go-ethereum/crypto/bn256/cloudflare/gfp.go

210 lines
4.1 KiB
Go

package bn256
import (
"errors"
"fmt"
"math/bits"
)
type gfP [4]uint64
func newGFp(x int64) (out *gfP) {
if x >= 0 {
out = &gfP{uint64(x)}
} else {
out = &gfP{uint64(-x)}
gfpNeg(out, out)
}
montEncode(out, out)
return out
}
func (e *gfP) String() string {
return fmt.Sprintf("%16.16x%16.16x%16.16x%16.16x", e[3], e[2], e[1], e[0])
}
func (e *gfP) Set(f *gfP) {
e[0] = f[0]
e[1] = f[1]
e[2] = f[2]
e[3] = f[3]
}
func (e *gfP) Invert(f *gfP) {
bits := [4]uint64{0x3c208c16d87cfd45, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
sum, power := &gfP{}, &gfP{}
sum.Set(rN1)
power.Set(f)
for word := 0; word < 4; word++ {
for bit := uint(0); bit < 64; bit++ {
if (bits[word]>>bit)&1 == 1 {
gfpMul(sum, sum, power)
}
gfpMul(power, power, power)
}
}
gfpMul(sum, sum, r3)
e.Set(sum)
}
func (e *gfP) Marshal(out []byte) {
for w := uint(0); w < 4; w++ {
for b := uint(0); b < 8; b++ {
out[8*w+b] = byte(e[3-w] >> (56 - 8*b))
}
}
}
func (e *gfP) Unmarshal(in []byte) error {
// Unmarshal the bytes into little endian form
for w := uint(0); w < 4; w++ {
for b := uint(0); b < 8; b++ {
e[3-w] += uint64(in[8*w+b]) << (56 - 8*b)
}
}
// Ensure the point respects the curve modulus
for i := 3; i >= 0; i-- {
if e[i] < p2[i] {
return nil
}
if e[i] > p2[i] {
return errors.New("bn256: coordinate exceeds modulus")
}
}
return errors.New("bn256: coordinate equals modulus")
}
func montEncode(c, a *gfP) { gfpMul(c, a, r2) }
func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) }
func isZero(a *gfP) bool {
return a[0] == 0 && a[1] == 0 && a[2] == 0 && a[3] == 0
}
func isEven(a *gfP) bool {
return bits.TrailingZeros64((a[0])) > 0
}
func div2(a *gfP) {
a[0] = a[0]>>1 | a[1]<<63
a[1] = a[1]>>1 | a[2]<<63
a[2] = a[2]>>1 | a[3]<<63
a[3] = a[3] >> 1
}
func (e *gfP) addNocarry(f *gfP) {
carry := uint64(0)
e[0], carry = bits.Add64(e[0], f[0], carry)
e[1], carry = bits.Add64(e[1], f[1], carry)
e[2], carry = bits.Add64(e[2], f[2], carry)
e[3], _ = bits.Add64(e[3], f[3], carry)
}
func (e *gfP) subNoborrow(f *gfP) {
borrow := uint64(0)
e[0], borrow = bits.Sub64(e[0], f[0], borrow)
e[1], borrow = bits.Sub64(e[1], f[1], borrow)
e[2], borrow = bits.Sub64(e[2], f[2], borrow)
e[3], _ = bits.Sub64(e[3], f[3], borrow)
}
func gte(a, b *gfP) bool {
// subtract b from a. If no borrow occures then a >= b
borrow := uint64(0)
_, borrow = bits.Sub64(a[0], b[0], borrow)
_, borrow = bits.Sub64(a[1], b[1], borrow)
_, borrow = bits.Sub64(a[2], b[2], borrow)
_, borrow = bits.Sub64(a[3], b[3], borrow)
return borrow == 0
}
func equals(a, b *gfP) bool {
return a[0] == b[0] && a[1] == b[1] && a[2] == b[2] && a[3] == b[3]
}
// Performs inversion of the field element using binary EEA.
// If element is zero (no inverse exists) then set `e` to zero
func (e *gfP) EaaInvert(f *gfP) {
if isZero(f) {
e.Set(&gfP{0, 0, 0, 0})
return
}
// Guajardo Kumar Paar Pelzl
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
// Algorithm 16 (BEA for Inversion in Fp)
one := gfP{1, 0, 0, 0}
u, b := gfP{}, gfP{}
u.Set(f)
b.Set(r2)
v := gfP{p2[0], p2[1], p2[2], p2[3]}
c := gfP{0, 0, 0, 0}
modulus := gfP{p2[0], p2[1], p2[2], p2[3]}
for {
if equals(&u, &one) || equals(&v, &one) {
break
}
// while u is even
for {
if !isEven(&u) {
break
}
div2(&u)
if isEven(&b) {
div2(&b)
} else {
// we will not overflow a modulus here,
// so we can use specialized function
// do perform addition without reduction
b.addNocarry(&modulus)
div2(&b)
}
}
// while v is even
for {
if !isEven(&v) {
break
}
div2(&v)
if isEven(&c) {
div2(&c)
} else {
// we will not overflow a modulus here,
// so we can use specialized function
// do perform addition without reduction
c.addNocarry(&modulus)
div2(&c)
}
}
if gte(&v, &u) {
// v >= u
v.subNoborrow(&u)
gfpSub(&c, &c, &b)
} else {
// if v < u
u.subNoborrow(&v)
gfpSub(&b, &b, &c)
}
}
if equals(&u, &one) {
e.Set(&b)
} else {
e.Set(&c)
}
}