mirror of https://github.com/YosysHQ/yosys.git
230 lines
9.0 KiB
C++
230 lines
9.0 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2020 Marcelina Kościelnicka <mwk@0x04.net>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#ifndef MEM_H
|
|
#define MEM_H
|
|
|
|
#include "kernel/yosys.h"
|
|
#include "kernel/ffinit.h"
|
|
|
|
YOSYS_NAMESPACE_BEGIN
|
|
|
|
struct MemRd : RTLIL::AttrObject {
|
|
bool removed;
|
|
Cell *cell;
|
|
int wide_log2;
|
|
bool clk_enable, clk_polarity, ce_over_srst;
|
|
Const arst_value, srst_value, init_value;
|
|
// One bit for every write port, true iff simultanous read on this
|
|
// port and write on the other port will bypass the written data
|
|
// to this port's output (default behavior is to read old value).
|
|
// Can only be set for write ports that have the same clock domain.
|
|
std::vector<bool> transparency_mask;
|
|
// One bit for every write port, true iff simultanous read on this
|
|
// port and write on the other port will return an all-X (don't care)
|
|
// value. Mutually exclusive with transparency_mask.
|
|
// Can only be set for write ports that have the same clock domain.
|
|
// For optimization purposes, this will also be set if we can
|
|
// determine that the two ports can never be active simultanously
|
|
// (making the above vacuously true).
|
|
std::vector<bool> collision_x_mask;
|
|
SigSpec clk, en, arst, srst, addr, data;
|
|
|
|
MemRd() : removed(false), cell(nullptr), wide_log2(0), clk_enable(false), clk_polarity(true), ce_over_srst(false), clk(State::Sx), en(State::S1), arst(State::S0), srst(State::S0) {}
|
|
|
|
// Returns the address of given subword index accessed by this port.
|
|
SigSpec sub_addr(int sub) {
|
|
SigSpec res = addr;
|
|
for (int i = 0; i < wide_log2; i++)
|
|
res[i] = State(sub >> i & 1);
|
|
return res;
|
|
}
|
|
};
|
|
|
|
struct MemWr : RTLIL::AttrObject {
|
|
bool removed;
|
|
Cell *cell;
|
|
int wide_log2;
|
|
bool clk_enable, clk_polarity;
|
|
std::vector<bool> priority_mask;
|
|
SigSpec clk, en, addr, data;
|
|
|
|
MemWr() : removed(false), cell(nullptr) {}
|
|
|
|
// Returns the address of given subword index accessed by this port.
|
|
SigSpec sub_addr(int sub) {
|
|
SigSpec res = addr;
|
|
for (int i = 0; i < wide_log2; i++)
|
|
res[i] = State(sub >> i & 1);
|
|
return res;
|
|
}
|
|
|
|
std::pair<SigSpec, std::vector<int>> compress_en();
|
|
SigSpec decompress_en(const std::vector<int> &swizzle, SigSpec sig);
|
|
};
|
|
|
|
struct MemInit : RTLIL::AttrObject {
|
|
bool removed;
|
|
Cell *cell;
|
|
Const addr;
|
|
Const data;
|
|
Const en;
|
|
MemInit() : removed(false), cell(nullptr) {}
|
|
};
|
|
|
|
struct Mem : RTLIL::AttrObject {
|
|
Module *module;
|
|
IdString memid;
|
|
bool packed;
|
|
RTLIL::Memory *mem;
|
|
Cell *cell;
|
|
int width, start_offset, size;
|
|
std::vector<MemInit> inits;
|
|
std::vector<MemRd> rd_ports;
|
|
std::vector<MemWr> wr_ports;
|
|
|
|
// Removes this memory from the module. The data in helper structures
|
|
// is unaffected except for the cell/mem fields.
|
|
void remove();
|
|
|
|
// Commits all changes in helper structures into the module — ports and
|
|
// inits marked as removed are actually removed, new ports/inits create
|
|
// new cells, modified port/inits are commited into their existing
|
|
// cells. Note that this reindexes the ports and inits array (actually
|
|
// removing the ports/inits marked as removed).
|
|
void emit();
|
|
|
|
// Marks all inits as removed.
|
|
void clear_inits();
|
|
|
|
// Coalesces inits: whenever two inits have overlapping or touching
|
|
// address ranges, they are combined into one, with the higher-priority
|
|
// one's data overwriting the other. Running this results in
|
|
// an inits list equivalent to the original, in which all entries
|
|
// cover disjoint (and non-touching) address ranges, and all enable
|
|
// masks are all-1.
|
|
void coalesce_inits();
|
|
|
|
// Checks consistency of this memory and all its ports/inits, using
|
|
// log_assert.
|
|
void check();
|
|
|
|
// Gathers all initialization data into a single big const covering
|
|
// the whole memory. For all non-initialized bits, Sx will be returned.
|
|
Const get_init_data() const;
|
|
|
|
// Constructs and returns the helper structures for all memories
|
|
// in a module.
