yosys/techlibs/ice40/cells_sim.v

878 lines
26 KiB
Verilog

`define SB_DFF_REG reg Q = 0;
// `define SB_DFF_REG reg Q;
// SiliconBlue IO Cells
module SB_IO (
inout PACKAGE_PIN,
input LATCH_INPUT_VALUE,
input CLOCK_ENABLE,
input INPUT_CLK,
input OUTPUT_CLK,
input OUTPUT_ENABLE,
input D_OUT_0,
input D_OUT_1,
output D_IN_0,
output D_IN_1
);
parameter [5:0] PIN_TYPE = 6'b000000;
parameter [0:0] PULLUP = 1'b0;
parameter [0:0] NEG_TRIGGER = 1'b0;
parameter IO_STANDARD = "SB_LVCMOS";
`ifndef BLACKBOX
reg dout, din_0, din_1;
reg din_q_0, din_q_1;
reg dout_q_0, dout_q_1;
reg outena_q;
generate if (!NEG_TRIGGER) begin
always @(posedge INPUT_CLK) if (CLOCK_ENABLE) din_q_0 <= PACKAGE_PIN;
always @(negedge INPUT_CLK) if (CLOCK_ENABLE) din_q_1 <= PACKAGE_PIN;
always @(posedge OUTPUT_CLK) if (CLOCK_ENABLE) dout_q_0 <= D_OUT_0;
always @(negedge OUTPUT_CLK) if (CLOCK_ENABLE) dout_q_1 <= D_OUT_1;
always @(posedge OUTPUT_CLK) if (CLOCK_ENABLE) outena_q <= OUTPUT_ENABLE;
end else begin
always @(negedge INPUT_CLK) if (CLOCK_ENABLE) din_q_0 <= PACKAGE_PIN;
always @(posedge INPUT_CLK) if (CLOCK_ENABLE) din_q_1 <= PACKAGE_PIN;
always @(negedge OUTPUT_CLK) if (CLOCK_ENABLE) dout_q_0 <= D_OUT_0;
always @(posedge OUTPUT_CLK) if (CLOCK_ENABLE) dout_q_1 <= D_OUT_1;
always @(negedge OUTPUT_CLK) if (CLOCK_ENABLE) outena_q <= OUTPUT_ENABLE;
end endgenerate
always @* begin
if (!PIN_TYPE[1] || !LATCH_INPUT_VALUE)
din_0 = PIN_TYPE[0] ? PACKAGE_PIN : din_q_0;
din_1 = din_q_1;
end
always @* begin
if (PIN_TYPE[3])
dout = PIN_TYPE[2] ? !dout_q_0 : D_OUT_0;
else
dout = (OUTPUT_CLK ^ NEG_TRIGGER) || PIN_TYPE[2] ? dout_q_0 : dout_q_1;
end
assign D_IN_0 = din_0, D_IN_1 = din_1;
generate
if (PIN_TYPE[5:4] == 2'b01) assign PACKAGE_PIN = dout;
if (PIN_TYPE[5:4] == 2'b10) assign PACKAGE_PIN = OUTPUT_ENABLE ? dout : 1'bz;
if (PIN_TYPE[5:4] == 2'b11) assign PACKAGE_PIN = outena_q ? dout : 1'bz;
endgenerate
`endif
endmodule
module SB_GB_IO (
inout PACKAGE_PIN,
output GLOBAL_BUFFER_OUTPUT,
input LATCH_INPUT_VALUE,
input CLOCK_ENABLE,
input INPUT_CLK,
input OUTPUT_CLK,
input OUTPUT_ENABLE,
input D_OUT_0,
input D_OUT_1,
output D_IN_0,
output D_IN_1
);
parameter [5:0] PIN_TYPE = 6'b000000;
parameter [0:0] PULLUP = 1'b0;
parameter [0:0] NEG_TRIGGER = 1'b0;
parameter IO_STANDARD = "SB_LVCMOS";
assign GLOBAL_BUFFER_OUTPUT = PACKAGE_PIN;
SB_IO #(
.PIN_TYPE(PIN_TYPE),
.PULLUP(PULLUP),
.NEG_TRIGGER(NEG_TRIGGER),
.IO_STANDARD(IO_STANDARD)
) IO (
.PACKAGE_PIN(PACKAGE_PIN),
.LATCH_INPUT_VALUE(LATCH_INPUT_VALUE),
.CLOCK_ENABLE(CLOCK_ENABLE),
.INPUT_CLK(INPUT_CLK),
