mirror of https://github.com/YosysHQ/yosys.git
1778 lines
58 KiB
C++
1778 lines
58 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
|
|
* 2019 Eddie Hung <eddie@fpgeh.com>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "kernel/register.h"
|
|
#include "kernel/sigtools.h"
|
|
#include "kernel/utils.h"
|
|
#include "kernel/celltypes.h"
|
|
#include "kernel/timinginfo.h"
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
int map_autoidx;
|
|
|
|
inline std::string remap_name(RTLIL::IdString abc9_name)
|
|
{
|
|
return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
|
|
}
|
|
|
|
void check(RTLIL::Design *design, bool dff_mode)
|
|
{
|
|
dict<IdString,IdString> box_lookup;
|
|
for (auto m : design->modules()) {
|
|
auto flop = m->get_bool_attribute(ID::abc9_flop);
|
|
auto it = m->attributes.find(ID::abc9_box_id);
|
|
if (!flop) {
|
|
if (it == m->attributes.end())
|
|
continue;
|
|
auto id = it->second.as_int();
|
|
auto r = box_lookup.insert(std::make_pair(stringf("$__boxid%d", id), m->name));
|
|
if (!r.second)
|
|
log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n",
|
|
log_id(m), id, log_id(r.first->second));
|
|
}
|
|
|
|
// Make carry in the last PI, and carry out the last PO
|
|
// since ABC requires it this way
|
|
IdString carry_in, carry_out;
|
|
for (const auto &port_name : m->ports) {
|
|
auto w = m->wire(port_name);
|
|
log_assert(w);
|
|
if (w->get_bool_attribute(ID::abc9_carry)) {
|
|
if (w->port_input) {
|
|
if (carry_in != IdString())
|
|
log_error("Module '%s' contains more than one (* abc9_carry *) input port.\n", log_id(m));
|
|
carry_in = port_name;
|
|
}
|
|
if (w->port_output) {
|
|
if (carry_out != IdString())
|
|
log_error("Module '%s' contains more than one (* abc9_carry *) output port.\n", log_id(m));
|
|
carry_out = port_name;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (carry_in != IdString() && carry_out == IdString())
|
|
log_error("Module '%s' contains an (* abc9_carry *) input port but no output port.\n", log_id(m));
|
|
if (carry_in == IdString() && carry_out != IdString())
|
|
log_error("Module '%s' contains an (* abc9_carry *) output port but no input port.\n", log_id(m));
|
|
|
|
if (flop) {
|
|
int num_outputs = 0;
|
|
for (auto port_name : m->ports) {
|
|
auto wire = m->wire(port_name);
|
|
if (wire->port_output) num_outputs++;
|
|
}
|
|
if (num_outputs != 1)
|
|
log_error("Module '%s' with (* abc9_flop *) has %d outputs (expect 1).\n", log_id(m), num_outputs);
|
|
}
|
|
}
|
|
|
|
if (dff_mode) {
|
|
static pool<IdString> unsupported{
|
|
ID($adff), ID($dlatch), ID($dlatchsr), ID($sr),
|
|
ID($_DFF_NN0_), ID($_DFF_NN1_), ID($_DFF_NP0_), ID($_DFF_NP1_),
|
|
ID($_DFF_PN0_), ID($_DFF_PN1_), ID($_DFF_PP0_), ID($_DFF_PP1_),
|
|
ID($_DLATCH_N_), ID($_DLATCH_P_),
|
|
ID($_DLATCHSR_NNN_), ID($_DLATCHSR_NNP_), ID($_DLATCHSR_NPN_), ID($_DLATCHSR_NPP_),
|
|
ID($_DLATCHSR_PNN_), ID($_DLATCHSR_PNP_), ID($_DLATCHSR_PPN_), ID($_DLATCHSR_PPP_),
|
|
ID($_SR_NN_), ID($_SR_NP_), ID($_SR_PN_), ID($_SR_PP_)
|
|
};
|
|
pool<IdString> processed;
|
|
for (auto module : design->selected_modules())
|
|
for (auto cell : module->cells()) {
|
|
auto inst_module = design->module(cell->type);
|
|
if (!inst_module)
|
|
continue;
|
|
IdString derived_type;
|
|
Module *derived_module;
|
|
if (cell->parameters.empty()) {