|
|
static std::vector<Mem> get_all_memories(Module *module);
|
|
|
|
// Constructs and returns the helper structures for all selected
|
|
// memories in a module.
|
|
static std::vector<Mem> get_selected_memories(Module *module);
|
|
|
|
// Converts a synchronous read port into an asynchronous one by
|
|
// extracting the data (or, in some rare cases, address) register
|
|
// into a separate cell, together with any soft-transparency
|
|
// logic necessary to preserve its semantics. Returns the created
|
|
// register cell, if any. Note that in some rare cases this function
|
|
// may succeed and perform a conversion without creating a new
|
|
// register — a nullptr result doesn't imply nothing was done.
|
|
Cell *extract_rdff(int idx, FfInitVals *initvals);
|
|
|
|
// Splits all wide ports in this memory into equivalent narrow ones.
|
|
// This function performs no modifications at all to the actual
|
|
// netlist unless and until emit() is called.
|
|
void narrow();
|
|
|
|
// If write port idx2 currently has priority over write port idx1,
|
|
// inserts extra logic on idx1's enable signal to disable writes
|
|
// when idx2 is writing to the same address, then removes the priority
|
|
// from the priority mask. If there is a memory port that is
|
|
// transparent with idx1, but not with idx2, that port is converted
|
|
// to use soft transparency logic.
|
|
void emulate_priority(int idx1, int idx2, FfInitVals *initvals);
|
|
|
|
// Creates soft-transparency logic on read port ridx, bypassing the
|
|
// data from write port widx. Should only be called when ridx is
|
|
// transparent wrt widx in the first place. Once we're done, the
|
|
// transparency_mask bit will be cleared, and the collision_x_mask
|
|
// bit will be set instead (since whatever value is read will be
|
|
// replaced by the soft transparency logic).
|
|
void emulate_transparency(int widx, int ridx, FfInitVals *initvals);
|
|
|
|
// Prepares for merging write port idx2 into idx1 (where idx1 < idx2).
|
|
// Specifically, takes care of priority masks: any priority relations
|
|
// that idx2 had are replicated onto idx1, unless they conflict with
|
|
// priorities already present on idx1, in which case emulate_priority
|
|
// is called. Likewise, ensures transparency and undefined collision
|
|
// masks of all read ports have the same values for both ports,
|
|
// calling emulate_transparency if necessary.
|
|
void prepare_wr_merge(int idx1, int idx2, FfInitVals *initvals);
|
|
|
|
// Prepares for merging read port idx2 into idx1.
|
|
// Specifically, makes sure the transparency and undefined collision
|
|
// masks of both ports are equal, by changing undefined behavior
|
|
// of one port to the other's defined behavior, or by calling
|
|
// emulate_transparency if necessary.
|
|
void prepare_rd_merge(int idx1, int idx2, FfInitVals *initvals);
|
|
|
|
// Prepares the memory for widening a port to a given width. This
|
|
// involves ensuring that start_offset and size are aligned to the
|
|
// target width.
|
|
void widen_prep(int wide_log2);
|
|
|
|
// Widens a write port up to a given width. The newly port is
|
|
// equivalent to the original, made by replicating enable/data bits
|
|
// and masking enable bits with decoders on the low part of the
|
|
// original address.
|
|
void widen_wr_port(int idx, int wide_log2);
|
|
|
|
// Emulates a sync read port's enable functionality in soft logic,
|
|
// changing the actual read port's enable to be always-on.
|
|
void emulate_rden(int idx, FfInitVals *initvals);
|
|
|
|
// Emulates a sync read port's initial/reset value functionality in
|
|
// soft logic, removing it from the actual read port.
|
|
void emulate_reset(int idx, bool emu_init, bool emu_arst, bool emu_srst, FfInitVals *initvals);
|
|
|
|
// Given a read port with ce_over_srst set, converts it to a port
|
|
// with ce_over_srst unset without changing its behavior by adding
|
|
// emulation logic.
|
|
void emulate_rd_ce_over_srst(int idx);
|
|
|
|
// Given a read port with ce_over_srst unset, converts it to a port
|
|
// with ce_over_srst set without changing its behavior by adding
|
|
// emulation logic.
|
|
void emulate_rd_srst_over_ce(int idx);
|
|
|
|
// Returns true iff emulate_read_first makes sense to call.
|
|
bool emulate_read_first_ok();
|
|
|
|
// Emulates all read-first read-write port relationships in terms of
|
|
// all-transparent ports, by delaying all write ports by one cycle.
|
|
// This can only be used when all read ports and all write ports are
|
|
// in the same clock domain.
|
|
void emulate_read_first(FfInitVals *initvals);
|
|
|
|
Mem(Module *module, IdString memid, int width, int start_offset, int size) : module(module), memid(memid), packed(false), mem(nullptr), cell(nullptr), width(width), start_offset(start_offset), size(size) {}
|
|
};
|
|
|
|
YOSYS_NAMESPACE_END
|
|
|
|
#endif
|