.OUTPUT_CLK(OUTPUT_CLK),
.OUTPUT_ENABLE(OUTPUT_ENABLE),
.D_OUT_0(D_OUT_0),
.D_OUT_1(D_OUT_1),
.D_IN_0(D_IN_0),
.D_IN_1(D_IN_1)
);
endmodule
module SB_GB (
input USER_SIGNAL_TO_GLOBAL_BUFFER,
output GLOBAL_BUFFER_OUTPUT
);
assign GLOBAL_BUFFER_OUTPUT = USER_SIGNAL_TO_GLOBAL_BUFFER;
endmodule
// SiliconBlue Logic Cells
module SB_LUT4 (output O, input I0, I1, I2, I3);
parameter [15:0] LUT_INIT = 0;
wire [7:0] s3 = I3 ? LUT_INIT[15:8] : LUT_INIT[7:0];
wire [3:0] s2 = I2 ? s3[ 7:4] : s3[3:0];
wire [1:0] s1 = I1 ? s2[ 3:2] : s2[1:0];
assign O = I0 ? s1[1] : s1[0];
endmodule
module SB_CARRY (output CO, input I0, I1, CI);
assign CO = (I0 && I1) || ((I0 || I1) && CI);
endmodule
// Positive Edge SiliconBlue FF Cells
module SB_DFF (output Q, input C, D);
`SB_DFF_REG
always @(posedge C)
Q <= D;
endmodule
module SB_DFFE (output Q, input C, E, D);
`SB_DFF_REG
always @(posedge C)
if (E)
Q <= D;
endmodule
module SB_DFFSR (output Q, input C, R, D);
`SB_DFF_REG
always @(posedge C)
if (R)
Q <= 0;
else
Q <= D;
endmodule
module SB_DFFR (output Q, input C, R, D);
`SB_DFF_REG
always @(posedge C, posedge R)
if (R)
Q <= 0;
else
Q <= D;
endmodule
module SB_DFFSS (output Q, input C, S, D);
`SB_DFF_REG
always @(posedge C)
if (S)
Q <= 1;
else
Q <= D;
endmodule
module SB_DFFS (output Q, input C, S, D);
`SB_DFF_REG
always @(posedge C, posedge S)
if (S)
Q <= 1;
else
Q <= D;
endmodule
module SB_DFFESR (output Q, input C, E, R, D);
`SB_DFF_REG
always @(posedge C)
if (E) begin
if (R)
Q <= 0;
else
Q <= D;
end
endmodule
module SB_DFFER (output Q, input C, E, R, D);
`SB_DFF_REG
always @(posedge C, posedge R)
if (R)
Q <= 0;
else if (E)
Q <= D;
endmodule
module SB_DFFESS (output Q, input C, E, S, D);
`SB_DFF_REG
always @(posedge C)
if (E) begin
if (S)
Q <= 1;
else
Q <= D;
end
endmodule
module SB_DFFES (output Q, input C, E, S, D);
`SB_DFF_REG
always @(posedge C, posedge S)
if (S)
Q <= 1;
else if (E)
Q <= D;
endmodule
// Negative Edge SiliconBlue FF Cells
module SB_DFFN (output Q, input C, D);
`SB_DFF_REG
always @(negedge C)
Q <= D;
endmodule
module SB_DFFNE (output Q, input C, E, D);
`SB_DFF_REG
always @(negedge C)
if (E)
Q <= D;
endmodule
module SB_DFFNSR (output Q, input C, R, D);
`SB_DFF_REG
always @(negedge C)
if (R)
Q <= 0;
else
Q <= D;
endmodule
module SB_DFFNR (output Q, input C, R, D);
`SB_DFF_REG
always @(negedge C, posedge R)
if (R)
Q <= 0;
else
Q <= D;
endmodule
module SB_DFFNSS (output Q, input C, S, D);
`SB_DFF_REG
always @(negedge C)
if (S)
Q <= 1;
else
Q <= D;
endmodule
module SB_DFFNS (output Q, input C, S, D);
`SB_DFF_REG