|
|
derived_type = cell->type;
|
|
derived_module = inst_module;
|
|
}
|
|
else {
|
|
// Check potential (since its value may depend on a parameter,
|
|
// but not its existence)
|
|
if (!inst_module->has_attribute(ID::abc9_flop))
|
|
continue;
|
|
derived_type = inst_module->derive(design, cell->parameters);
|
|
derived_module = design->module(derived_type);
|
|
log_assert(derived_module);
|
|
}
|
|
if (!derived_module->get_bool_attribute(ID::abc9_flop))
|
|
continue;
|
|
if (derived_module->get_blackbox_attribute(true /* ignore_wb */))
|
|
log_error("Module '%s' with (* abc9_flop *) is a blackbox.\n", log_id(derived_type));
|
|
|
|
if (derived_module->has_processes())
|
|
Pass::call_on_module(design, derived_module, "proc");
|
|
|
|
bool found = false;
|
|
for (auto derived_cell : derived_module->cells()) {
|
|
if (derived_cell->type.in(ID($dff), ID($_DFF_N_), ID($_DFF_P_))) {
|
|
if (found)
|
|
log_error("Whitebox '%s' with (* abc9_flop *) contains more than one $_DFF_[NP]_ cell.\n", log_id(derived_module));
|
|
found = true;
|
|
|
|
SigBit Q = derived_cell->getPort(ID::Q);
|
|
log_assert(GetSize(Q.wire) == 1);
|
|
|
|
if (!Q.wire->port_output)
|
|
log_error("Whitebox '%s' with (* abc9_flop *) contains a %s cell where its 'Q' port does not drive a module output.\n", log_id(derived_module), log_id(derived_cell->type));
|
|
|
|
Const init = Q.wire->attributes.at(ID::init, State::Sx);
|
|
log_assert(GetSize(init) == 1);
|
|
}
|
|
else if (unsupported.count(derived_cell->type))
|
|
log_error("Whitebox '%s' with (* abc9_flop *) contains a %s cell, which is not supported for sequential synthesis.\n", log_id(derived_module), log_id(derived_cell->type));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void prep_hier(RTLIL::Design *design, bool dff_mode)
|
|
{
|
|
auto r = saved_designs.emplace("$abc9_unmap", nullptr);
|
|
if (r.second)
|
|
r.first->second = new Design;
|
|
Design *unmap_design = r.first->second;
|
|
|
|
for (auto module : design->selected_modules())
|
|
for (auto cell : module->cells()) {
|
|
auto inst_module = design->module(cell->type);
|
|
if (!inst_module)
|
|
continue;
|
|
IdString derived_type;
|
|
Module *derived_module;
|
|
if (cell->parameters.empty()) {
|
|
derived_type = cell->type;
|
|
derived_module = inst_module;
|
|
}
|
|
else {
|
|
// Check potential for any one of those three
|
|
// (since its value may depend on a parameter, but not its existence)
|
|
if (!inst_module->has_attribute(ID::abc9_flop) && !inst_module->has_attribute(ID::abc9_box) && !inst_module->get_bool_attribute(ID::abc9_bypass))
|
|
continue;
|
|
derived_type = inst_module->derive(design, cell->parameters);
|
|
derived_module = design->module(derived_type);
|
|
}
|
|
|
|
if (derived_module->get_bool_attribute(ID::abc9_flop)) {
|
|
if (!dff_mode)
|
|
continue;
|
|
}
|
|
else {
|
|
if (!derived_module->get_bool_attribute(ID::abc9_box) && !derived_module->get_bool_attribute(ID::abc9_bypass))
|
|
continue;
|
|
}
|
|
|
|
if (!unmap_design->module(derived_type)) {
|
|
if (derived_module->has_processes())
|
|
Pass::call_on_module(design, derived_module, "proc");
|
|
|
|
if (derived_module->get_bool_attribute(ID::abc9_flop)) {
|
|
for (auto derived_cell : derived_module->cells())
|
|
if (derived_cell->type.in(ID($dff), ID($_DFF_N_), ID($_DFF_P_))) {
