mirror of https://github.com/YosysHQ/yosys.git
440 lines
12 KiB
Plaintext
440 lines
12 KiB
Plaintext
// ISC License
|
|
//
|
|
// Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries
|
|
//
|
|
// Permission to use, copy, modify, and/or distribute this software for any
|
|
// purpose with or without fee is hereby granted, provided that the above
|
|
// copyright notice and this permission notice appear in all copies.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
|
|
// This file describes the main pattern matcher setup (of three total) that
|
|
// forms the `microchip_dsp` pass described in microchip_dsp.cc
|
|
// At a high level, it works as follows:
|
|
// ( 1) Starting from a DSP cell. Capture DSP configurations as states
|
|
// ( 2) Match for pre-adder
|
|
// ( 3) Match for post-adder
|
|
// ( 4) Match register 'A', 'B', 'D', 'P'
|
|
// ( 5) If post-adder and PREG both present, check if PREG feeds into post-adder.
|
|
// This indicates an accumulator situation like the ASCII diagram below:
|
|
// +--------------------------------+
|
|
// |_________ |
|
|
// | /-------\ +----+ |
|
|
// +----+ +-| post- |___|PREG|---+ 'P'
|
|
// |MULT|------ | adder | +----+
|
|
// +----+ \-------/
|
|
|
|
pattern microchip_dsp_pack
|
|
|
|
state <SigBit> clock
|
|
state <SigSpec> sigA sigB sigC sigD sigP
|
|
state <Cell*> ffA ffB ffD ffP
|
|
state <Cell*> preAdderStatic postAdderStatic
|
|
state <bool> moveBtoA useFeedBack
|
|
|
|
// static ports, used to detect dsp configuration
|
|
state <SigSpec> bypassA bypassB bypassC bypassD bypassP
|
|
state <SigSpec> bypassPASUB
|
|
|
|
// Variables used for subpatterns
|
|
state <SigSpec> argQ argD
|
|
udata <bool> allowAsync
|
|
udata <SigSpec> dffD dffQ
|
|
udata <SigBit> dffclock
|
|
udata <Cell*> dff
|
|
udata <Cell*> u_preAdderStatic u_postAdderStatic
|
|
udata <IdString> u_postAddAB
|
|
state <IdString> postAddAB
|
|
|
|
// (1) Starting from a DSP cell
|
|
match dsp
|
|
select dsp->type.in(\MACC_PA)
|
|
endmatch
|
|
|
|
// detect existing signals connected to DSP
|
|
// detect configuration ports
|
|
code sigA sigB sigC sigD clock sigP
|
|
//helper function to remove unused bits
|
|
auto unextend = [](const SigSpec &sig) {
|
|
int i;
|
|
for (i = GetSize(sig)-1; i > 0; i--)
|
|
if (sig[i] != sig[i-1])
|
|
break;
|
|
// Do not remove non-const sign bit
|
|
if (sig[i].wire)
|
|
++i;
|
|
return sig.extract(0, i);
|
|
};
|
|
|
|
//unextend to remove unused bits
|
|
sigA = unextend(port(dsp, \A));
|
|
sigB = unextend(port(dsp, \B));
|
|
|
|
//update signals
|
|
sigC = port(dsp, \C, SigSpec());
|
|
sigD = port(dsp, \D, SigSpec());
|
|
|
|
|
|
SigSpec P = port(dsp, \P);
|
|
// Only care about bits that are used
|
|
int i;
|
|
for (i = GetSize(P)-1; i >= 0; i--)
|
|
if (nusers(P[i]) > 1)
|
|
break;
|
|
i++;
|
|
log_assert(nusers(P.extract_end(i)) <= 1);
|
|
// This sigP could have no users if downstream sinks (e.g. $add) is
|
|
// narrower than $mul result, for example
|
|
if (i == 0)
|
|
reject;
|
|
sigP = P.extract(0, i);
|
|
clock = port(dsp, \CLK, SigBit());
|
|
|
|
endcode
|
|
|
|
// capture static configuration ports
|
|
code bypassA bypassB bypassC bypassD bypassPASUB bypassP
|
|
bypassA = port(dsp, \A_BYPASS, SigSpec());
|
|
bypassB = port(dsp, \B_BYPASS, SigSpec());
|
|
bypassC = port(dsp, \C_BYPASS, SigSpec());
|
|
bypassD = port(dsp, \D_BYPASS, SigSpec());
|
|
bypassPASUB = port(dsp, \PASUB_BYPASS, SigSpec());
|
|
bypassP = port(dsp, \P_BYPASS, SigSpec());
|
|
endcode
|
|
|
|
// (2) Match for pre-adder
|
|
//
|
|
code sigA sigB sigD preAdderStatic moveBtoA
|
|
subpattern(preAddMatching);
|
|
preAdderStatic = u_preAdderStatic;
|
|
moveBtoA = false;
|
|
|
|
if (preAdderStatic) {
|
|
|
|
if (port(preAdderStatic, \Y) == sigA)
|
|
{
|
|
//used for packing
|
|
moveBtoA = true;
|
|
|
|
// sigA should be the input to the multiplier without the preAdd. sigB and sigD should be
|
|
//the preAdd inputs. If our "A" input into the multiplier is from the preAdd (not sigA), then
|
|
// we basically swap it.
