yosys/backends/aiger/xaiger.cc

880 lines
25 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// https://stackoverflow.com/a/46137633
#ifdef _MSC_VER
#include <stdlib.h>
#define bswap32 _byteswap_ulong
#elif defined(__APPLE__)
#include <libkern/OSByteOrder.h>
#define bswap32 OSSwapInt32
#elif defined(__GNUC__)
#define bswap32 __builtin_bswap32
#else
#include <cstdint>
inline static uint32_t bswap32(uint32_t x)
{
// https://stackoverflow.com/a/27796212
register uint32_t value = number_to_be_reversed;
uint8_t lolo = (value >> 0) & 0xFF;
uint8_t lohi = (value >> 8) & 0xFF;
uint8_t hilo = (value >> 16) & 0xFF;
uint8_t hihi = (value >> 24) & 0xFF;
return (hihi << 24)
| (hilo << 16)
| (lohi << 8)
| (lolo << 0);
}
#endif
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
inline int32_t to_big_endian(int32_t i32) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return bswap32(i32);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return i32;
#else
#error "Unknown endianness"
#endif
}
void aiger_encode(std::ostream &f, int x)
{
log_assert(x >= 0);
while (x & ~0x7f) {
f.put((x & 0x7f) | 0x80);
x = x >> 7;
}
f.put(x);
}
struct XAigerWriter
{
Module *module;
SigMap sigmap;
pool<SigBit> input_bits, output_bits;
dict<SigBit, SigBit> not_map, alias_map;
dict<SigBit, pair<SigBit, SigBit>> and_map;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits;
dict<SigBit, float> arrival_times;
vector<pair<int, int>> aig_gates;
vector<int> aig_outputs;
int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0;
dict<SigBit, int> aig_map;
dict<SigBit, int> ordered_outputs;
vector<Cell*> box_list;
bool omode = false;
int mkgate(int a0, int a1)
{
aig_m++, aig_a++;
aig_gates.push_back(a0 > a1 ? make_pair(a0, a1) : make_pair(a1, a0));
return 2*aig_m;
}
int bit2aig(SigBit bit)
{
auto it = aig_map.find(bit);
if (it != aig_map.end()) {
log_assert(it->second >= 0);
return it->second;
}
// NB: Cannot use iterator returned from aig_map.insert()
// since this function is called recursively
int a = -1;
if (not_map.count(bit)) {
a = bit2aig(not_map.at(bit)) ^ 1;
} else
if (and_map.count(bit)) {
auto args = and_map.at(bit);
int a0 = bit2aig(args.first);
int a1 = bit2aig(args.second);
a = mkgate(a0, a1);
} else
if (alias_map.count(bit)) {
a = bit2aig(alias_map.at(bit));
}
if (bit == State::Sx || bit == State::Sz) {
log_debug("Design contains 'x' or 'z' bits. Treating as 1'b0.\n");
a = aig_map.at(State::S0);
}
log_assert(a >= 0);
aig_map[bit] = a;
return a;
}
XAigerWriter(Module *module, bool holes_mode=false) : module(module), sigmap(module)
{
pool<SigBit> undriven_bits;
pool<SigBit> unused_bits;
pool<SigBit> keep_bits;
// promote public wires
for (auto wire : module->wires())
if (wire->name[0] == '\\')
sigmap.add(wire);
// promote input wires
for (auto wire : module->wires())
if (wire->port_input)
sigmap.add(wire);
// promote output wires
for (auto wire : module->wires())
if (wire->port_output)
sigmap.add(wire);
for (auto wire : module->wires())
{
bool keep = wire->attributes.count("\\keep");
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wirebit(wire, i);
SigBit bit = sigmap(wirebit);
if (bit.wire) {
undriven_bits.insert(bit);
unused_bits.insert(bit);
}
if (keep)
keep_bits.insert(bit);
if (wire->port_input || keep) {
if (bit != wirebit)
alias_map[bit] = wirebit;
input_bits.insert(wirebit);
}
if (wire->port_output || keep) {
if (bit != RTLIL::Sx) {
if (bit != wirebit)
alias_map[wirebit] = bit;
output_bits.insert(wirebit);
}
else
log_debug("Skipping PO '%s' driven by 1'bx\n", log_signal(wirebit));
}
}
}
for (auto bit : input_bits)
undriven_bits.erase(sigmap(bit));
for (auto bit : output_bits)
if (!bit.wire->port_input)
unused_bits.erase(bit);
// TODO: Speed up toposort -- ultimately we care about
// box ordering, but not individual AIG cells
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
