mirror of https://github.com/YosysHQ/yosys.git
802 lines
29 KiB
Verilog
802 lines
29 KiB
Verilog
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
|
|
* 2019 Eddie Hung <eddie@fpgeh.com>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
// The following techmapping rules are intended to be run (with -max_iter 1)
|
|
// before invoking the `abc9` pass in order to transform the design into
|
|
// a format that it understands.
|
|
//
|
|
// For example, (complex) flip-flops are expected to be described as an
|
|
// combinatorial box (containing all control logic such as clock enable
|
|
// or synchronous resets) followed by a basic D-Q flop.
|
|
// Yosys will automatically analyse the simulation model (described in
|
|
// cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
|
|
// order to extract the combinatorial control logic left behind.
|
|
// Specifically, a simulation model similar to the one below:
|
|
//
|
|
// ++===================================++
|
|
// || Sim model ||
|
|
// || /\/\/\/\ ||
|
|
// D -->>-----< > +------+ ||
|
|
// R -->>-----< Comb. > |$_DFF_| ||
|
|
// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
|
|
// || +--< > +------+ | ||
|
|
// || | \/\/\/\/ | ||
|
|
// || | | ||
|
|
// || +----------------------------+ ||
|
|
// || ||
|
|
// ++===================================++
|
|
//
|
|
// is transformed into:
|
|
//
|
|
// ++==================++
|
|
// || Comb box ||
|
|
// || ||
|
|
// || /\/\/\/\ ||
|
|
// D -->>-----< > || +------+
|
|
// R -->>-----< Comb. > || |$__ABC|
|
|
// CE -->>-----< logic >--->>-- $nextQ --| _FF_ |--+-->> Q
|
|
// $abc9_currQ +-->>-----< > || +------+ |
|
|
// | || \/\/\/\/ || |
|
|
// | || || |
|
|
// | ++==================++ |
|
|
// | |
|
|
// +----------------------------------------------+
|
|
//
|
|
// The purpose of the following FD* rules are to wrap the flop with:
|
|
// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
|
|
// the connectivity of its basic D-Q flop
|
|
// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to
|
|
// capture asynchronous behaviour
|
|
// (c) a special _TECHMAP_REPLACE_.$abc9_clock wire to capture its clock
|
|
// domain and polarity (used when partitioning the module so that `abc9' only
|
|
// performs sequential synthesis (with reachability analysis) correctly on
|
|
// one domain at a time) and also used to infer the optional delay target
|
|
// from the (* abc9_clock_period = %d *) attribute attached to any wire
|
|
// within
|
|
// (d) a special _TECHMAP_REPLACE_.$abc9_init wire to encode the flop's initial
|
|
// state
|
|
// (e) a special _TECHMAP_REPLACE_.$abc9_currQ wire that will be used for feedback
|
|
// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
|
|
//
|
|
// In order to perform sequential synthesis, `abc9' also requires that
|
|
// the initial value of all flops be zero.