|
|
SigBit Q = derived_cell->getPort(ID::Q);
|
|
Const init = Q.wire->attributes.at(ID::init, State::Sx);
|
|
log_assert(GetSize(init) == 1);
|
|
|
|
// Block sequential synthesis on cells with (* init *) != 1'b0
|
|
// because ABC9 doesn't support them
|
|
if (init != State::S0) {
|
|
log_warning("Whitebox '%s' with (* abc9_flop *) contains a %s cell with non-zero initial state -- this is not supported for ABC9 sequential synthesis. Treating as a blackbox.\n", log_id(derived_module), log_id(derived_cell->type));
|
|
derived_module->set_bool_attribute(ID::abc9_flop, false);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else if (derived_module->get_bool_attribute(ID::abc9_box)) {
|
|
for (auto derived_cell : derived_module->cells())
|
|
if (derived_cell->is_mem_cell() || RTLIL::builtin_ff_cell_types().count(derived_cell->type)) {
|
|
derived_module->set_bool_attribute(ID::abc9_box, false);
|
|
derived_module->set_bool_attribute(ID::abc9_bypass);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (derived_type != cell->type) {
|
|
auto unmap_module = unmap_design->addModule(derived_type);
|
|
for (auto port : derived_module->ports) {
|
|
auto w = unmap_module->addWire(port, derived_module->wire(port));
|
|
// Do not propagate (* init *) values into the box,
|
|
// in fact, remove it from outside too
|
|
if (w->port_output)
|
|
w->attributes.erase(ID::init);
|
|
}
|
|
unmap_module->ports = derived_module->ports;
|
|
unmap_module->check();
|
|
|
|
auto replace_cell = unmap_module->addCell(ID::_TECHMAP_REPLACE_, cell->type);
|
|
for (const auto &conn : cell->connections()) {
|
|
auto w = unmap_module->wire(conn.first);
|
|
log_assert(w);
|
|
replace_cell->setPort(conn.first, w);
|
|
}
|
|
replace_cell->parameters = cell->parameters;
|
|
}
|
|
}
|
|
|
|
cell->type = derived_type;
|
|
cell->parameters.clear();
|
|
}
|
|
}
|
|
|
|
void prep_bypass(RTLIL::Design *design)
|
|
{
|
|
auto r = saved_designs.emplace("$abc9_map", nullptr);
|
|
if (r.second)
|
|
r.first->second = new Design;
|
|
Design *map_design = r.first->second;
|
|
|
|
r = saved_designs.emplace("$abc9_unmap", nullptr);
|
|
if (r.second)
|
|
r.first->second = new Design;
|
|
Design *unmap_design = r.first->second;
|
|
|
|
pool<IdString> processed;
|
|
for (auto module : design->selected_modules())
|
|
for (auto cell : module->cells()) {
|
|
if (!processed.insert(cell->type).second)
|
|
continue;
|
|
auto inst_module = design->module(cell->type);
|
|
if (!inst_module)
|
|
continue;
|
|
if (!inst_module->get_bool_attribute(ID::abc9_bypass))
|
|
continue;
|
|
log_assert(!inst_module->get_blackbox_attribute(true /* ignore_wb */));
|
|
log_assert(cell->parameters.empty());
|
|
|
|
|
|
// The idea is to create two techmap designs, one which maps:
|
|
//
|
|
// box u0 (.i(i), .o(o));
|
|
//
|
|
// to
|
|
//
|
|
// wire $abc9$o;
|
|
// box u0 (.i(i), .o($abc9_byp$o));
|
|
// box_$abc9_byp (.i(i), .$abc9_byp$o($abc9_byp$o), .o(o));
|
|
//
|
|
// the purpose being to move the (* abc9_box *) status from 'box'
|
|
// (which is stateful) to 'box_$abc9_byp' (which becomes a new
|
|
// combinatorial black- (not white-) box with all state elements
|
|
// removed). This has the effect of preserving any combinatorial
|
|
// paths through an otherwise sequential primitive -- e.g. LUTRAMs.