bool abc_box_seen = false;
for (auto cell : module->selected_cells()) {
if (cell->type == "$_NOT_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
undriven_bits.erase(Y);
not_map[Y] = A;
if (!holes_mode) {
toposort.node(cell->name);
bit_users[A].insert(cell->name);
bit_drivers[Y].insert(cell->name);
}
continue;
}
if (cell->type == "$_AND_")
{
SigBit A = sigmap(cell->getPort("\\A").as_bit());
SigBit B = sigmap(cell->getPort("\\B").as_bit());
SigBit Y = sigmap(cell->getPort("\\Y").as_bit());
unused_bits.erase(A);
unused_bits.erase(B);
undriven_bits.erase(Y);
and_map[Y] = make_pair(A, B);
if (!holes_mode) {
toposort.node(cell->name);
bit_users[A].insert(cell->name);
bit_users[B].insert(cell->name);
bit_drivers[Y].insert(cell->name);
}
continue;
}
log_assert(!holes_mode);
RTLIL::Module* inst_module = module->design->module(cell->type);
if (inst_module && inst_module->attributes.count("\\abc_box_id")) {
abc_box_seen = true;
if (!holes_mode) {
toposort.node(cell->name);
for (const auto &conn : cell->connections()) {
auto port_wire = inst_module->wire(conn.first);
if (port_wire->port_input) {
// Ignore inout for the sake of topographical ordering
if (port_wire->port_output) continue;
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
}
if (port_wire->port_output)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
}
}
}
else {
bool cell_known = inst_module || cell->known();
for (const auto &c : cell->connections()) {
if (c.second.is_fully_const()) continue;
auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
if (!is_input && !is_output)
log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
if (is_input) {
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
if (!w->port_output || !cell_known) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
output_bits.insert(b);
unused_bits.erase(b);
if (!cell_known)
keep_bits.insert(b);
}
}
}
if (is_output) {
int arrival = 0;
if (port_wire) {
auto it = port_wire->attributes.find("\\abc_arrival");
if (it != port_wire->attributes.end()) {
if (it->second.flags != 0)
log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
arrival = it->second.as_int();
}
}
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
input_bits.insert(b);
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
undriven_bits.erase(O);
if (arrival)
arrival_times[b] = arrival;
}
}
}
}
//log_warning("Unsupported cell type: %s (%s)\n", log_id(cell->type), log_id(cell));
}
if (abc_box_seen) {
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
#if 0
toposort.analyze_loops = true;
#endif
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
#if 0
unsigned i = 0;
for (auto &it : toposort.loops) {
log(" loop %d\n", i++);
for (auto cell_name : it) {
auto cell = module->cell(cell_name);
log_assert(cell);
log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
}
}
#endif
log_assert(no_loops);
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
log_assert(cell);
RTLIL::Module* box_module = module->design->module(cell->type);
if (!box_module || !box_module->attributes.count("\\abc_box_id"))
continue;
bool blackbox = box_module->get_blackbox_attribute(true /* ignore_wb */);
// Fully pad all unused input connections of this box cell with S0
// Fully pad all undriven output connections of this box cell with anonymous wires
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
for (const auto &port_name : box_module->ports) {
RTLIL::Wire* w = box_module->wire(port_name);
log_assert(w);
auto it = cell->connections_.find(port_name);
if (w->port_input) {
RTLIL::SigSpec rhs;
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(RTLIL::SigSpec(State::S0, GetSize(w)-GetSize(it->second)));
rhs = it->second;
}
else {
rhs = RTLIL::SigSpec(State::S0, GetSize(w));
cell->setPort(port_name, rhs);
}
int offset = 0;
