2016-11-19 06:08:42 -06:00
|
|
|
package pixel
|
|
|
|
|
|
|
|
import (
|
|
|
|
"fmt"
|
|
|
|
"math"
|
|
|
|
"math/cmplx"
|
|
|
|
)
|
|
|
|
|
2016-12-30 10:43:26 -06:00
|
|
|
// Vec is a 2d vector type. It is unusually implemented as complex128 for convenience. Since
|
|
|
|
// Go does not allow operator overloading, implementing vector as a struct leads to a bunch of
|
|
|
|
// methods for addition, subtraction and multiplication of vectors. With complex128, much of
|
|
|
|
// this functionality is given through operators.
|
2016-11-19 06:08:42 -06:00
|
|
|
//
|
|
|
|
// Create vectors with the V constructor:
|
|
|
|
//
|
|
|
|
// u := pixel.V(1, 2)
|
|
|
|
// v := pixel.V(8, -3)
|
|
|
|
//
|
|
|
|
// Add and subtract them using the standard + and - operators:
|
|
|
|
//
|
|
|
|
// w := u + v
|
2016-11-19 07:13:36 -06:00
|
|
|
// fmt.Println(w) // Vec(9, -1)
|
|
|
|
// fmt.Println(u - v) // Vec(-7, 5)
|
2016-11-19 06:08:42 -06:00
|
|
|
//
|
|
|
|
// Additional standard vector operations can be obtained with methods:
|
|
|
|
//
|
2016-11-19 07:13:36 -06:00
|
|
|
// u := pixel.V(2, 3)
|
|
|
|
// v := pixel.V(8, 1)
|
2016-11-19 06:08:42 -06:00
|
|
|
// if u.X() < 0 {
|
2016-12-30 10:43:26 -06:00
|
|
|
// fmt.Println("this won't happen")
|
2016-11-19 06:08:42 -06:00
|
|
|
// }
|
|
|
|
// x := u.Unit().Dot(v.Unit())
|
2016-11-19 07:06:52 -06:00
|
|
|
type Vec complex128
|
2016-11-19 06:08:42 -06:00
|
|
|
|
|
|
|
// V returns a new 2d vector with the given coordinates.
|
2016-11-19 07:06:52 -06:00
|
|
|
func V(x, y float64) Vec {
|
|
|
|
return Vec(complex(x, y))
|
2016-11-19 06:08:42 -06:00
|
|
|
}
|
|
|
|
|
2016-11-19 07:34:37 -06:00
|
|
|
// String returns the string representation of a vector u.
|
|
|
|
//
|
|
|
|
// u := pixel.V(4.5, -1.3)
|
|
|
|
// u.String() // returns "Vec(4.5, -1.3)"
|
|
|
|
// fmt.Println(u) // Vec(4.5, -1.3)
|
2016-11-19 07:06:52 -06:00
|
|
|
func (u Vec) String() string {
|
|
|
|
return fmt.Sprintf("Vec(%v, %v)", u.X(), u.Y())
|
2016-11-19 06:08:42 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
// X returns the x coordinate of a vector u.
|
2016-11-19 07:06:52 -06:00
|
|
|
func (u Vec) X() float64 {
|
2016-11-19 06:08:42 -06:00
|
|
|
return real(u)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Y returns the y coordinate of a vector u.
|
2016-11-19 07:06:52 -06:00
|
|
|
func (u Vec) Y() float64 {
|
2016-11-19 06:08:42 -06:00
|
|
|
return imag(u)
|
|
|
|
}
|
|
|
|
|
2016-11-30 18:01:36 -06:00
|
|
|
// XY returns the components of a vector in two return values.
|
|
|
|
func (u Vec) XY() (x, y float64) {
|
|
|
|
return real(u), imag(u)
|
|
|
|
}
|
|
|
|
|
2016-11-19 06:08:42 -06:00
|
|
|
// Len returns the length of a vector u.
|
2016-11-19 07:06:52 -06:00
|
|
|
func (u Vec) Len() float64 {
|
2016-11-19 06:08:42 -06:00
|
|
|
return cmplx.Abs(complex128(u))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Angle returns the angle between a vector u and the x-axis. The result is in the range [-Pi, Pi].