|
|
//
|
|
// The unmap design performs the reverse:
|
|
//
|
|
// wire $abc9$o;
|
|
// box u0 (.i(i), .o($abc9_byp$o));
|
|
// box_$abc9_byp (.i(i), .$abc9_byp$o($abc9_byp$o), .o(o));
|
|
//
|
|
// to:
|
|
//
|
|
// wire $abc9$o;
|
|
// box u0 (.i(i), .o($abc9_byp$o));
|
|
// assign o = $abc9_byp$o;
|
|
|
|
|
|
// Copy inst_module into map_design, with the same interface
|
|
// and duplicate $abc9$* wires for its output ports
|
|
auto map_module = map_design->addModule(cell->type);
|
|
for (auto port_name : inst_module->ports) {
|
|
auto w = map_module->addWire(port_name, inst_module->wire(port_name));
|
|
if (w->port_output)
|
|
w->attributes.erase(ID::init);
|
|
}
|
|
map_module->ports = inst_module->ports;
|
|
map_module->check();
|
|
map_module->set_bool_attribute(ID::whitebox);
|
|
|
|
// Create the bypass module in the user design, which has the same
|
|
// interface as the derived module but with additional input
|
|
// ports driven by the outputs of the replaced cell
|
|
auto bypass_module = design->addModule(cell->type.str() + "_$abc9_byp");
|
|
for (auto port_name : inst_module->ports) {
|
|
auto port = inst_module->wire(port_name);
|
|
if (!port->port_output)
|
|
continue;
|
|
auto dst = bypass_module->addWire(port_name, port);
|
|
auto src = bypass_module->addWire("$abc9byp$" + port_name.str(), GetSize(port));
|
|
src->port_input = true;
|
|
// For these new input ports driven by the replaced
|
|
// cell, then create a new simple-path specify entry:
|
|
// (input => output) = 0
|
|
auto specify = bypass_module->addCell(NEW_ID, ID($specify2));
|
|
specify->setPort(ID::EN, State::S1);
|
|
specify->setPort(ID::SRC, src);
|
|
specify->setPort(ID::DST, dst);
|
|
specify->setParam(ID::FULL, 0);
|
|
specify->setParam(ID::SRC_WIDTH, GetSize(src));
|
|
specify->setParam(ID::DST_WIDTH, GetSize(dst));
|
|
specify->setParam(ID::SRC_DST_PEN, 0);
|
|
specify->setParam(ID::SRC_DST_POL, 0);
|
|
specify->setParam(ID::T_RISE_MIN, 0);
|
|
specify->setParam(ID::T_RISE_TYP, 0);
|
|
specify->setParam(ID::T_RISE_MAX, 0);
|
|
specify->setParam(ID::T_FALL_MIN, 0);
|
|
specify->setParam(ID::T_FALL_TYP, 0);
|
|
specify->setParam(ID::T_FALL_MAX, 0);
|
|
}
|
|
bypass_module->set_bool_attribute(ID::blackbox);
|
|
bypass_module->set_bool_attribute(ID::abc9_box);
|
|
|
|
// Copy any 'simple' (combinatorial) specify paths from
|
|
// the derived module into the bypass module, if EN
|
|
// is not false and SRC/DST are driven only by
|
|
// module ports; create new input port if one doesn't
|
|
// already exist
|
|
for (auto cell : inst_module->cells()) {
|
|
if (cell->type != ID($specify2))
|
|
continue;
|
|
auto EN = cell->getPort(ID::EN).as_bit();
|
|
SigBit newEN;
|
|
if (!EN.wire && EN != State::S1)
|
|
continue;
|
|
auto SRC = cell->getPort(ID::SRC);
|
|
for (const auto &c : SRC.chunks())
|
|
if (c.wire && !c.wire->port_input) {
|
|
SRC = SigSpec();
|
|
break;