always @(negedge C, posedge S)
if (S)
Q <= 1;
else
Q <= D;
endmodule
module SB_DFFNESR (output Q, input C, E, R, D);
`SB_DFF_REG
always @(negedge C)
if (E) begin
if (R)
Q <= 0;
else
Q <= D;
end
endmodule
module SB_DFFNER (output Q, input C, E, R, D);
`SB_DFF_REG
always @(negedge C, posedge R)
if (R)
Q <= 0;
else if (E)
Q <= D;
endmodule
module SB_DFFNESS (output Q, input C, E, S, D);
`SB_DFF_REG
always @(negedge C)
if (E) begin
if (S)
Q <= 1;
else
Q <= D;
end
endmodule
module SB_DFFNES (output Q, input C, E, S, D);
`SB_DFF_REG
always @(negedge C, posedge S)
if (S)
Q <= 1;
else if (E)
Q <= D;
endmodule
// SiliconBlue RAM Cells
module SB_RAM40_4K (
output [15:0] RDATA,
input RCLK, RCLKE, RE,
input [10:0] RADDR,
input WCLK, WCLKE, WE,
input [10:0] WADDR,
input [15:0] MASK, WDATA
);
// MODE 0: 256 x 16
// MODE 1: 512 x 8
// MODE 2: 1024 x 4
// MODE 3: 2048 x 2
parameter WRITE_MODE = 0;
parameter READ_MODE = 0;
parameter INIT_0 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_1 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_2 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_3 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_4 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_5 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_6 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_7 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_8 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_9 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
`ifndef BLACKBOX
wire [15:0] WMASK_I;
wire [15:0] RMASK_I;
reg [15:0] RDATA_I;
wire [15:0] WDATA_I;
generate
case (WRITE_MODE)
0: assign WMASK_I = MASK;
1: assign WMASK_I = WADDR[ 8] == 0 ? 16'b 1010_1010_1010_1010 :
WADDR[ 8] == 1 ? 16'b 0101_0101_0101_0101 : 16'bx;
2: assign WMASK_I = WADDR[ 9:8] == 0 ? 16'b 1110_1110_1110_1110 :
WADDR[ 9:8] == 1 ? 16'b 1101_1101_1101_1101 :
WADDR[ 9:8] == 2 ? 16'b 1011_1011_1011_1011 :
WADDR[ 9:8] == 3 ? 16'b 0111_0111_0111_0111 : 16'bx;
3: assign WMASK_I = WADDR[10:8] == 0 ? 16'b 1111_1110_1111_1110 :
WADDR[10:8] == 1 ? 16'b 1111_1101_1111_1101 :
WADDR[10:8] == 2 ? 16'b 1111_1011_1111_1011 :
WADDR[10:8] == 3 ? 16'b 1111_0111_1111_0111 :
WADDR[10:8] == 4 ? 16'b 1110_1111_1110_1111 :
WADDR[10:8] == 5 ? 16'b 1101_1111_1101_1111 :
WADDR[10:8] == 6 ? 16'b 1011_1111_1011_1111 :
WADDR[10:8] == 7 ? 16'b 0111_1111_0111_1111 : 16'bx;
endcase
case (READ_MODE)
0: assign RMASK_I = 16'b 0000_0000_0000_0000;
1: assign RMASK_I = RADDR[ 8] == 0 ? 16'b 1010_1010_1010_1010 :
RADDR[ 8] == 1 ? 16'b 0101_0101_0101_0101 : 16'bx;
