctxt->tunneled_dr), ctxt->tunneled_dr, TAP_IDLE);
}