|
|
}
|
|
if (SRC.empty())
|
|
continue;
|
|
auto DST = cell->getPort(ID::DST);
|
|
for (const auto &c : DST.chunks())
|
|
if (c.wire && !c.wire->port_output) {
|
|
DST = SigSpec();
|
|
break;
|
|
}
|
|
if (DST.empty())
|
|
continue;
|
|
auto rw = [bypass_module](RTLIL::SigSpec &sig)
|
|
{
|
|
SigSpec new_sig;
|
|
for (auto c : sig.chunks()) {
|
|
if (c.wire) {
|
|
auto port = bypass_module->wire(c.wire->name);
|
|
if (!port)
|
|
port = bypass_module->addWire(c.wire->name, c.wire);
|
|
c.wire = port;
|
|
}
|
|
new_sig.append(std::move(c));
|
|
}
|
|
sig = std::move(new_sig);
|
|
};
|
|
auto specify = bypass_module->addCell(NEW_ID, cell);
|
|
specify->rewrite_sigspecs(rw);
|
|
}
|
|
bypass_module->fixup_ports();
|
|
|
|
// Create an _TECHMAP_REPLACE_ cell identical to the original cell,
|
|
// and a bypass cell that has the same inputs/outputs as the
|
|
// original cell, but with additional inputs taken from the
|
|
// replaced cell
|
|
auto replace_cell = map_module->addCell(ID::_TECHMAP_REPLACE_, cell->type);
|
|
auto bypass_cell = map_module->addCell(NEW_ID, cell->type.str() + "_$abc9_byp");
|
|
for (const auto &conn : cell->connections()) {
|
|
auto port = map_module->wire(conn.first);
|
|
if (cell->input(conn.first)) {
|
|
replace_cell->setPort(conn.first, port);
|
|
if (bypass_module->wire(conn.first))
|
|
bypass_cell->setPort(conn.first, port);
|
|
}
|
|
if (cell->output(conn.first)) {
|
|
bypass_cell->setPort(conn.first, port);
|
|
auto n = "$abc9byp$" + conn.first.str();
|
|
auto w = map_module->addWire(n, GetSize(conn.second));
|
|
replace_cell->setPort(conn.first, w);
|
|
bypass_cell->setPort(n, w);
|
|
}
|
|
}
|
|
|
|
|
|
// Lastly, create a new module in the unmap_design that shorts
|
|
// out the bypass cell back to leave the replace cell behind
|
|
// driving the outputs
|
|
auto unmap_module = unmap_design->addModule(cell->type.str() + "_$abc9_byp");
|
|
for (auto port_name : inst_module->ports) {
|
|
auto w = unmap_module->addWire(port_name, inst_module->wire(port_name));
|
|
if (w->port_output) {
|
|
w->attributes.erase(ID::init);
|
|
auto w2 = unmap_module->addWire("$abc9byp$" + port_name.str(), GetSize(w));
|
|
w2->port_input = true;
|
|
unmap_module->connect(w, w2);
|
|
}
|
|
}
|
|
unmap_module->fixup_ports();
|
|
}
|
|
}
|
|
|
|
void prep_dff(RTLIL::Design *design)
|
|
{
|
|
auto r = design->selection_vars.insert(std::make_pair(ID($abc9_flops), RTLIL::Selection(false)));
|
|
auto &modules_sel = r.first->second;
|
|
|
|
for (auto module : design->selected_modules())
|
|
for (auto cell : module->cells()) {
|
|
if (modules_sel.selected_whole_module(cell->type))
|
|
continue;
|
|
auto inst_module = design->module(cell->type);
|
|
if (!inst_module)
|
|
continue;
|
|
if (!inst_module->get_bool_attribute(ID::abc9_flop))
|
|
continue;
|
|
log_assert(!inst_module->get_blackbox_attribute(true /* ignore_wb */));
|
|