2: assign RMASK_I = RADDR[ 9:8] == 0 ? 16'b 1110_1110_1110_1110 :
RADDR[ 9:8] == 1 ? 16'b 1101_1101_1101_1101 :
RADDR[ 9:8] == 2 ? 16'b 1011_1011_1011_1011 :
RADDR[ 9:8] == 3 ? 16'b 0111_0111_0111_0111 : 16'bx;
3: assign RMASK_I = RADDR[10:8] == 0 ? 16'b 1111_1110_1111_1110 :
RADDR[10:8] == 1 ? 16'b 1111_1101_1111_1101 :
RADDR[10:8] == 2 ? 16'b 1111_1011_1111_1011 :
RADDR[10:8] == 3 ? 16'b 1111_0111_1111_0111 :
RADDR[10:8] == 4 ? 16'b 1110_1111_1110_1111 :
RADDR[10:8] == 5 ? 16'b 1101_1111_1101_1111 :
RADDR[10:8] == 6 ? 16'b 1011_1111_1011_1111 :
RADDR[10:8] == 7 ? 16'b 0111_1111_0111_1111 : 16'bx;
endcase
case (WRITE_MODE)
0: assign WDATA_I = WDATA;
1: assign WDATA_I = {WDATA[14], WDATA[14], WDATA[12], WDATA[12],
WDATA[10], WDATA[10], WDATA[ 8], WDATA[ 8],
WDATA[ 6], WDATA[ 6], WDATA[ 4], WDATA[ 4],
WDATA[ 2], WDATA[ 2], WDATA[ 0], WDATA[ 0]};
2: assign WDATA_I = {WDATA[13], WDATA[13], WDATA[13], WDATA[13],
WDATA[ 9], WDATA[ 9], WDATA[ 9], WDATA[ 9],
WDATA[ 5], WDATA[ 5], WDATA[ 5], WDATA[ 5],
WDATA[ 1], WDATA[ 1], WDATA[ 1], WDATA[ 1]};
3: assign WDATA_I = {WDATA[11], WDATA[11], WDATA[11], WDATA[11],
WDATA[11], WDATA[11], WDATA[11], WDATA[11],
WDATA[ 3], WDATA[ 3], WDATA[ 3], WDATA[ 3],
WDATA[ 3], WDATA[ 3], WDATA[ 3], WDATA[ 3]};
endcase
case (READ_MODE)
0: assign RDATA = RDATA_I;
1: assign RDATA = {1'b0, |RDATA_I[15:14], 1'b0, |RDATA_I[13:12], 1'b0, |RDATA_I[11:10], 1'b0, |RDATA_I[ 9: 8],
1'b0, |RDATA_I[ 7: 6], 1'b0, |RDATA_I[ 5: 4], 1'b0, |RDATA_I[ 3: 2], 1'b0, |RDATA_I[ 1: 0]};
2: assign RDATA = {2'b0, |RDATA_I[15:12], 3'b0, |RDATA_I[11: 8], 3'b0, |RDATA_I[ 7: 4], 3'b0, |RDATA_I[ 3: 0], 1'b0};
3: assign RDATA = {4'b0, |RDATA_I[15: 8], 7'b0, |RDATA_I[ 7: 0], 3'b0};
endcase
endgenerate
integer i;
reg [15:0] memory [0:255];
initial begin
for (i=0; i<16; i=i+1) begin
memory[ 0*16 + i] <= INIT_0[16*i +: 16];
memory[ 1*16 + i] <= INIT_1[16*i +: 16];
memory[ 2*16 + i] <= INIT_2[16*i +: 16];
memory[ 3*16 + i] <= INIT_3[16*i +: 16];
memory[ 4*16 + i] <= INIT_4[16*i +: 16];
memory[ 5*16 + i] <= INIT_5[16*i +: 16];
memory[ 6*16 + i] <= INIT_6[16*i +: 16];
memory[ 7*16 + i] <= INIT_7[16*i +: 16];
memory[ 8*16 + i] <= INIT_8[16*i +: 16];
memory[ 9*16 + i] <= INIT_9[16*i +: 16];
memory[10*16 + i] <= INIT_A[16*i +: 16];
memory[11*16 + i] <= INIT_B[16*i +: 16];
memory[12*16 + i] <= INIT_C[16*i +: 16];
memory[13*16 + i] <= INIT_D[16*i +: 16];
memory[14*16 + i] <= INIT_E[16*i +: 16];
memory[15*16 + i] <= INIT_F[16*i +: 16];
end
end
always @(posedge WCLK) begin
if (WE && WCLKE) begin
if (!WMASK_I[ 0]) memory[WADDR[7:0]][ 0] <= WDATA_I[ 0];