|
|
|
|
module FDRE (output Q, input C, CE, D, R);
|
|
parameter [0:0] INIT = 1'b0;
|
|
parameter [0:0] IS_C_INVERTED = 1'b0;
|
|
parameter [0:0] IS_D_INVERTED = 1'b0;
|
|
parameter [0:0] IS_R_INVERTED = 1'b0;
|
|
wire QQ, $nextQ;
|
|
generate if (INIT == 1'b1) begin
|
|
assign Q = ~QQ;
|
|
FDSE #(
|
|
.INIT(1'b0),
|
|
.IS_C_INVERTED(IS_C_INVERTED),
|
|
.IS_D_INVERTED(IS_D_INVERTED),
|
|
.IS_S_INVERTED(IS_R_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(~D), .Q($nextQ), .C(C), .CE(CE), .S(R)
|
|
);
|
|
end
|
|
else begin
|
|
assign Q = QQ;
|
|
FDRE #(
|
|
.INIT(1'b0),
|
|
.IS_C_INVERTED(IS_C_INVERTED),
|
|
.IS_D_INVERTED(IS_D_INVERTED),
|
|
.IS_R_INVERTED(IS_R_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
|
|
);
|
|
end
|
|
endgenerate
|
|
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(QQ));
|
|
|
|
// Special signals
|
|
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
|
|
endmodule
|
|
module FDRE_1 (output Q, input C, CE, D, R);
|
|
parameter [0:0] INIT = 1'b0;
|
|
wire QQ, $nextQ;
|
|
generate if (INIT == 1'b1) begin
|
|
assign Q = ~QQ;
|
|
FDSE_1 #(
|
|
.INIT(1'b0)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(~D), .Q($nextQ), .C(C), .CE(CE), .S(R)
|
|
);
|
|
end
|
|
else begin
|
|
assign Q = QQ;
|
|
FDRE_1 #(
|
|
.INIT(1'b0)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
|
|
);
|
|
end
|
|
endgenerate
|
|
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(QQ));
|
|
|
|
// Special signals
|
|
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
|
|
endmodule
|
|
|
|
module FDCE (output Q, input C, CE, D, CLR);
|
|
parameter [0:0] INIT = 1'b0;
|
|
parameter [0:0] IS_C_INVERTED = 1'b0;
|
|
parameter [0:0] IS_D_INVERTED = 1'b0;
|
|
parameter [0:0] IS_CLR_INVERTED = 1'b0;
|
|
wire QQ, $nextQ, $abc9_currQ;
|
|
generate if (INIT == 1'b1) begin
|
|
assign Q = ~QQ;
|
|
FDPE #(
|
|
.INIT(1'b0),
|
|
.IS_C_INVERTED(IS_C_INVERTED),
|
|
.IS_D_INVERTED(IS_D_INVERTED),
|
|
.IS_PRE_INVERTED(IS_CLR_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(~D), .Q($nextQ), .C(C), .CE(CE), .PRE(CLR)
|
|
// ^^^ Note that async
|
|
// control is not directly
|
|
// supported by abc9 but its
|
|
// behaviour is captured by
|
|
// $__ABC9_ASYNC below
|
|
);
|
|
end
|
|
else begin
|
|
assign Q = QQ;
|
|
FDCE #(
|
|
.INIT(1'b0),
|
|
.IS_C_INVERTED(IS_C_INVERTED),
|
|
.IS_D_INVERTED(IS_D_INVERTED),
|
|
.IS_CLR_INVERTED(IS_CLR_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
|
|
// ^^^ Note that async
|
|
// control is not directly
|
|
// supported by abc9 but its
|
|
// behaviour is captured by
|
|
// $__ABC9_ASYNC below
|
|
);
|
|
end endgenerate
|
|
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
|
|
// Since this is an async flop, async behaviour is also dealt with
|
|
// using the $_ABC9_ASYNC box by abc9_map.v
|
|
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
|
|
|
|
// Special signals
|
|
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
|
|
endmodule
|
|
module FDCE_1 (output Q, input C, CE, D, CLR);
|
|