|
|
sigA = port(dsp, \B);
|
|
}
|
|
|
|
// port B of preAdderStatic must be mapped to port D of DSP for subtraction
|
|
sigD = port(preAdderStatic, \B);
|
|
sigB = port(preAdderStatic, \A);
|
|
}
|
|
endcode
|
|
|
|
// (3) Match for post-adder
|
|
//
|
|
code postAdderStatic sigP sigC
|
|
u_postAdderStatic = nullptr;
|
|
subpattern(postAddMatching);
|
|
postAdderStatic = u_postAdderStatic;
|
|
|
|
if (postAdderStatic) {
|
|
//sigC will be whichever input to the postAdder that is NOT from the multiplier
|
|
// u_postAddAB is the input to the postAdder from the multiplier
|
|
sigC = port(postAdderStatic, u_postAddAB == \A ? \B : \A);
|
|
sigP = port(postAdderStatic, \Y);
|
|
}
|
|
endcode
|
|
|
|
|
|
// (4) Matching registers
|
|
//
|
|
// 'A' input for REG_A
|
|
code argQ bypassA sigA clock ffA
|
|
if (bypassA.is_fully_ones()){
|
|
argQ = sigA;
|
|
allowAsync = false;
|
|
subpattern(in_dffe);
|
|
if (dff) {
|
|
ffA = dff;
|
|
clock = dffclock;
|
|
sigA = dffD;
|
|
}
|
|
}
|
|
endcode
|
|
|
|
// 'B' input for REG_B
|
|
code argQ bypassB sigB clock ffB
|
|
if (bypassB.is_fully_ones()){
|
|
argQ = sigB;
|
|
allowAsync = false;
|
|
subpattern(in_dffe);
|
|
if (dff) {
|
|
ffB = dff;
|
|
clock = dffclock;
|
|
sigB = dffD;
|
|
}
|
|
}
|
|
endcode
|
|
|
|
// 'D' input for REG_D
|
|
code argQ bypassP sigD clock ffD
|
|
if (bypassD.is_fully_ones()){
|
|
argQ = sigD;
|
|
allowAsync = true;
|
|
subpattern(in_dffe);
|
|
if (dff) {
|
|
ffD = dff;
|
|
clock = dffclock;
|
|
sigD = dffD;
|
|
}
|
|
}
|
|
endcode
|
|
|
|
// 'P' output for REG_P
|
|
code argD ffP sigP clock bypassP
|
|
if (bypassP.is_fully_ones() && nusers(sigP) == 2) {
|
|
argD = sigP;
|
|
allowAsync = false;
|
|
subpattern(out_dffe);
|
|
if (dff) {
|
|
ffP = dff;
|
|
clock = dffclock;
|
|
sigP = dffQ;
|
|
}
|
|
}
|
|
endcode
|
|
|
|
// (5) If post-adder and PREG both present, check if PREG feeds into post-adder via port C.
