implement binary EEA inversion

This commit is contained in:
Alex Vlasov 2020-09-04 02:13:53 +03:00
parent f86324edb7
commit 618dae47a5
3 changed files with 188 additions and 1 deletions

View File

@ -92,6 +92,64 @@ func TestTripartiteDiffieHellman(t *testing.T) {
} }
} }
func TestBinaryEAA(t *testing.T) {
for i := 0; i < 10000; i++ {
_, Ga, err := RandomG1(rand.Reader)
if err != nil {
t.Fatal(err)
}
tmpLittleFermat := &gfP{}
tmpLittleFermat.Invert(&Ga.p.x)
tmpBinaryEAA := &gfP{}
tmpBinaryEAA.EaaInvert(&Ga.p.x)
eq := equals(tmpLittleFermat, tmpBinaryEAA)
if eq == false {
t.Fatalf("results of different inversion do not agree")
}
}
}
func BenchmarkLittleFermatInversion(b *testing.B) {
el := gfP{0x0, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
b.ResetTimer()
tmp := &gfP{}
for i := 0; i < b.N; i++ {
tmp.Invert(&el)
}
}
func BenchmarkBinaryEEAInversion(b *testing.B) {
el := gfP{0x0, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
b.ResetTimer()
tmp := &gfP{}
for i := 0; i < b.N; i++ {
tmp.EaaInvert(&el)
}
}
func BenchmarkG1AddAndMakeAffine(b *testing.B) {
_, Ga, err := RandomG1(rand.Reader)
if err != nil {
b.Fatal(err)
}
_, Gb, err := RandomG1(rand.Reader)
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
e := new(G1).Add(Ga, Gb)
e.p.MakeAffine()
}
}
func BenchmarkG1(b *testing.B) { func BenchmarkG1(b *testing.B) {
x, _ := rand.Int(rand.Reader, Order) x, _ := rand.Int(rand.Reader, Order)
b.ResetTimer() b.ResetTimer()

View File

@ -217,7 +217,8 @@ func (c *curvePoint) MakeAffine() {
} }
zInv := &gfP{} zInv := &gfP{}
zInv.Invert(&c.z) zInv.EaaInvert(&c.z)
// zInv.Invert(&c.z)
t, zInv2 := &gfP{}, &gfP{} t, zInv2 := &gfP{}, &gfP{}
gfpMul(t, &c.y, zInv) gfpMul(t, &c.y, zInv)

View File

@ -3,6 +3,7 @@ package bn256
import ( import (
"errors" "errors"
"fmt" "fmt"
"math/bits"
) )
type gfP [4]uint64 type gfP [4]uint64
@ -79,3 +80,130 @@ func (e *gfP) Unmarshal(in []byte) error {
func montEncode(c, a *gfP) { gfpMul(c, a, r2) } func montEncode(c, a *gfP) { gfpMul(c, a, r2) }
func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) } func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) }
func isZero(a *gfP) bool {
return a[0] == 0 && a[1] == 0 && a[2] == 0 && a[3] == 0
}
func isEven(a *gfP) bool {
return bits.TrailingZeros64((a[0])) > 0
}
func div2(a *gfP) {
a[0] = a[0]>>1 | a[1]<<63
a[1] = a[1]>>1 | a[2]<<63
a[2] = a[2]>>1 | a[3]<<63
a[3] = a[3] >> 1
}
func (e *gfP) addNocarry(f *gfP) {
carry := uint64(0)
e[0], carry = bits.Add64(e[0], f[0], carry)
e[1], carry = bits.Add64(e[1], f[1], carry)
e[2], carry = bits.Add64(e[2], f[2], carry)
e[3], _ = bits.Add64(e[3], f[3], carry)
}
func (e *gfP) subNoborrow(f *gfP) {
borrow := uint64(0)
e[0], borrow = bits.Sub64(e[0], f[0], borrow)
e[1], borrow = bits.Sub64(e[1], f[1], borrow)
e[2], borrow = bits.Sub64(e[2], f[2], borrow)
e[3], _ = bits.Sub64(e[3], f[3], borrow)
}
func gte(a, b *gfP) bool {
// subtract b from a. If no borrow occures then a >= b
borrow := uint64(0)
_, borrow = bits.Sub64(a[0], b[0], borrow)
_, borrow = bits.Sub64(a[1], b[1], borrow)
_, borrow = bits.Sub64(a[2], b[2], borrow)
_, borrow = bits.Sub64(a[3], b[3], borrow)
return borrow == 0
}
func equals(a, b *gfP) bool {
return a[0] == b[0] && a[1] == b[1] && a[2] == b[2] && a[3] == b[3]
}
// Performs inversion of the field element using binary EEA.
// If element is zero (no inverse exists) then set `e` to zero
func (e *gfP) EaaInvert(f *gfP) {
if isZero(f) {
e.Set(&gfP{0, 0, 0, 0})
return
}
// Guajardo Kumar Paar Pelzl
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
// Algorithm 16 (BEA for Inversion in Fp)
one := gfP{1, 0, 0, 0}
u, b := gfP{}, gfP{}
u.Set(f)
b.Set(r2)
v := gfP{p2[0], p2[1], p2[2], p2[3]}
c := gfP{0, 0, 0, 0}
modulus := gfP{p2[0], p2[1], p2[2], p2[3]}
for {
if equals(&u, &one) || equals(&v, &one) {
break
}
// while u is even
for {
if !isEven(&u) {
break
}
div2(&u)
if isEven(&b) {
div2(&b)
} else {
// we will not overflow a modulus here,
// so we can use specialized function
// do perform addition without reduction
b.addNocarry(&modulus)
div2(&b)
}
}
// while v is even
for {
if !isEven(&v) {
break
}
div2(&v)
if isEven(&c) {
div2(&c)
} else {
// we will not overflow a modulus here,
// so we can use specialized function
// do perform addition without reduction
c.addNocarry(&modulus)
div2(&c)
}
}
if gte(&v, &u) {
// v >= u
v.subNoborrow(&u)
gfpSub(&c, &c, &b)
} else {
// if v < u
u.subNoborrow(&v)
gfpSub(&b, &b, &c)
}
}
if equals(&u, &one) {
e.Set(&b)
} else {
e.Set(&c)
}
}