parameter [0:0] INIT = 1'b0;
|
|
wire QQ, $nextQ, $abc9_currQ;
|
|
generate if (INIT == 1'b1) begin
|
|
assign Q = ~QQ;
|
|
FDPE_1 #(
|
|
.INIT(1'b0)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(~D), .Q($nextQ), .C(C), .CE(CE), .PRE(CLR)
|
|
// ^^^ Note that async
|
|
// control is not directly
|
|
// supported by abc9 but its
|
|
// behaviour is captured by
|
|
// $__ABC9_ASYNC below
|
|
);
|
|
end
|
|
else begin
|
|
assign Q = QQ;
|
|
FDCE_1 #(
|
|
.INIT(1'b0)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
|
|
// ^^^ Note that async
|
|
// control is not directly
|
|
// supported by abc9 but its
|
|
// behaviour is captured by
|
|
// $__ABC9_ASYNC below
|
|
);
|
|
end endgenerate
|
|
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
|
|
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
|
|
|
|
// Special signals
|
|
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
|
|
endmodule
|
|
|
|
module FDPE (output Q, input C, CE, D, PRE);
|
|
parameter [0:0] INIT = 1'b1;
|
|
parameter [0:0] IS_C_INVERTED = 1'b0;
|
|
parameter [0:0] IS_D_INVERTED = 1'b0;
|
|
parameter [0:0] IS_PRE_INVERTED = 1'b0;
|
|
wire QQ, $nextQ, $abc9_currQ;
|
|
generate if (INIT == 1'b1) begin
|
|
assign Q = ~QQ;
|
|
FDCE #(
|
|
.INIT(1'b0),
|
|
.IS_C_INVERTED(IS_C_INVERTED),
|
|
.IS_D_INVERTED(IS_D_INVERTED),
|
|
.IS_CLR_INVERTED(IS_PRE_INVERTED),
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(~D), .Q($nextQ), .C(C), .CE(CE), .CLR(PRE)
|
|
// ^^^ Note that async
|
|
// control is not directly
|
|
// supported by abc9 but its
|
|
// behaviour is captured by
|
|
// $__ABC9_ASYNC below
|
|
);
|
|
end
|
|
else begin
|
|
assign Q = QQ;
|
|
FDPE #(
|
|
.INIT(1'b0),
|
|
.IS_C_INVERTED(IS_C_INVERTED),
|
|
.IS_D_INVERTED(IS_D_INVERTED),
|
|
.IS_PRE_INVERTED(IS_PRE_INVERTED),
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
|
|
// ^^^ Note that async
|
|
// control is not directly
|
|
// supported by abc9 but its
|
|
// behaviour is captured by
|
|
// $__ABC9_ASYNC below
|
|
);
|
|
end endgenerate
|
|
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
|
|
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
|
|
|
|
// Special signals
|
|
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
|
|
endmodule
|
|
module FDPE_1 (output Q, input C, CE, D, PRE);
|
|
parameter [0:0] INIT = 1'b1;
|
|
wire QQ, $nextQ, $abc9_currQ;
|
|
generate if (INIT == 1'b1) begin
|
|
assign Q = ~QQ;
|
|
FDCE_1 #(
|
|
.INIT(1'b0)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(~D), .Q($nextQ), .C(C), .CE(CE), .CLR(PRE)
|
|
// ^^^ Note that async
|
|
// control is not directly
|
|
// supported by abc9 but its
|
|
// behaviour is captured by
|
|
// $__ABC9_ASYNC below
|
|
);
|
|
end
|
|
else begin
|
|
assign Q = QQ;
|
|
FDPE_1 #(
|
|
.INIT(1'b0)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
|
|
// ^^^ Note that async
|
|
// control is not directly
|
|
// supported by abc9 but its
|
|
// behaviour is captured by
|
|
// $__ABC9_ASYNC below
|
|
);
|
|
end endgenerate
|
|