if (!WMASK_I[ 1]) memory[WADDR[7:0]][ 1] <= WDATA_I[ 1];
if (!WMASK_I[ 2]) memory[WADDR[7:0]][ 2] <= WDATA_I[ 2];
if (!WMASK_I[ 3]) memory[WADDR[7:0]][ 3] <= WDATA_I[ 3];
if (!WMASK_I[ 4]) memory[WADDR[7:0]][ 4] <= WDATA_I[ 4];
if (!WMASK_I[ 5]) memory[WADDR[7:0]][ 5] <= WDATA_I[ 5];
if (!WMASK_I[ 6]) memory[WADDR[7:0]][ 6] <= WDATA_I[ 6];
if (!WMASK_I[ 7]) memory[WADDR[7:0]][ 7] <= WDATA_I[ 7];
if (!WMASK_I[ 8]) memory[WADDR[7:0]][ 8] <= WDATA_I[ 8];
if (!WMASK_I[ 9]) memory[WADDR[7:0]][ 9] <= WDATA_I[ 9];
if (!WMASK_I[10]) memory[WADDR[7:0]][10] <= WDATA_I[10];
if (!WMASK_I[11]) memory[WADDR[7:0]][11] <= WDATA_I[11];
if (!WMASK_I[12]) memory[WADDR[7:0]][12] <= WDATA_I[12];
if (!WMASK_I[13]) memory[WADDR[7:0]][13] <= WDATA_I[13];
if (!WMASK_I[14]) memory[WADDR[7:0]][14] <= WDATA_I[14];
if (!WMASK_I[15]) memory[WADDR[7:0]][15] <= WDATA_I[15];
end
end
always @(posedge RCLK) begin
if (RE && RCLKE) begin
RDATA_I <= memory[RADDR[7:0]] & ~RMASK_I;
end
end
`endif
endmodule
module SB_RAM40_4KNR (
output [15:0] RDATA,
input RCLKN, RCLKE, RE,
input [10:0] RADDR,
input WCLK, WCLKE, WE,
input [10:0] WADDR,
input [15:0] MASK, WDATA
);
parameter WRITE_MODE = 0;
parameter READ_MODE = 0;
parameter INIT_0 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_1 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_2 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_3 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_4 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_5 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_6 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_7 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_8 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_9 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
SB_RAM40_4K #(
.WRITE_MODE(WRITE_MODE),
.READ_MODE (READ_MODE ),
.INIT_0 (INIT_0 ),
.INIT_1 (INIT_1 ),
.INIT_2 (INIT_2 ),
.INIT_3 (INIT_3 ),
.INIT_4 (INIT_4 ),
.INIT_5 (INIT_5 ),
.INIT_6 (INIT_6 ),
.INIT_7 (INIT_7 ),
.INIT_8 (INIT_8 ),
.INIT_9 (INIT_9 ),
.INIT_A (INIT_A ),
.INIT_B (INIT_B ),
.INIT_C (INIT_C ),
.INIT_D (INIT_D ),
.INIT_E (INIT_E ),
.INIT_F (INIT_F )
) RAM (
.RDATA(RDATA),
.RCLK (~RCLKN),
.RCLKE(RCLKE),
.RE (RE ),
.RADDR(RADDR),
.WCLK (WCLK ),
.WCLKE(WCLKE),
.WE (WE ),
.WADDR(WADDR),
.MASK (MASK ),
.WDATA(WDATA)
);
endmodule
module SB_RAM40_4KNW (
output [15:0] RDATA,
input RCLK, RCLKE, RE,
input [10:0] RADDR,
input WCLKN, WCLKE, WE,
input [10:0] WADDR,
input [15:0] MASK, WDATA
);
parameter WRITE_MODE = 0;
parameter READ_MODE = 0;