for (auto b : rhs.bits()) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;
else if (I != b) {
if (I == RTLIL::Sx)
alias_map[b] = State::S0;
else
alias_map[b] = I;
}
co_bits.emplace_back(b, cell, port_name, offset++, 0);
unused_bits.erase(b);
}
}
if (w->port_output) {
RTLIL::SigSpec rhs;
auto it = cell->connections_.find(w->name);
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(module->addWire(NEW_ID, GetSize(w)-GetSize(it->second)));
rhs = it->second;
}
else {
Wire *wire = module->addWire(NEW_ID, GetSize(w));
if (blackbox)
wire->set_bool_attribute(ID(abc_padding));
rhs = wire;
cell->setPort(port_name, rhs);
}
int offset = 0;
for (const auto &b : rhs.bits()) {
ci_bits.emplace_back(b, cell, port_name, offset++);
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
undriven_bits.erase(O);
input_bits.erase(b);
}
}
}
box_list.emplace_back(cell);
}
// TODO: Free memory from toposort, bit_drivers, bit_users
}
for (auto bit : input_bits) {
if (!output_bits.count(bit))
continue;
RTLIL::Wire *wire = bit.wire;
// If encountering an inout port, or a keep-ed wire, then create a new wire
// with $inout.out suffix, make it a PO driven by the existing inout, and
// inherit existing inout's drivers
if ((wire->port_input && wire->port_output && !undriven_bits.count(bit))
|| keep_bits.count(bit)) {
RTLIL::IdString wire_name = stringf("$%s$inout.out", wire->name.c_str());
RTLIL::Wire *new_wire = module->wire(wire_name);
if (!new_wire)
new_wire = module->addWire(wire_name, GetSize(wire));
SigBit new_bit(new_wire, bit.offset);
module->connect(new_bit, bit);
if (not_map.count(bit)) {
auto a = not_map.at(bit);
not_map[new_bit] = a;
}
else if (and_map.count(bit)) {
auto a = and_map.at(bit);
and_map[new_bit] = a;
}
else if (alias_map.count(bit)) {
auto a = alias_map.at(bit);
alias_map[new_bit] = a;
}
else
alias_map[new_bit] = bit;
output_bits.erase(bit);
output_bits.insert(new_bit);
}
}
for (auto bit : unused_bits)
undriven_bits.erase(bit);
if (!undriven_bits.empty() && !holes_mode) {
undriven_bits.sort();
for (auto bit : undriven_bits) {
log_warning("Treating undriven bit %s.%s like $anyseq.\n", log_id(module), log_signal(bit));
input_bits.insert(bit);
}
log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module));
}
if (holes_mode) {
struct sort_by_port_id {
bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const {
return a.wire->port_id < b.wire->port_id;
}
};
input_bits.sort(sort_by_port_id());
output_bits.sort(sort_by_port_id());
}
else {
input_bits.sort();
output_bits.sort();
}
not_map.sort();
and_map.sort();
aig_map[State::S0] = 0;
aig_map[State::S1] = 1;
for (auto bit : input_bits) {
aig_m++, aig_i++;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
for (auto &c : ci_bits) {
RTLIL::SigBit bit = std::get<0>(c);
aig_m++, aig_i++;
aig_map[bit] = 2*aig_m;
}
for (auto &c : co_bits) {
RTLIL::SigBit bit = std::get<0>(c);
std::get<4>(c) = ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
if (output_bits.empty()) {
output_bits.insert(State::S0);
omode = true;
}
for (auto bit : output_bits) {
ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
}
void write_aiger(std::ostream &f, bool ascii_mode)
{
int aig_obc = aig_o;
int aig_obcj = aig_obc;
int aig_obcjf = aig_obcj;
log_assert(aig_m == aig_i + aig_l + aig_a);
log_assert(aig_obcjf == GetSize(aig_outputs));
f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a);
f << stringf("\n");
if (ascii_mode)
{
for (int i = 0; i < aig_i; i++)
f << stringf("%d\n", 2*i+2);
for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("1\n");
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obcj; i < aig_obcjf; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = 0; i < aig_a; i++)
f << stringf("%d %d %d\n", 2*(aig_i+aig_l+i)+2, aig_gates.at(i).first, aig_gates.at(i).second);
}
else
{
for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("1\n");