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
|
|
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
|
|
|
|
// Special signals
|
|
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
|
|
endmodule
|
|
|
|
module FDSE (output Q, input C, CE, D, S);
|
|
parameter [0:0] INIT = 1'b1;
|
|
parameter [0:0] IS_C_INVERTED = 1'b0;
|
|
parameter [0:0] IS_D_INVERTED = 1'b0;
|
|
parameter [0:0] IS_S_INVERTED = 1'b0;
|
|
wire QQ, $nextQ;
|
|
generate if (INIT == 1'b1) begin
|
|
assign Q = ~QQ;
|
|
FDRE #(
|
|
.INIT(1'b0),
|
|
.IS_C_INVERTED(IS_C_INVERTED),
|
|
.IS_D_INVERTED(IS_D_INVERTED),
|
|
.IS_R_INVERTED(IS_S_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(~D), .Q($nextQ), .C(C), .CE(CE), .R(S)
|
|
);
|
|
end
|
|
else begin
|
|
assign Q = QQ;
|
|
FDSE #(
|
|
.INIT(1'b0),
|
|
.IS_C_INVERTED(IS_C_INVERTED),
|
|
.IS_D_INVERTED(IS_D_INVERTED),
|
|
.IS_S_INVERTED(IS_S_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
|
|
);
|
|
end endgenerate
|
|
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(QQ));
|
|
|
|
// Special signals
|
|
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
|
|
endmodule
|
|
module FDSE_1 (output Q, input C, CE, D, S);
|
|
parameter [0:0] INIT = 1'b1;
|
|
wire QQ, $nextQ;
|
|
generate if (INIT == 1'b1) begin
|
|
assign Q = ~QQ;
|
|
FDRE_1 #(
|
|
.INIT(1'b0)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(~D), .Q($nextQ), .C(C), .CE(CE), .R(S)
|
|
);
|
|
end
|
|
else begin
|
|
assign Q = QQ;
|
|
FDSE_1 #(
|
|
.INIT(1'b0)
|
|
) _TECHMAP_REPLACE_ (
|
|
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
|
|
);
|
|
end endgenerate
|
|
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(QQ));
|
|
|
|
// Special signals
|
|
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
|
|
wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
|
|
endmodule
|
|
|
|
module RAM32X1D (
|
|
output DPO, SPO,
|
|
(* techmap_autopurge *) input D,
|
|
(* techmap_autopurge *) input WCLK,
|
|
(* techmap_autopurge *) input WE,
|
|
(* techmap_autopurge *) input A0, A1, A2, A3, A4,
|
|
(* techmap_autopurge *) input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
|
|
);
|
|
parameter INIT = 32'h0;
|
|
parameter IS_WCLK_INVERTED = 1'b0;
|
|
wire \$DPO , \$SPO ;
|
|
RAM32X1D #(
|
|
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.DPO(\$DPO ), .SPO(\$SPO ),
|
|
.D(D), .WCLK(WCLK), .WE(WE),
|
|
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4),
|
|
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4)
|
|
);
|
|
\$__ABC9_LUT6 spo (.A(\$SPO ), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO));
|
|
\$__ABC9_LUT6 dpo (.A(\$DPO ), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
|
|
endmodule
|
|
|
|
module RAM64X1D (
|
|
output DPO, SPO,
|
|
(* techmap_autopurge *) input D,
|
|
(* techmap_autopurge *) input WCLK,
|
|
(* techmap_autopurge *) input WE,
|
|
(* techmap_autopurge *) input A0, A1, A2, A3, A4, A5,
|
|
(* techmap_autopurge *) input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
|
|
);
|
|
parameter INIT = 64'h0;