log_assert(cell->parameters.empty());
|
|
modules_sel.select(inst_module);
|
|
}
|
|
}
|
|
|
|
void prep_dff_submod(RTLIL::Design *design)
|
|
{
|
|
for (auto module : design->modules()) {
|
|
vector<Cell*> specify_cells;
|
|
SigBit Q;
|
|
Cell* dff_cell = nullptr;
|
|
|
|
if (!module->get_bool_attribute(ID::abc9_flop))
|
|
continue;
|
|
|
|
for (auto cell : module->cells())
|
|
if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_))) {
|
|
log_assert(!dff_cell);
|
|
dff_cell = cell;
|
|
Q = cell->getPort(ID::Q);
|
|
log_assert(GetSize(Q.wire) == 1);
|
|
}
|
|
else if (cell->type.in(ID($specify3), ID($specrule)))
|
|
specify_cells.emplace_back(cell);
|
|
log_assert(dff_cell);
|
|
|
|
// Add an always-enabled CE mux that drives $_DFF_[NP]_.D so that:
|
|
// (a) flop box will have an output
|
|
// (b) $_DFF_[NP]_.Q will be present as an input
|
|
SigBit D = module->addWire(NEW_ID);
|
|
module->addMuxGate(NEW_ID, dff_cell->getPort(ID::D), Q, State::S0, D);
|
|
dff_cell->setPort(ID::D, D);
|
|
|
|
// Rewrite $specify cells that end with $_DFF_[NP]_.Q
|
|
// to $_DFF_[NP]_.D since it will be moved into
|
|
// the submodule
|
|
for (auto cell : specify_cells) {
|
|
auto DST = cell->getPort(ID::DST);
|
|
DST.replace(Q, D);
|
|
cell->setPort(ID::DST, DST);
|
|
}
|
|
|
|
design->scratchpad_set_bool("abc9_ops.prep_dff_submod.did_something", true);
|
|
}
|
|
}
|
|
|
|
void prep_dff_unmap(RTLIL::Design *design)
|
|
{
|
|
Design *unmap_design = saved_designs.at("$abc9_unmap");
|
|
|
|
for (auto module : design->modules()) {
|
|
if (!module->get_bool_attribute(ID::abc9_flop) || module->get_bool_attribute(ID::abc9_box))
|
|
continue;
|
|
|
|
// Make sure the box module has all the same ports present on flop cell
|
|
auto replace_cell = module->cell(ID::_TECHMAP_REPLACE_);
|
|
log_assert(replace_cell);
|
|
auto box_module = design->module(module->name.str() + "_$abc9_flop");
|
|
log_assert(box_module);
|
|
for (auto port_name : module->ports) {
|
|
auto port = module->wire(port_name);
|
|
auto box_port = box_module->wire(port_name);
|
|
if (box_port) {
|
|
// Do not propagate init -- already captured by box
|
|
box_port->attributes.erase(ID::init);
|
|
continue;
|
|
}
|
|
log_assert(port->port_input);
|
|
box_module->addWire(port_name, port);
|
|
replace_cell->setPort(port_name, port);
|
|
}
|
|
box_module->fixup_ports();
|
|
|
|
auto unmap_module = unmap_design->addModule(box_module->name);
|
|
replace_cell = unmap_module->addCell(ID::_TECHMAP_REPLACE_, module->name);
|
|
for (auto port_name : box_module->ports) {
|
|
auto w = unmap_module->addWire(port_name, box_module->wire(port_name));
|
|
if (module->wire(port_name))
|
|
replace_cell->setPort(port_name, w);
|
|
}
|
|
unmap_module->ports = box_module->ports;
|
|
unmap_module->check();
|
|
}
|
|
}
|
|
|
|
void break_scc(RTLIL::Module *module)
|
|
{
|
|
// For every unique SCC found, (arbitrarily) find the first
|
|