|
|
// This indicates an accumulator situation. Port C can be freed
|
|
// +--------------------------------+
|
|
// |_________ |
|
|
// | /-------\ +----+ |
|
|
// +----+ +-| post- |___|PREG|---+ 'P'
|
|
// |MULT|------ | adder | +----+
|
|
// +----+ \-------/
|
|
code useFeedBack
|
|
useFeedBack = false;
|
|
if (postAdderStatic && ffP) {
|
|
if (sigC == sigP) {
|
|
useFeedBack = true;
|
|
}
|
|
}
|
|
|
|
endcode
|
|
|
|
// if any cells are absorbed, invoke the callback function
|
|
code
|
|
if (preAdderStatic || postAdderStatic)
|
|
accept;
|
|
if (ffA || ffB || ffD || ffP)
|
|
accept;
|
|
endcode
|
|
|
|
|
|
// #######################
|
|
// Subpattern for matching against post-adder
|
|
// Match 'P' output that exclusively drives one of two inputs to an $add
|
|
// cell (post-adder).
|
|
// The other input to the adder is assumed to come in from the 'C' input
|
|
|
|
subpattern postAddMatching
|
|
arg sigP
|
|
|
|
match postAdd
|
|
|
|
select postAdd->type.in($add, $sub)
|
|
select GetSize(port(postAdd, \Y)) <= 48
|
|
|
|
// AB is the port that connects MUL to ADD
|
|
choice <IdString> AB {\A, \B}
|
|
select nusers(port(postAdd, AB)) == 2
|
|
|
|
// has one input coming from multiplier
|
|
index <SigBit> port(postAdd, AB)[0] === sigP[0]
|
|
filter GetSize(port(postAdd, AB)) >= GetSize(sigP)
|
|
filter port(postAdd, AB).extract(0, GetSize(sigP)) == sigP
|
|
// Check that remainder of AB is a sign- or zero-extension
|
|
filter port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(sigP[GetSize(sigP)-1], GetSize(port(postAdd, AB))-GetSize(sigP)) || port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(State::S0, GetSize(port(postAdd, AB))-GetSize(sigP))
|
|
|
|
set postAddAB AB
|
|
// optional
|
|
endmatch
|
|
|
|
code
|
|
if (postAdd)
|
|
{
|
|
if (postAdd->type.in(ID($sub)) && postAddAB == \A) {
|
|
// if $sub, the multiplier output must match to $sub.B, otherwise no match
|
|
} else {
|
|
u_postAddAB = postAddAB;
|
|
u_postAdderStatic = postAdd;
|
|
}
|
|
|
|
}
|
|
endcode
|
|
|
|
|
|
// #######################
|
|
// Subpattern for matching against pre-adder
|
|
// support static PASUB only
|
|
|
|
subpattern preAddMatching
|
|
arg sigA sigB sigD bypassB bypassD bypassPASUB
|
|
|
|
code
|
|
u_preAdderStatic = nullptr;
|
|
|
|
// Ensure that preAdder not already used
|
|
// Assume we can inspect port D to see if its all zeros.
|
|
if (!(sigD.empty() || sigD.is_fully_zero())) reject;
|
|
if (!bypassB.is_fully_ones()) reject;
|
|
if (!bypassD.is_fully_ones()) reject;
|
|
if (!bypassPASUB.is_fully_ones()) reject;
|
|
endcode
|
|
|
|
match preAdd
|
|
|
|
// can handle add or sub
|
|
select preAdd->type.in($add, $sub)
|
|
|
|
// Output has to be 18 bits or less, and only has single fanout
|
|
select GetSize(port(preAdd, \Y)) <= 18
|
|
select nusers(port(preAdd, \Y)) == 2
|
|
|
|
// Adder inputs must be 18 bits or less
|
|
select GetSize(port(preAdd, \A)) <= 18
|
|
select GetSize(port(preAdd, \B)) <= 18
|
|
|
|
// Output feeds into one of multiplier input
|
|
filter port(preAdd, \Y) == sigB || port(preAdd, \Y) == sigA
|
|
|
|
// optional
|
|
endmatch
|
|
|
|
code
|
|
if (preAdd)
|
|
{
|
|
u_preAdderStatic = preAdd;
|
|
}
|
|
endcode
|
|
|
|
// #######################
|
|
// Subpattern for matching against input registers, based on knowledge of the
|
|
// 'Q' input.