parameter INIT_0 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_1 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_2 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_3 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_4 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_5 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_6 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_7 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_8 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_9 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
SB_RAM40_4K #(
.WRITE_MODE(WRITE_MODE),
.READ_MODE (READ_MODE ),
.INIT_0 (INIT_0 ),
.INIT_1 (INIT_1 ),
.INIT_2 (INIT_2 ),
.INIT_3 (INIT_3 ),
.INIT_4 (INIT_4 ),
.INIT_5 (INIT_5 ),
.INIT_6 (INIT_6 ),
.INIT_7 (INIT_7 ),
.INIT_8 (INIT_8 ),
.INIT_9 (INIT_9 ),
.INIT_A (INIT_A ),
.INIT_B (INIT_B ),
.INIT_C (INIT_C ),
.INIT_D (INIT_D ),
.INIT_E (INIT_E ),
.INIT_F (INIT_F )
) RAM (
.RDATA(RDATA),
.RCLK (RCLK ),
.RCLKE(RCLKE),
.RE (RE ),
.RADDR(RADDR),
.WCLK (~WCLKN),
.WCLKE(WCLKE),
.WE (WE ),
.WADDR(WADDR),
.MASK (MASK ),
.WDATA(WDATA)
);
endmodule
module SB_RAM40_4KNRNW (
output [15:0] RDATA,
input RCLKN, RCLKE, RE,
input [10:0] RADDR,
input WCLKN, WCLKE, WE,
input [10:0] WADDR,
input [15:0] MASK, WDATA
);
parameter WRITE_MODE = 0;
parameter READ_MODE = 0;
parameter INIT_0 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_1 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_2 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_3 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_4 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_5 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_6 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_7 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_8 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_9 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
SB_RAM40_4K #(
.WRITE_MODE(WRITE_MODE),
.READ_MODE (READ_MODE ),
.INIT_0 (INIT_0 ),
.INIT_1 (INIT_1 ),
.INIT_2 (INIT_2 ),
.INIT_3 (INIT_3 ),
.INIT_4 (INIT_4 ),
.INIT_5 (INIT_5 ),
.INIT_6 (INIT_6 ),
.INIT_7 (INIT_7 ),
.INIT_8 (INIT_8 ),
.INIT_9 (INIT_9 ),
.INIT_A (INIT_A ),
.INIT_B (INIT_B ),
.INIT_C (INIT_C ),
.INIT_D (INIT_D ),
.INIT_E (INIT_E ),
.INIT_F (INIT_F )
) RAM (
.RDATA(RDATA),
.RCLK (~RCLKN),
.RCLKE(RCLKE),
.RE (RE ),
.RADDR(RADDR),
.WCLK (~WCLKN),
.WCLKE(WCLKE),
.WE (WE ),
.WADDR(WADDR),
.MASK (MASK ),
.WDATA(WDATA)
);
endmodule
// Packed IceStorm Logic Cells
module ICESTORM_LC (
input I0, I1, I2, I3, CIN, CLK, CEN, SR,