// cell in the component, and interrupt all its output connections
|
|
// with the $__ABC9_SCC_BREAKER cell
|
|
|
|
// Do not break SCCs which have a cell instantiating an abc9_bypass-able
|
|
// module (but which wouldn't have been bypassed)
|
|
auto design = module->design;
|
|
pool<RTLIL::Cell*> scc_cells;
|
|
pool<RTLIL::Const> ids_seen;
|
|
for (auto cell : module->cells()) {
|
|
auto it = cell->attributes.find(ID::abc9_scc_id);
|
|
if (it == cell->attributes.end())
|
|
continue;
|
|
scc_cells.insert(cell);
|
|
auto inst_module = design->module(cell->type);
|
|
if (inst_module && inst_module->has_attribute(ID::abc9_bypass))
|
|
ids_seen.insert(it->second);
|
|
}
|
|
|
|
SigSpec I, O;
|
|
for (auto cell : scc_cells) {
|
|
auto it = cell->attributes.find(ID::abc9_scc_id);
|
|
log_assert(it != cell->attributes.end());
|
|
auto id = it->second;
|
|
auto r = ids_seen.insert(id);
|
|
cell->attributes.erase(it);
|
|
if (!r.second)
|
|
continue;
|
|
for (auto &c : cell->connections_) {
|
|
if (c.second.is_fully_const()) continue;
|
|
if (cell->output(c.first)) {
|
|
Wire *w = module->addWire(NEW_ID, GetSize(c.second));
|
|
I.append(w);
|
|
O.append(c.second);
|
|
c.second = w;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!I.empty())
|
|
{
|
|
auto cell = module->addCell(NEW_ID, ID($__ABC9_SCC_BREAKER));
|
|
log_assert(GetSize(I) == GetSize(O));
|
|
cell->setParam(ID::WIDTH, GetSize(I));
|
|
cell->setPort(ID::I, std::move(I));
|
|
cell->setPort(ID::O, std::move(O));
|
|
}
|
|
}
|
|
|
|
void prep_delays(RTLIL::Design *design, bool dff_mode)
|
|
{
|
|
TimingInfo timing;
|
|
|
|
// Derive all Yosys blackbox modules that are not combinatorial abc9 boxes
|
|
// (e.g. DSPs, RAMs, etc.) nor abc9 flops and collect all such instantiations
|
|
std::vector<Cell*> cells;
|
|
for (auto module : design->selected_modules()) {
|
|
if (module->processes.size() > 0) {
|
|
log("Skipping module %s as it contains processes.\n", log_id(module));
|
|
continue;
|
|
}
|
|
|
|
for (auto cell : module->cells()) {
|
|
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($_DFF_N_), ID($_DFF_P_)))
|
|
continue;
|
|
log_assert(!cell->type.begins_with("$paramod$__ABC9_DELAY\\DELAY="));
|
|
|
|
RTLIL::Module* inst_module = design->module(cell->type);
|
|
if (!inst_module)
|
|
continue;
|
|
if (!inst_module->get_blackbox_attribute())
|
|
continue;
|
|
if (!cell->parameters.empty())
|
|
continue;
|
|
|
|
if (inst_module->get_bool_attribute(ID::abc9_box))
|
|
continue;
|
|
if (inst_module->get_bool_attribute(ID::abc9_bypass))
|
|
continue;
|
|
|
|
if (dff_mode && inst_module->get_bool_attribute(ID::abc9_flop)) {
|
|
continue; // do not add $__ABC9_DELAY boxes to flops
|
|
// as delays will be captured in the flop box
|
|
}
|
|
|
|
if (!timing.count(cell->type))
|
|
timing.setup_module(inst_module);
|
|
|
|
cells.emplace_back(cell);
|
|
}
|
|
}
|
|
|
|