|
|
parameter IS_WCLK_INVERTED = 1'b0;
|
|
wire \$DPO , \$SPO ;
|
|
RAM64X1D #(
|
|
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.DPO(\$DPO ), .SPO(\$SPO ),
|
|
.D(D), .WCLK(WCLK), .WE(WE),
|
|
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5),
|
|
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5)
|
|
);
|
|
\$__ABC9_LUT6 spo (.A(\$SPO ), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO));
|
|
\$__ABC9_LUT6 dpo (.A(\$DPO ), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO));
|
|
endmodule
|
|
|
|
module RAM128X1D (
|
|
output DPO, SPO,
|
|
(* techmap_autopurge *) input D,
|
|
(* techmap_autopurge *) input WCLK,
|
|
(* techmap_autopurge *) input WE,
|
|
(* techmap_autopurge *) input [6:0] A, DPRA
|
|
);
|
|
parameter INIT = 128'h0;
|
|
parameter IS_WCLK_INVERTED = 1'b0;
|
|
wire \$DPO , \$SPO ;
|
|
RAM128X1D #(
|
|
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.DPO(\$DPO ), .SPO(\$SPO ),
|
|
.D(D), .WCLK(WCLK), .WE(WE),
|
|
.A(A),
|
|
.DPRA(DPRA)
|
|
);
|
|
\$__ABC9_LUT7 spo (.A(\$SPO ), .S(A), .Y(SPO));
|
|
\$__ABC9_LUT7 dpo (.A(\$DPO ), .S(DPRA), .Y(DPO));
|
|
endmodule
|
|
|
|
module SRL16E (
|
|
output Q,
|
|
(* techmap_autopurge *) input A0, A1, A2, A3, CE, CLK, D
|
|
);
|
|
parameter [15:0] INIT = 16'h0000;
|
|
parameter [0:0] IS_CLK_INVERTED = 1'b0;
|
|
wire \$Q ;
|
|
SRL16E #(
|
|
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.Q(\$Q ),
|
|
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D)
|
|
);
|
|
\$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q));
|
|
endmodule
|
|
|
|
module SRLC32E (
|
|
output Q,
|
|
output Q31,
|
|
(* techmap_autopurge *) input [4:0] A,
|
|
(* techmap_autopurge *) input CE, CLK, D
|
|
);
|
|
parameter [31:0] INIT = 32'h00000000;
|
|
parameter [0:0] IS_CLK_INVERTED = 1'b0;
|
|
wire \$Q ;
|
|
SRLC32E #(
|
|
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.Q(\$Q ), .Q31(Q31),
|
|
.A(A), .CE(CE), .CLK(CLK), .D(D)
|
|
);
|
|
\$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A}), .Y(Q));
|
|
endmodule
|
|
|
|
module DSP48E1 (
|
|
(* techmap_autopurge *) output [29:0] ACOUT,
|
|
(* techmap_autopurge *) output [17:0] BCOUT,
|
|
(* techmap_autopurge *) output reg CARRYCASCOUT,
|
|
(* techmap_autopurge *) output reg [3:0] CARRYOUT,
|
|
(* techmap_autopurge *) output reg MULTSIGNOUT,
|
|
(* techmap_autopurge *) output OVERFLOW,
|
|
(* techmap_autopurge *) output reg signed [47:0] P,
|
|
(* techmap_autopurge *) output PATTERNBDETECT,
|
|
(* techmap_autopurge *) output PATTERNDETECT,
|
|
(* techmap_autopurge *) output [47:0] PCOUT,
|
|
(* techmap_autopurge *) output UNDERFLOW,
|
|
(* techmap_autopurge *) input signed [29:0] A,
|
|
(* techmap_autopurge *) input [29:0] ACIN,
|
|
(* techmap_autopurge *) input [3:0] ALUMODE,
|
|
(* techmap_autopurge *) input signed [17:0] B,
|
|
(* techmap_autopurge *) input [17:0] BCIN,
|
|
(* techmap_autopurge *) input [47:0] C,
|
|
(* techmap_autopurge *) input CARRYCASCIN,
|
|
(* techmap_autopurge *) input CARRYIN,
|
|
