ethernet/rtl/axis_replay_buffer.v

186 lines
5.0 KiB
Verilog

// SPDX-License-Identifier: AGPL-3.0-Only
/*
* Copyright (C) 2022 Sean Anderson <seanga2@gmail.com>
*
* This module implements a "replay buffer" for an AXI stream, allowing the
* first BUF_SIZE cycles of a packet to be replayed. This may be done by
* asserting replay while replayable is true.
*
* replayable will remain true until BUF_SIZE + 1 handshakes have occured
* without a replay. In particular, it is possible to restart a packet
* even after a handshake with m_axis_last set. To support this late replay
* feature, done must be asserted when the consumer does not wish to perform
* any more replays.
*
* In general, this buffer will add two cycles of latency. Additionally, there
* will may some latency when replayable goes low. This is because the slave
* interface stalls to avoid overwriting the first part of the packet. However,
* it will still read ahead to the physical end of the buffer. This will result
* in no stall as long as BUF_SIZE is at least three less than a power of two.
*
* Only axis_data is provided. For user, keep, etc. concatenate them into
* axis_data.
*/
`include "common.vh"
module axis_replay_buffer (
input clk, rst,
/* AXI Stream slave */
input [DATA_WIDTH - 1:0] s_axis_data,
input s_axis_valid,
output reg s_axis_ready,
input s_axis_last,
/* AXI Stream master */
output reg [DATA_WIDTH - 1:0] m_axis_data,
output reg m_axis_valid,
input m_axis_ready,
output reg m_axis_last,
/* Control */
/*
* Replay the packet. May be asserted any time replayable is high,
* including after BUF_SIZE handshakes have occured and after
* m_axis_last is high. Must not be asserted when replayable is low.
*/
input replay,
/*
* Force replayable low. This must be asserted for packets <= BUF_SIZE,
* since they may still be replayed even after the end of the packet.
*/
input done,
/*
* High when replay may be asserted.
*/
output reg replayable
);
parameter DATA_WIDTH = 9;
parameter BUF_SIZE = 54;
localparam BUF_WIDTH = $clog2(BUF_SIZE + 1);
reg [DATA_WIDTH - 1:0] s_axis_data_last;
reg s_axis_valid_last, s_axis_last_last, s_axis_ready_next;
reg m_axis_valid_next, m_axis_last_next;
reg sent_last, sent_last_next;
reg [DATA_WIDTH - 1:0] buffer [(2 ** BUF_WIDTH) - 1:0];
reg [BUF_WIDTH:0] m_ptr, m_ptr_next, s_ptr, s_ptr_next, last_ptr,
last_ptr_next, max_s_ptr;
reg last, last_next;
reg full, full_next, empty, replayable_next, we, re;
always @(*) begin
we = 0;
s_ptr_next = s_ptr;
last_next = last;
last_ptr_next = last_ptr;
if (s_axis_valid_last && s_axis_ready) begin
we = 1;
s_ptr_next = s_ptr + 1;
if (s_axis_last_last) begin
last_next = 1;
last_ptr_next = s_ptr;
end
end
empty = s_ptr == m_ptr;
max_s_ptr = { ~m_ptr[BUF_WIDTH], m_ptr[BUF_WIDTH - 1:0] };
full = s_ptr == max_s_ptr;
/* Value of full assuming no movement on the master interface */
full_next = s_ptr_next == max_s_ptr;
if (replayable)
s_axis_ready_next = &s_ptr[BUF_WIDTH - 1:0] == s_ptr[BUF_WIDTH];
else
s_axis_ready_next = !full_next;
if (last_next)
s_axis_ready_next = 0;
/* read the next datum (if it's available)... */
m_axis_valid_next = !empty;
m_axis_last_next = last && m_ptr == last_ptr;
re = !empty;
m_ptr_next = m_ptr + !empty;
/* ...except if we need to stall */
if (m_axis_valid && !m_axis_ready) begin
m_axis_valid_next = m_axis_valid;
m_axis_last_next = m_axis_last;
re = 0;
m_ptr_next = m_ptr;
end
replayable_next = replayable;
sent_last_next = sent_last;
if (m_axis_valid && m_axis_ready) begin
replayable_next = replayable && (replay || m_ptr != BUF_SIZE + 1);
sent_last_next = sent_last || m_axis_last;
end
if (done)
replayable_next = 0;
if (sent_last && !replayable) begin
m_ptr_next = 0;
s_ptr_next = 0;
last_next = 0;
replayable_next = 1;
sent_last_next = 0;
end
if (replay) begin
m_ptr_next = 0;
sent_last_next = 0;
m_axis_valid_next = 0;
m_axis_last_next = 0;
end
end
always @(posedge clk) begin
if (we)
buffer[s_ptr[BUF_WIDTH - 1:0]] <= { s_axis_data_last };
if (re)
{ m_axis_data } <= buffer[m_ptr[BUF_WIDTH - 1:0]];
end
always @(posedge clk, posedge rst) begin
if (rst) begin
m_ptr <= 0;
s_ptr <= 0;
last <= 0;
replayable <= 1;
s_axis_valid_last <= 0;
s_axis_last_last <= 0;
s_axis_ready <= 1;
m_axis_valid <= 0;
m_axis_last <= 0;
sent_last <= 0;
end else begin
s_axis_data_last <= s_axis_data;
s_axis_valid_last <= s_axis_valid;
s_axis_last_last <= s_axis_last;
s_axis_ready <= s_axis_ready_next;
m_axis_last <= m_axis_last_next;
m_axis_valid <= m_axis_valid_next;
sent_last <= sent_last_next;
m_ptr <= m_ptr_next;
s_ptr <= s_ptr_next;
last <= last_next;
last_ptr <= last_ptr_next;
replayable <= replayable_next;
end
end
`ifndef SYNTHESIS
/* This is the only way to look into a buffer... */
genvar i;
generate for (i = 0; i < 2 ** BUF_WIDTH; i = i + 1)
wire [DATA_WIDTH - 1:0] tmp = buffer[i];
endgenerate
`endif
endmodule