|
|
subpattern in_dffe
|
|
arg argQ clock
|
|
|
|
code
|
|
dff = nullptr;
|
|
if (argQ.empty())
|
|
reject;
|
|
for (const auto &c : argQ.chunks()) {
|
|
// Abandon matches when 'Q' is a constant
|
|
if (!c.wire)
|
|
reject;
|
|
// Abandon matches when 'Q' has the keep attribute set
|
|
if (c.wire->get_bool_attribute(\keep))
|
|
reject;
|
|
// Abandon matches when 'Q' has a non-zero init attribute set
|
|
Const init = c.wire->attributes.at(\init, Const());
|
|
if (!init.empty())
|
|
for (auto b : init.extract(c.offset, c.width))
|
|
if (b != State::Sx && b != State::S0)
|
|
reject;
|
|
}
|
|
endcode
|
|
|
|
match ff
|
|
// reg D has async rst
|
|
// reg A, B has sync rst
|
|
select ff->type.in($dff, $dffe, $sdff, $sdffe, $adff, $adffe)
|
|
// does not support clock inversion
|
|
select param(ff, \CLK_POLARITY).as_bool()
|
|
|
|
// it is possible that only part of a dff output matches argQ
|
|
slice offset GetSize(port(ff, \D))
|
|
index <SigBit> port(ff, \Q)[offset] === argQ[0]
|
|
|
|
// Check that the rest of argQ is present
|
|
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
|
|
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
|
|
|
|
// only consider async rst flops when flag is set
|
|
filter !ff->type.in($adff, $adffe) || allowAsync
|
|
|
|
// clock must be consistent
|
|
filter clock == SigBit() || port(ff, \CLK) == clock
|
|
endmatch
|
|
|
|
code argQ
|
|
// Check that reset value, if present, is fully 0.
|
|
bool noResetFlop = ff->type.in($dff, $dffe);
|
|
bool srstZero = ff->type.in($sdff, $sdffe) && param(ff, \SRST_VALUE).is_fully_zero();
|
|
bool arstZero = ff->type.in($adff, $adffe) && param(ff, \ARST_VALUE).is_fully_zero();
|
|
bool resetLegal = noResetFlop || srstZero || arstZero;
|
|
if (resetLegal)
|
|
{
|
|
SigSpec Q = port(ff, \Q);
|
|
dff = ff;
|
|
dffclock = port(ff, \CLK);
|
|
dffD = argQ;
|
|
SigSpec D = port(ff, \D);
|
|
argQ = Q;
|
|
dffD.replace(argQ, D);
|
|
}
|
|
|
|
endcode
|
|
// #######################
|
|
|
|
|
|
subpattern out_dffe
|
|
arg argD argQ clock
|
|
|
|
code
|
|
dff = nullptr;
|
|
for (auto c : argD.chunks())
|
|
// Abandon matches when 'D' has the keep attribute set
|
|
if (c.wire->get_bool_attribute(\keep))
|
|
reject;
|
|
endcode
|
|
|
|
match ff
|
|
select ff->type.in($dff, $dffe, $sdff, $sdffe)
|
|
// does not support clock inversion
|
|
select param(ff, \CLK_POLARITY).as_bool()
|
|
|
|
slice offset GetSize(port(ff, \D))
|
|
index <SigBit> port(ff, \D)[offset] === argD[0]
|
|
|
|
// Check that the rest of argD is present
|
|
filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
|
|
filter port(ff, \D).extract(offset, GetSize(argD)) == argD
|
|
|
|
filter clock == SigBit() || port(ff, \CLK) == clock
|
|
endmatch
|
|
|
|
code argQ
|
|
SigSpec D = port(ff, \D);
|
|
SigSpec Q = port(ff, \Q);
|
|
argQ = argD;
|
|
argQ.replace(D, Q);
|
|
|
|
// Abandon matches when 'Q' has a non-zero init attribute set
|
|
for (auto c : argQ.chunks()) {
|
|
Const init = c.wire->attributes.at(\init, Const());
|
|
if (!init.empty())
|
|
for (auto b : init.extract(c.offset, c.width))
|
|
if (b != State::Sx && b != State::S0)
|
|
reject;
|
|
}
|
|
|
|
dff = ff;
|
|
dffQ = argQ;
|
|
dffclock = port(ff, \CLK);
|
|
endcode
|