(* techmap_autopurge *) input [2:0] CARRYINSEL,
|
|
(* techmap_autopurge *) input CEA1,
|
|
(* techmap_autopurge *) input CEA2,
|
|
(* techmap_autopurge *) input CEAD,
|
|
(* techmap_autopurge *) input CEALUMODE,
|
|
(* techmap_autopurge *) input CEB1,
|
|
(* techmap_autopurge *) input CEB2,
|
|
(* techmap_autopurge *) input CEC,
|
|
(* techmap_autopurge *) input CECARRYIN,
|
|
(* techmap_autopurge *) input CECTRL,
|
|
(* techmap_autopurge *) input CED,
|
|
(* techmap_autopurge *) input CEINMODE,
|
|
(* techmap_autopurge *) input CEM,
|
|
(* techmap_autopurge *) input CEP,
|
|
(* techmap_autopurge *) input CLK,
|
|
(* techmap_autopurge *) input [24:0] D,
|
|
(* techmap_autopurge *) input [4:0] INMODE,
|
|
(* techmap_autopurge *) input MULTSIGNIN,
|
|
(* techmap_autopurge *) input [6:0] OPMODE,
|
|
(* techmap_autopurge *) input [47:0] PCIN,
|
|
(* techmap_autopurge *) input RSTA,
|
|
(* techmap_autopurge *) input RSTALLCARRYIN,
|
|
(* techmap_autopurge *) input RSTALUMODE,
|
|
(* techmap_autopurge *) input RSTB,
|
|
(* techmap_autopurge *) input RSTC,
|
|
(* techmap_autopurge *) input RSTCTRL,
|
|
(* techmap_autopurge *) input RSTD,
|
|
(* techmap_autopurge *) input RSTINMODE,
|
|
(* techmap_autopurge *) input RSTM,
|
|
(* techmap_autopurge *) input RSTP
|
|
);
|
|
parameter integer ACASCREG = 1;
|
|
parameter integer ADREG = 1;
|
|
parameter integer ALUMODEREG = 1;
|
|
parameter integer AREG = 1;
|
|
parameter AUTORESET_PATDET = "NO_RESET";
|
|
parameter A_INPUT = "DIRECT";
|
|
parameter integer BCASCREG = 1;
|
|
parameter integer BREG = 1;
|
|
parameter B_INPUT = "DIRECT";
|
|
parameter integer CARRYINREG = 1;
|
|
parameter integer CARRYINSELREG = 1;
|
|
parameter integer CREG = 1;
|
|
parameter integer DREG = 1;
|
|
parameter integer INMODEREG = 1;
|
|
parameter integer MREG = 1;
|
|
parameter integer OPMODEREG = 1;
|
|
parameter integer PREG = 1;
|
|
parameter SEL_MASK = "MASK";
|
|
parameter SEL_PATTERN = "PATTERN";
|
|
parameter USE_DPORT = "FALSE";
|
|
parameter USE_MULT = "MULTIPLY";
|
|
parameter USE_PATTERN_DETECT = "NO_PATDET";
|
|
parameter USE_SIMD = "ONE48";
|
|
parameter [47:0] MASK = 48'h3FFFFFFFFFFF;
|
|
parameter [47:0] PATTERN = 48'h000000000000;
|
|
parameter [3:0] IS_ALUMODE_INVERTED = 4'b0;
|
|
parameter [0:0] IS_CARRYIN_INVERTED = 1'b0;
|
|
parameter [0:0] IS_CLK_INVERTED = 1'b0;
|
|
parameter [4:0] IS_INMODE_INVERTED = 5'b0;
|
|
parameter [6:0] IS_OPMODE_INVERTED = 7'b0;
|
|
|
|
parameter _TECHMAP_CELLTYPE_ = "";
|
|
localparam techmap_guard = (_TECHMAP_CELLTYPE_ != "");
|
|
|
|
`define DSP48E1_INST(__CELL__) """
|
|
__CELL__ #(
|
|
.ACASCREG(ACASCREG),
|
|
.ADREG(ADREG),
|
|
.ALUMODEREG(ALUMODEREG),
|
|
.AREG(AREG),
|
|
.AUTORESET_PATDET(AUTORESET_PATDET),
|
|
.A_INPUT(A_INPUT),
|
|
.BCASCREG(BCASCREG),
|
|
.BREG(BREG),
|
|
.B_INPUT(B_INPUT),
|
|
.CARRYINREG(CARRYINREG),
|
|
.CARRYINSELREG(CARRYINSELREG),
|
|
.CREG(CREG),
|
|
.DREG(DREG),
|
|
.INMODEREG(INMODEREG),
|
|
.MREG(MREG),
|
|
.OPMODEREG(OPMODEREG),
|
|
.PREG(PREG),
|
|
.SEL_MASK(SEL_MASK),