|
2016-11-19 07:06:52 -06:00
|
|
|
func (u Vec) Angle() float64 {
|
2016-11-19 06:08:42 -06:00
|
|
|
return cmplx.Phase(complex128(u))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Unit returns a vector of length 1 with the same angle as u.
|
2016-11-19 07:06:52 -06:00
|
|
|
func (u Vec) Unit() Vec {
|
2016-11-19 06:08:42 -06:00
|
|
|
return u / V(u.Len(), 0)
|
|
|
|
}
|
|
|
|
|
2016-11-19 07:21:43 -06:00
|
|
|
// Scaled returns a vector u multiplied by c.
|
|
|
|
func (u Vec) Scaled(c float64) Vec {
|
|
|
|
return u * V(c, 0)
|
2016-11-19 06:08:42 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
// Rotated returns a vector u rotated by the given angle in radians.
|
2016-11-19 07:06:52 -06:00
|
|
|
func (u Vec) Rotated(angle float64) Vec {
|
2016-11-20 12:21:20 -06:00
|
|
|
sin, cos := math.Sincos(angle)
|
|
|
|
return u * V(cos, sin)
|
2016-11-19 06:08:42 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
// Dot returns the dot product of vectors u and v.
|
2016-11-19 07:06:52 -06:00
|
|
|
func (u Vec) Dot(v Vec) float64 {
|
2016-11-19 06:08:42 -06:00
|
|
|
return u.X()*v.X() + u.Y()*v.Y()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Cross return the cross product of vectors u and v.
|
2016-11-19 07:06:52 -06:00
|
|
|
func (u Vec) Cross(v Vec) float64 {
|
2016-11-19 06:08:42 -06:00
|
|
|
return u.X()*v.Y() - v.X()*u.Y()
|
|
|
|
}
|
2016-12-05 16:19:31 -06:00
|
|
|
|
2016-12-30 10:43:26 -06:00
|
|
|
// Rect is a 2d rectangle aligned with the axis of the coordinate system. It has a position
|
|
|
|
// and a size.
|
2016-12-05 16:19:31 -06:00
|
|
|
//
|
|
|
|
// You can manipulate the position and the size using the usual vector operations.
|
|
|
|
type Rect struct {
|
|
|
|
Pos, Size Vec
|
|
|
|
}
|
|
|
|
|
|
|
|
// R returns a new 2d rectangle with the given position (x, y) and size (w, h).
|
|
|
|
func R(x, y, w, h float64) Rect {
|
|
|
|
return Rect{
|
|
|
|
Pos: V(x, y),
|
|
|
|
Size: V(w, h),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// String returns the string representation of a rectangle.
|
|
|
|
//
|
|
|
|
// r := pixel.R(100, 50, 200, 300)
|
|
|
|
// r.String() // returns "Rect(100, 50, 200, 300)"
|
|
|
|
// fmt.Println(r) // Rect(100, 50, 200, 300)
|
|
|
|
func (r Rect) String() string {
|
|
|
|
return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.X(), r.Y(), r.W(), r.H())
|
|
|
|
}
|
|
|
|
|
|
|
|
// X returns the x coordinate of the position of a rectangle.
|
|
|
|
func (r Rect) X() float64 {
|
|
|
|
return r.Pos.X()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Y returns the y coordinate of the position of a rectangle
|
|
|
|
func (r Rect) Y() float64 {
|
|
|
|
return r.Pos.Y()
|
|
|
|
}
|
|
|
|
|
|
|
|
// W returns the width of a rectangle.
|
|
|
|
func (r Rect) W() float64 {
|
|
|
|
return r.Size.X()
|
|
|
|
}
|
|
|
|
|
|
|
|
// H returns the height of a rectangle.
|
|
|
|
func (r Rect) H() float64 {
|
|
|
|
return r.Size.Y()
|
|
|
|
}
|
|
|
|
|
|
|
|
// XYWH returns all of the four components of a rectangle in four return values.
|
|
|
|
func (r Rect) XYWH() (x, y, w, h float64) {
|
|
|
|
return r.X(), r.Y(), r.W(), r.H()
|
|
|
|
}
|
|
|
|
|
|
|
|
// Center returns the position of the center of a rectangle.
|
|
|
|
func (r Rect) Center() Vec {
|
|
|
|
return r.Pos + r.Size.Scaled(0.5)
|
|
|
|
}
|