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obcj; i < aig_obcjf; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = 0; i < aig_a; i++) {
int lhs = 2*(aig_i+aig_l+i)+2;
int rhs0 = aig_gates.at(i).first;
int rhs1 = aig_gates.at(i).second;
int delta0 = lhs - rhs0;
int delta1 = rhs0 - rhs1;
aiger_encode(f, delta0);
aiger_encode(f, delta1);
}
}
f << "c";
log_assert(!output_bits.empty());
auto write_buffer = [](std::stringstream &buffer, int i32) {
int32_t i32_be = to_big_endian(i32);
buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be));
};
std::stringstream h_buffer;
auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1);
write_h_buffer(1);
log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ci_bits));
write_h_buffer(input_bits.size() + ci_bits.size());
log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(co_bits));
write_h_buffer(output_bits.size() + GetSize(co_bits));
log_debug("piNum = %d\n", GetSize(input_bits));
write_h_buffer(input_bits.size());
log_debug("poNum = %d\n", GetSize(output_bits));
write_h_buffer(output_bits.size());
log_debug("boxNum = %d\n", GetSize(box_list));
write_h_buffer(box_list.size());
auto write_buffer_float = [](std::stringstream &buffer, float f32) {
buffer.write(reinterpret_cast<const char*>(&f32), sizeof(f32));
};
std::stringstream i_buffer;
auto write_i_buffer = std::bind(write_buffer_float, std::ref(i_buffer), std::placeholders::_1);
for (auto bit : input_bits)
write_i_buffer(arrival_times.at(bit, 0));
//std::stringstream o_buffer;
//auto write_o_buffer = std::bind(write_buffer_float, std::ref(o_buffer), std::placeholders::_1);
//for (auto bit : output_bits)
// write_o_buffer(0);
if (!box_list.empty()) {
RTLIL::Module *holes_module = module->design->addModule("$__holes__");
log_assert(holes_module);
int port_id = 1;
int box_count = 0;
for (auto cell : box_list) {
RTLIL::Module* box_module = module->design->module(cell->type);
int box_inputs = 0, box_outputs = 0;
Cell *holes_cell = nullptr;
if (box_module->get_bool_attribute("\\whitebox")) {
holes_cell = holes_module->addCell(cell->name, cell->type);
holes_cell->parameters = cell->parameters;
}
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
for (const auto &port_name : box_module->ports) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
RTLIL::Wire *holes_wire;
RTLIL::SigSpec port_wire;
if (w->port_input) {
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
if (holes_cell)
port_wire.append(holes_wire);
}
if (!port_wire.empty())
holes_cell->setPort(w->name, port_wire);
}
if (w->port_output) {
box_outputs += GetSize(w);
for (int i = 0; i < GetSize(w); i++) {
if (GetSize(w) == 1)
holes_wire = holes_module->addWire(stringf("%s.%s", cell->name.c_str(), w->name.c_str()));
else
holes_wire = holes_module->addWire(stringf("%s.%s[%d]", cell->name.c_str(), w->name.c_str(), i));
holes_wire->port_output = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
if (holes_cell)
port_wire.append(holes_wire);
else
holes_module->connect(holes_wire, State::S0);
}
if (!port_wire.empty())
holes_cell->setPort(w->name, port_wire);
}
}
write_h_buffer(box_inputs);
write_h_buffer(box_outputs);
write_h_buffer(box_module->attributes.at("\\abc_box_id").as_int());
write_h_buffer(box_count++);
}
std::stringstream r_buffer;
auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1);
write_r_buffer(0);
f << "r";
std::string buffer_str = r_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
if (holes_module) {
log_push();
// NB: fixup_ports() will sort ports by name
//holes_module->fixup_ports();
holes_module->check();
holes_module->design->selection_stack.emplace_back(false);
RTLIL::Selection& sel = holes_module->design->selection_stack.back();
sel.select(holes_module);
// TODO: Should not need to opt_merge if we only instantiate
// each box type once...