output LO, O, COUT
);
parameter [15:0] LUT_INIT = 0;
parameter [0:0] NEG_CLK = 0;
parameter [0:0] CARRY_ENABLE = 0;
parameter [0:0] DFF_ENABLE = 0;
parameter [0:0] SET_NORESET = 0;
parameter [0:0] ASYNC_SR = 0;
wire COUT = CARRY_ENABLE ? (I1 && I2) || ((I1 || I2) && CIN) : 1'bx;
wire [7:0] lut_s3 = I3 ? LUT_INIT[15:8] : LUT_INIT[7:0];
wire [3:0] lut_s2 = I2 ? lut_s3[ 7:4] : lut_s3[3:0];
wire [1:0] lut_s1 = I1 ? lut_s2[ 3:2] : lut_s2[1:0];
wire lut_o = I0 ? lut_s1[ 1] : lut_s1[ 0];
assign LO = lut_o;
wire polarized_clk;
assign polarized_clk = CLK ^ NEG_CLK;
reg o_reg;
always @(posedge polarized_clk)
if (CEN)
o_reg <= SR ? SET_NORESET : lut_o;
reg o_reg_async;
always @(posedge polarized_clk, posedge SR)
if (SR)
o_reg <= SET_NORESET;
else if (CEN)
o_reg <= lut_o;
assign O = DFF_ENABLE ? ASYNC_SR ? o_reg_async : o_reg : lut_o;
endmodule
// SiliconBlue PLL Cells
(* blackbox *)
module SB_PLL40_CORE (
input REFERENCECLK,
output PLLOUTCORE,
output PLLOUTGLOBAL,
input EXTFEEDBACK,
input [7:0] DYNAMICDELAY,
output LOCK,
input BYPASS,
input RESETB,
input LATCHINPUTVALUE,
output SDO,
input SDI,
input SCLK
);
parameter FEEDBACK_PATH = "SIMPLE";
parameter DELAY_ADJUSTMENT_MODE_FEEDBACK = "FIXED";
parameter DELAY_ADJUSTMENT_MODE_RELATIVE = "FIXED";
parameter SHIFTREG_DIV_MODE = 1'b0;
parameter FDA_FEEDBACK = 4'b0000;
parameter FDA_RELATIVE = 4'b0000;
parameter PLLOUT_SELECT = "GENCLK";
parameter DIVR = 4'b0000;
parameter DIVF = 7'b0000000;
parameter DIVQ = 3'b000;
parameter FILTER_RANGE = 3'b000;
parameter ENABLE_ICEGATE = 1'b0;
parameter TEST_MODE = 1'b0;
parameter EXTERNAL_DIVIDE_FACTOR = 1;
endmodule
(* blackbox *)
module SB_PLL40_PAD (
input PACKAGEPIN,
output PLLOUTCORE,
output PLLOUTGLOBAL,
input EXTFEEDBACK,
input [7:0] DYNAMICDELAY,
output LOCK,
input BYPASS,
input RESETB,
input LATCHINPUTVALUE,
output SDO,
input SDI,
input SCLK
);
parameter FEEDBACK_PATH = "SIMPLE";
parameter DELAY_ADJUSTMENT_MODE_FEEDBACK = "FIXED";
parameter DELAY_ADJUSTMENT_MODE_RELATIVE = "FIXED";
parameter SHIFTREG_DIV_MODE = 1'b0;
parameter FDA_FEEDBACK = 4'b0000;
parameter FDA_RELATIVE = 4'b0000;
parameter PLLOUT_SELECT = "GENCLK";
parameter DIVR = 4'b0000;
parameter DIVF = 7'b0000000;
parameter DIVQ = 3'b000;
parameter FILTER_RANGE = 3'b000;
parameter ENABLE_ICEGATE = 1'b0;
parameter TEST_MODE = 1'b0;
parameter EXTERNAL_DIVIDE_FACTOR = 1;
endmodule
(* blackbox *)
module SB_PLL40_2_PAD (
input PACKAGEPIN,
output PLLOUTCOREA,
output PLLOUTGLOBALA,
output PLLOUTCOREB,
output PLLOUTGLOBALB,
input EXTFEEDBACK,
input [7:0] DYNAMICDELAY,