|
|
.SEL_PATTERN(SEL_PATTERN),
|
|
.USE_DPORT(USE_DPORT),
|
|
.USE_MULT(USE_MULT),
|
|
.USE_PATTERN_DETECT(USE_PATTERN_DETECT),
|
|
.USE_SIMD(USE_SIMD),
|
|
.MASK(MASK),
|
|
.PATTERN(PATTERN),
|
|
.IS_ALUMODE_INVERTED(IS_ALUMODE_INVERTED),
|
|
.IS_CARRYIN_INVERTED(IS_CARRYIN_INVERTED),
|
|
.IS_CLK_INVERTED(IS_CLK_INVERTED),
|
|
.IS_INMODE_INVERTED(IS_INMODE_INVERTED),
|
|
.IS_OPMODE_INVERTED(IS_OPMODE_INVERTED)
|
|
) _TECHMAP_REPLACE_ (
|
|
.ACOUT(ACOUT),
|
|
.BCOUT(BCOUT),
|
|
.CARRYCASCOUT(CARRYCASCOUT),
|
|
.CARRYOUT(CARRYOUT),
|
|
.MULTSIGNOUT(MULTSIGNOUT),
|
|
.OVERFLOW(OVERFLOW),
|
|
.P(oP),
|
|
.PATTERNBDETECT(PATTERNBDETECT),
|
|
.PATTERNDETECT(PATTERNDETECT),
|
|
.PCOUT(oPCOUT),
|
|
.UNDERFLOW(UNDERFLOW),
|
|
.A(iA),
|
|
.ACIN(ACIN),
|
|
.ALUMODE(ALUMODE),
|
|
.B(iB),
|
|
.BCIN(BCIN),
|
|
.C(iC),
|
|
.CARRYCASCIN(CARRYCASCIN),
|
|
.CARRYIN(CARRYIN),
|
|
.CARRYINSEL(CARRYINSEL),
|
|
.CEA1(CEA1),
|
|
.CEA2(CEA2),
|
|
.CEAD(CEAD),
|
|
.CEALUMODE(CEALUMODE),
|
|
.CEB1(CEB1),
|
|
.CEB2(CEB2),
|
|
.CEC(CEC),
|
|
.CECARRYIN(CECARRYIN),
|
|
.CECTRL(CECTRL),
|
|
.CED(CED),
|
|
.CEINMODE(CEINMODE),
|
|
.CEM(CEM),
|
|
.CEP(CEP),
|
|
.CLK(CLK),
|
|
.D(iD),
|
|
.INMODE(INMODE),
|
|
.MULTSIGNIN(MULTSIGNIN),
|
|
.OPMODE(OPMODE),
|
|
.PCIN(PCIN),
|
|
.RSTA(RSTA),
|
|
.RSTALLCARRYIN(RSTALLCARRYIN),
|
|
.RSTALUMODE(RSTALUMODE),
|
|
.RSTB(RSTB),
|
|
.RSTC(RSTC),
|
|
.RSTCTRL(RSTCTRL),
|
|
.RSTD(RSTD),
|
|
.RSTINMODE(RSTINMODE),
|
|
.RSTM(RSTM),
|
|
.RSTP(RSTP)
|
|
);
|
|
"""
|
|
|
|
wire [29:0] iA;
|
|
wire [17:0] iB;
|
|
wire [47:0] iC;
|
|
wire [24:0] iD;
|
|
|
|
wire pA, pB, pC, pD, pAD, pM, pP;
|
|
wire [47:0] oP, mP;
|
|
wire [47:0] oPCOUT, mPCOUT;
|
|
|
|
generate
|
|
if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin
|
|
// Disconnect the A-input if MREG is enabled, since
|
|
// combinatorial path is broken
|
|
if (AREG == 0 && MREG == 0 && PREG == 0)
|
|
assign iA = A, pA = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
|
|
if (BREG == 0 && MREG == 0 && PREG == 0)
|
|
assign iB = B, pB = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
|
|
if (CREG == 0 && PREG == 0)
|
|
assign iC = C, pC = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
|
|
if (DREG == 0)
|
|
assign iD = D;
|
|
else if (techmap_guard)
|
|
$error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
|
|
assign pD = 1'bx;
|
|
if (ADREG == 1 && techmap_guard)
|
|
$error("Invalid DSP48E1 configuration: ADREG enabled but USE_DPORT == \"FALSE\"");
|
|
assign pAD = 1'bx;
|
|
if (PREG == 0) begin
|
|
if (MREG == 1)
|
|
\$__ABC9_REG rM (.Q(pM));
|
|
else
|
|
assign pM = 1'bx;
|
|
assign pP = 1'bx;
|
|
end else begin
|
|
assign pM = 1'bx;
|
|
\$__ABC9_REG rP (.Q(pP));
|
|
end
|
|
|
|
if (MREG == 0 && PREG == 0)
|
|
assign mP = oP, mPCOUT = oPCOUT;
|
|
else
|
|
assign mP = 1'bx, mPCOUT = 1'bx;
|
|
\$__ABC9_DSP48E1_MULT_P_MUX muxP (
|
|
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
|
|
);
|
|
\$__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT (
|
|
