231 lines
4.8 KiB
Verilog
231 lines
4.8 KiB
Verilog
// SPDX-License-Identifier: AGPL-3.0-Only
|
|
/*
|
|
* Copyright (C) 2022 Sean Anderson <seanga2@gmail.com>
|
|
*
|
|
* This roughly follows the design of XAPP225. However, we use a 2x rate DDR
|
|
* clock instead of two clocks 90 degrees out of phase. Yosys/nextpnr cannot
|
|
* guarantee the phase relationship of any clocks, even those from the same
|
|
* PLL. Because of this, we assume that rx_clk_250 and rx_clk_125 are unrelated.
|
|
*/
|
|
|
|
`include "common.vh"
|
|
`include "io.vh"
|
|
|
|
`timescale 1ns/1ps
|
|
|
|
module pmd (
|
|
input tx_clk,
|
|
input rx_clk_250,
|
|
input rx_clk_125,
|
|
|
|
input signal_detect,
|
|
output reg tx_p, tx_n,
|
|
input rx,
|
|
|
|
/* PMD */
|
|
output signal_status,
|
|
input pmd_data_tx,
|
|
output reg [1:0] pmd_data_rx,
|
|
output reg [1:0] pmd_data_rx_valid
|
|
);
|
|
|
|
reg [1:0] rx_p, rx_n;
|
|
reg [3:0] sd_delay;
|
|
|
|
`ifdef SYNTHESIS
|
|
SB_IO #(
|
|
.PIN_TYPE(`PIN_OUTPUT_NEVER | `PIN_INPUT_REGISTERED),
|
|
.IO_STANDARD("SB_LVDS_INPUT")
|
|
) signal_detect_pin (
|
|
.PACKAGE_PIN(signal_detect),
|
|
.INPUT_CLK(rx_clk_125),
|
|
.D_IN_0(sd_delay[0])
|
|
);
|
|
|
|
SB_IO #(
|
|
.PIN_TYPE(`PIN_OUTPUT_NEVER | `PIN_INPUT_DDR),
|
|
.IO_STANDARD("SB_LVDS_INPUT")
|
|
) data_rx_pin (
|
|
.PACKAGE_PIN(rx),
|
|
.INPUT_CLK(rx_clk_250),
|
|
.D_IN_0(rx_p[0]),
|
|
.D_IN_1(rx_n[0])
|
|
);
|
|
`else
|
|
always @(posedge rx_clk_125)
|
|
sd_delay[0] <= signal_detect;
|
|
|
|
always @(posedge rx_clk_250)
|
|
rx_p[0] <= rx;
|
|
|
|
always @(negedge rx_clk_250)
|
|
rx_n[0] <= rx;
|
|
`endif
|
|
|
|
/*
|
|
* Delay signal status until the known good data has had a chance to
|
|
* make it through the pipeline. This isn't necessary for real hardware
|
|
* (since signal status is asserted long after we have good data), but
|
|
* it helps out during simulation. It also helps avoid metastability.
|
|
*/
|
|
always @(posedge rx_clk_125)
|
|
sd_delay[3:1] <= sd_delay[2:0];
|
|
|
|
assign signal_status = sd_delay[3];
|
|
|
|
/*
|
|
* Get things into the rx_clk_250 domain so that we sample posedge before
|
|
* negedge. Without this we can have a negedge which happens before the
|
|
* posedge.
|
|
*/
|
|
always @(posedge rx_clk_250) begin
|
|
rx_p[1] <= rx_p[0];
|
|
rx_n[1] <= rx_n[0];
|
|
end
|
|
|
|
reg [2:0] rx_a, rx_b, rx_c, rx_d;
|
|
|
|
/* Get everything in the rx_clk_125 domain */
|
|
always @(posedge rx_clk_125) begin
|
|
rx_a[0] <= rx_p[1];
|
|
rx_b[0] <= rx_n[1];
|
|
end
|
|
|
|
always @(negedge rx_clk_125) begin
|
|
rx_c[0] <= rx_p[1];
|
|
rx_d[0] <= rx_n[1];
|
|
end
|
|
|
|
/*
|
|
* Buffer things a bit. We wait a cycle to avoid metastability. After
|
|
* that, we need two cycles of history to detect edges.