output LOCK,
input BYPASS,
input RESETB,
input LATCHINPUTVALUE,
output SDO,
input SDI,
input SCLK
);
parameter FEEDBACK_PATH = "SIMPLE";
parameter DELAY_ADJUSTMENT_MODE_FEEDBACK = "FIXED";
parameter DELAY_ADJUSTMENT_MODE_RELATIVE = "FIXED";
parameter SHIFTREG_DIV_MODE = 1'b0;
parameter FDA_FEEDBACK = 4'b0000;
parameter FDA_RELATIVE = 4'b0000;
parameter PLLOUT_SELECT_PORTB = "GENCLK";
parameter DIVR = 4'b0000;
parameter DIVF = 7'b0000000;
parameter DIVQ = 3'b000;
parameter FILTER_RANGE = 3'b000;
parameter ENABLE_ICEGATE_PORTA = 1'b0;
parameter ENABLE_ICEGATE_PORTB = 1'b0;
parameter TEST_MODE = 1'b0;
parameter EXTERNAL_DIVIDE_FACTOR = 1;
endmodule
(* blackbox *)
module SB_PLL40_2F_CORE (
input REFERENCECLK,
output PLLOUTCOREA,
output PLLOUTGLOBALA,
output PLLOUTCOREB,
output PLLOUTGLOBALB,
input EXTFEEDBACK,
input [7:0] DYNAMICDELAY,
output LOCK,
input BYPASS,
input RESETB,
input LATCHINPUTVALUE,
output SDO,
input SDI,
input SCLK
);
parameter FEEDBACK_PATH = "SIMPLE";
parameter DELAY_ADJUSTMENT_MODE_FEEDBACK = "FIXED";
parameter DELAY_ADJUSTMENT_MODE_RELATIVE = "FIXED";
parameter SHIFTREG_DIV_MODE = 1'b0;
parameter FDA_FEEDBACK = 4'b0000;
parameter FDA_RELATIVE = 4'b0000;
parameter PLLOUT_SELECT_PORTA = "GENCLK";
parameter PLLOUT_SELECT_PORTB = "GENCLK";
parameter DIVR = 4'b0000;
parameter DIVF = 7'b0000000;
parameter DIVQ = 3'b000;
parameter FILTER_RANGE = 3'b000;
parameter ENABLE_ICEGATE_PORTA = 1'b0;
parameter ENABLE_ICEGATE_PORTB = 1'b0;
parameter TEST_MODE = 1'b0;
parameter EXTERNAL_DIVIDE_FACTOR = 1;
endmodule
(* blackbox *)
module SB_PLL40_2F_PAD (
input PACKAGEPIN,
output PLLOUTCOREA,
output PLLOUTGLOBALA,
output PLLOUTCOREB,
output PLLOUTGLOBALB,
input EXTFEEDBACK,
input [7:0] DYNAMICDELAY,
output LOCK,
input BYPASS,
input RESETB,
input LATCHINPUTVALUE,
output SDO,
input SDI,
input SCLK
);
parameter FEEDBACK_PATH = "SIMPLE";
parameter DELAY_ADJUSTMENT_MODE_FEEDBACK = "FIXED";
parameter DELAY_ADJUSTMENT_MODE_RELATIVE = "FIXED";
parameter SHIFTREG_DIV_MODE = 2'b00;
parameter FDA_FEEDBACK = 4'b0000;
parameter FDA_RELATIVE = 4'b0000;
parameter PLLOUT_SELECT_PORTA = "GENCLK";
parameter PLLOUT_SELECT_PORTB = "GENCLK";
parameter DIVR = 4'b0000;
parameter DIVF = 7'b0000000;
parameter DIVQ = 3'b000;
parameter FILTER_RANGE = 3'b000;
parameter ENABLE_ICEGATE_PORTA = 1'b0;
parameter ENABLE_ICEGATE_PORTB = 1'b0;
parameter TEST_MODE = 1'b0;
parameter EXTERNAL_DIVIDE_FACTOR = 1;
endmodule
// SiliconBlue Device Configuration Cells
(* blackbox, keep *)
module SB_WARMBOOT (
input BOOT,
input S1,
input S0
);
endmodule