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
|
|
);
|
|
|
|
`DSP48E1_INST(\$__ABC9_DSP48E1_MULT )
|
|
end
|
|
else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
|
|
// Disconnect the A-input if MREG is enabled, since
|
|
// combinatorial path is broken
|
|
if (AREG == 0 && ADREG == 0 && MREG == 0 && PREG == 0)
|
|
assign iA = A, pA = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
|
|
if (BREG == 0 && MREG == 0 && PREG == 0)
|
|
assign iB = B, pB = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
|
|
if (CREG == 0 && PREG == 0)
|
|
assign iC = C, pC = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
|
|
if (DREG == 0 && ADREG == 0)
|
|
assign iD = D, pD = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD));
|
|
if (PREG == 0) begin
|
|
if (MREG == 1) begin
|
|
assign pAD = 1'bx;
|
|
\$__ABC9_REG rM (.Q(pM));
|
|
end else begin
|
|
if (ADREG == 1)
|
|
\$__ABC9_REG rAD (.Q(pAD));
|
|
else
|
|
assign pAD = 1'bx;
|
|
assign pM = 1'bx;
|
|
end
|
|
assign pP = 1'bx;
|
|
end else begin
|
|
assign pAD = 1'bx, pM = 1'bx;
|
|
\$__ABC9_REG rP (.Q(pP));
|
|
end
|
|
|
|
if (MREG == 0 && PREG == 0)
|
|
assign mP = oP, mPCOUT = oPCOUT;
|
|
else
|
|
assign mP = 1'bx, mPCOUT = 1'bx;
|
|
\$__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP (
|
|
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
|
|
);
|
|
\$__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT (
|
|
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
|
|
);
|
|
|
|
`DSP48E1_INST(\$__ABC9_DSP48E1_MULT_DPORT )
|
|
end
|
|
else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
|
|
// Disconnect the A-input if MREG is enabled, since
|
|
// combinatorial path is broken
|
|
if (AREG == 0 && PREG == 0)
|
|
assign iA = A, pA = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
|
|
if (BREG == 0 && PREG == 0)
|
|
assign iB = B, pB = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
|
|
if (CREG == 0 && PREG == 0)
|
|
assign iC = C, pC = 1'bx;
|
|
else
|
|
\$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
|
|
if (DREG == 1 && techmap_guard)
|
|
$error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
|
|
assign pD = 1'bx;
|
|
if (ADREG == 1 && techmap_guard)
|
|
$error("Invalid DSP48E1 configuration: ADREG enabled but USE_DPORT == \"FALSE\"");
|
|
assign pAD = 1'bx;
|
|
if (MREG == 1 && techmap_guard)
|
|
$error("Invalid DSP48E1 configuration: MREG enabled but USE_MULT == \"NONE\"");
|
|
assign pM = 1'bx;
|
|
if (PREG == 1)
|
|
\$__ABC9_REG rP (.Q(pP));
|
|
else
|
|
assign pP = 1'bx;
|
|
|
|
if (MREG == 0 && PREG == 0)
|
|
assign mP = oP, mPCOUT = oPCOUT;
|
|
else
|
|
assign mP = 1'bx, mPCOUT = 1'bx;
|
|
\$__ABC9_DSP48E1_P_MUX muxP (
|
|
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
|
|
);
|
|
\$__ABC9_DSP48E1_PCOUT_MUX muxPCOUT (
|
|
.Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
|
|
);
|
|
|
|
`DSP48E1_INST(\$__ABC9_DSP48E1 )
|
|
end
|
|
else
|
|
$error("Invalid DSP48E1 configuration");
|
|
endgenerate
|
|
`undef DSP48E1_INST
|
|
endmodule
|