|
|
*/
|
|
always @(posedge rx_clk_125) begin
|
|
rx_a[2:1] = rx_a[1:0];
|
|
rx_b[2:1] = rx_b[1:0];
|
|
rx_c[2:1] = rx_c[1:0];
|
|
rx_d[2:1] = rx_d[1:0];
|
|
end
|
|
|
|
localparam A = 0;
|
|
localparam B = 1;
|
|
localparam C = 2;
|
|
localparam D = 3;
|
|
|
|
reg [1:0] state, state_next;
|
|
initial state = A;
|
|
reg valid, valid_next;
|
|
initial valid = 0;
|
|
reg [1:0] pmd_data_rx_next, pmd_data_rx_valid_next;
|
|
reg [3:0] rx_r, rx_f;
|
|
|
|
always @(*) begin
|
|
rx_r = {
|
|
rx_a[1] & ~rx_a[2],
|
|
rx_b[1] & ~rx_b[2],
|
|
rx_c[1] & ~rx_c[2],
|
|
rx_d[1] & ~rx_d[2]
|
|
};
|
|
|
|
rx_f = {
|
|
~rx_a[1] & rx_a[2],
|
|
~rx_b[1] & rx_b[2],
|
|
~rx_c[1] & rx_c[2],
|
|
~rx_d[1] & rx_d[2]
|
|
};
|
|
|
|
state_next = state;
|
|
valid_next = 1;
|
|
if (rx_r == 4'b1111 || rx_f == 4'b1111)
|
|
state_next = C;
|
|
else if (rx_r == 4'b1000 || rx_f == 4'b1000)
|
|
state_next = D;
|
|
else if (rx_r == 4'b1100 || rx_f == 4'b1100)
|
|
state_next = A;
|
|
else if (rx_r == 4'b1110 || rx_f == 4'b1110)
|
|
state_next = B;
|
|
else
|
|
valid_next = valid;
|
|
|
|
if (!signal_status) begin
|
|
state_next = A;
|
|
valid_next = 0;
|
|
end
|
|
|
|
pmd_data_rx_next[0] = rx_d[2];
|
|
pmd_data_rx_valid_next = 1;
|
|
case (state_next)
|
|
A: begin
|
|
pmd_data_rx_next[1] = rx_a[2];
|
|
if (state == D)
|
|
pmd_data_rx_valid_next = 0;
|
|
end
|
|
B: begin
|
|
pmd_data_rx_next[1] = rx_b[2];
|
|
end
|
|
C: begin
|
|
pmd_data_rx_next[1] = rx_c[2];
|
|
end
|
|
D: begin
|
|
pmd_data_rx_next[1] = rx_d[2];
|
|
if (state == A) begin
|
|
pmd_data_rx_next[1] = rx_a[2];
|
|
pmd_data_rx_valid_next = 2;
|
|
end
|
|
end
|
|
endcase
|
|
|
|
if (!valid_next)
|
|
pmd_data_rx_valid_next = 0;
|
|
end
|
|
|
|
always @(posedge rx_clk_125) begin
|
|
state <= state_next;
|
|
valid <= valid_next;
|
|
pmd_data_rx <= pmd_data_rx_next;
|
|
pmd_data_rx_valid <= pmd_data_rx_valid_next;
|
|
end
|
|
|
|
`ifdef SYNTHESIS
|
|
SB_IO #(
|
|
.PIN_TYPE(`PIN_OUTPUT_ALWAYS | `PIN_OUTPUT_REGISTERED),
|
|
.IO_STANDARD("SB_LVDS_INPUT")
|
|
) data_txp_pin (
|
|
.PACKAGE_PIN(tx_p),
|
|
.OUTPUT_CLK(rx_clk_125),
|
|
.D_OUT_0(pmd_data_tx)
|
|
);
|
|
|
|
SB_IO #(
|
|
.PIN_TYPE(`PIN_OUTPUT_ALWAYS | `PIN_OUTPUT_REGISTERED_INVERTED),
|
|
.IO_STANDARD("SB_LVDS_INPUT")
|
|
) data_txn_pin (
|
|
.PACKAGE_PIN(tx_n),
|
|
.OUTPUT_CLK(rx_clk_125),
|
|
.D_OUT_0(pmd_data_tx)
|
|
);
|
|
`else
|
|
always @(posedge tx_clk) begin
|
|
tx_p <= pmd_data_tx;
|
|
tx_n <= ~pmd_data_tx;
|
|
end
|
|
`endif
|
|
|
|
`ifndef SYNTHESIS
|
|
reg [255:0] state_text;
|
|
input [13:0] delay;
|
|
|
|
always @(*) begin
|
|
case (state)
|
|
A: state_text = "A";
|
|
B: state_text = "B";
|
|
C: state_text = "C";
|
|
D: state_text = "D";
|
|
endcase
|
|
end
|
|
`endif
|
|
|
|
`DUMP(0)
|
|
|
|
endmodule
|