Pass::call(holes_module->design, "opt_merge -share_all");
Pass::call(holes_module->design, "flatten -wb");
// TODO: Should techmap/aigmap/check all lib_whitebox-es just once,
// instead of per write_xaiger call
Pass::call(holes_module->design, "techmap");
Pass::call(holes_module->design, "aigmap");
for (auto cell : holes_module->cells())
if (!cell->type.in("$_NOT_", "$_AND_"))
log_error("Whitebox contents cannot be represented as AIG. Please verify whiteboxes are synthesisable.\n");
holes_module->design->selection_stack.pop_back();
// Move into a new (temporary) design so that "clean" will only
// operate (and run checks on) this one module
RTLIL::Design *holes_design = new RTLIL::Design;
holes_module->design->modules_.erase(holes_module->name);
holes_design->add(holes_module);
Pass::call(holes_design, "clean -purge");
std::stringstream a_buffer;
XAigerWriter writer(holes_module, true /* holes_mode */);
writer.write_aiger(a_buffer, false /*ascii_mode*/);
delete holes_design;
f << "a";
std::string buffer_str = a_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
log_pop();
}
}
f << "h";
std::string buffer_str = h_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
f << "i";
buffer_str = i_buffer.str();
buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
//f << "o";
//buffer_str = o_buffer.str();
//buffer_size_be = to_big_endian(buffer_str.size());
//f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
//f.write(buffer_str.data(), buffer_str.size());
f << stringf("Generated by %s\n", yosys_version_str);
}
void write_map(std::ostream &f, bool verbose_map)
{
dict<int, string> input_lines;
dict<int, string> output_lines;
dict<int, string> wire_lines;
for (auto wire : module->wires())
{
//if (!verbose_map && wire->name[0] == '$')
// continue;
SigSpec sig = sigmap(wire);
for (int i = 0; i < GetSize(wire); i++)
{
RTLIL::SigBit b(wire, i);
if (input_bits.count(b)) {
int a = aig_map.at(b);
log_assert((a & 1) == 0);
input_lines[a] += stringf("input %d %d %s\n", (a >> 1)-1, i, log_id(wire));
}
if (output_bits.count(b)) {
int o = ordered_outputs.at(b);
output_lines[o] += stringf("output %d %d %s\n", o - GetSize(co_bits), i, log_id(wire));
continue;
}
if (verbose_map) {
if (aig_map.count(sig[i]) == 0)
continue;
int a = aig_map.at(sig[i]);
wire_lines[a] += stringf("wire %d %d %s\n", a, i, log_id(wire));
}
}
}
input_lines.sort();
for (auto &it : input_lines)
f << it.second;
log_assert(input_lines.size() == input_bits.size());
int box_count = 0;
for (auto cell : box_list)
f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));
output_lines.sort();
if (omode)
output_lines[State::S0] = "output 0 0 $__dummy__\n";
for (auto &it : output_lines)
f << it.second;
log_assert(output_lines.size() == output_bits.size());
wire_lines.sort();
for (auto &it : wire_lines)
f << it.second;
}
};
struct XAigerBackend : public Backend {
XAigerBackend() : Backend("xaiger", "write design to XAIGER file") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" write_xaiger [options] [filename]\n");
log("\n");
log("Write the current design to an XAIGER file. The design must be flattened and\n");
log("all unsupported cells will be converted into psuedo-inputs and pseudo-outputs.\n");
log("\n");
log(" -ascii\n");
log(" write ASCII version of AIGER format\n");
log("\n");
log(" -map <filename>\n");
log(" write an extra file with port and latch symbols\n");
log("\n");
log(" -vmap <filename>\n");
log(" like -map, but more verbose\n");
log("\n");
}
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
bool ascii_mode = false;
bool verbose_map = false;
std::string map_filename;
log_header(design, "Executing XAIGER backend.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-ascii") {
ascii_mode = true;
continue;
}
if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) {
map_filename = args[++argidx];
continue;
}
if (map_filename.empty() && args[argidx] == "-vmap" && argidx+1 < args.size()) {
map_filename = args[++argidx];
verbose_map = true;
continue;
}
break;
}
extra_args(f, filename, args, argidx);
Module *top_module = design->top_module();
if (top_module == nullptr)
log_error("Can't find top module in current design!\n");
XAigerWriter writer(top_module);
writer.write_aiger(*f, ascii_mode);
if (!map_filename.empty()) {
std::ofstream mapf;
mapf.open(map_filename.c_str(), std::ofstream::trunc);
if (mapf.fail())
log_error("Can't open file `%s' for writing: %s\n", map_filename.c_str(), strerror(errno));
writer.write_map(mapf, verbose_map);
}
}
} XAigerBackend;
PRIVATE_NAMESPACE_END