// Insert $__ABC9_DELAY cells on all cells that instantiate blackboxes
|
|
// (or bypassed white-boxes with required times)
|
|
dict<int, IdString> box_cache;
|
|
Module *delay_module = design->module(ID($__ABC9_DELAY));
|
|
log_assert(delay_module);
|
|
for (auto cell : cells) {
|
|
auto module = cell->module;
|
|
auto inst_module = design->module(cell->type);
|
|
log_assert(inst_module);
|
|
|
|
auto &t = timing.at(cell->type).required;
|
|
for (auto &conn : cell->connections_) {
|
|
auto port_wire = inst_module->wire(conn.first);
|
|
if (!port_wire)
|
|
log_error("Port %s in cell %s (type %s) from module %s does not actually exist",
|
|
log_id(conn.first), log_id(cell), log_id(cell->type), log_id(module));
|
|
if (!port_wire->port_input)
|
|
continue;
|
|
if (conn.second.is_fully_const())
|
|
continue;
|
|
|
|
SigSpec O = module->addWire(NEW_ID, GetSize(conn.second));
|
|
for (int i = 0; i < GetSize(conn.second); i++) {
|
|
auto d = t.at(TimingInfo::NameBit(conn.first,i), 0);
|
|
if (d == 0)
|
|
continue;
|
|
|
|
#ifndef NDEBUG
|
|
if (ys_debug(1)) {
|
|
static std::set<std::tuple<IdString,IdString,int>> seen;
|
|
if (seen.emplace(cell->type, conn.first, i).second) log("%s.%s[%d] abc9_required = %d\n",
|
|
log_id(cell->type), log_id(conn.first), i, d);
|
|
}
|
|
#endif
|
|
auto r = box_cache.insert(d);
|
|
if (r.second) {
|
|
r.first->second = delay_module->derive(design, {{ID::DELAY, d}});
|
|
log_assert(r.first->second.begins_with("$paramod$__ABC9_DELAY\\DELAY="));
|
|
}
|
|
auto box = module->addCell(NEW_ID, r.first->second);
|
|
box->setPort(ID::I, conn.second[i]);
|
|
box->setPort(ID::O, O[i]);
|
|
conn.second[i] = O[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void prep_xaiger(RTLIL::Module *module, bool dff)
|
|
{
|
|
auto design = module->design;
|
|
log_assert(design);
|
|
|
|
SigMap sigmap(module);
|
|
|
|
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
|
|
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
|
|
dict<IdString, std::vector<IdString>> box_ports;
|
|
|
|
for (auto cell : module->cells()) {
|
|
if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_)))
|
|
continue;
|
|
if (cell->has_keep_attr())
|
|
continue;
|
|
|
|
auto inst_module = design->module(cell->type);
|
|
bool abc9_flop = inst_module && inst_module->get_bool_attribute(ID::abc9_flop);
|
|
if (abc9_flop && !dff)
|
|
continue;
|
|
|
|
if (inst_module && inst_module->get_bool_attribute(ID::abc9_box)) {
|
|
auto r = box_ports.insert(cell->type);
|
|
if (r.second) {
|
|
// Make carry in the last PI, and carry out the last PO
|
|
// since ABC requires it this way
|
|
IdString carry_in, carry_out;
|
|
for (const auto &port_name : inst_module->ports) {
|
|
auto w = inst_module->wire(port_name);
|
|
log_assert(w);
|
|
if (w->get_bool_attribute(ID::abc9_carry)) {
|
|
log_assert(w->port_input != w->port_output);
|
|
if (w->port_input)
|
|
carry_in = port_name;
|
|
else if (w->port_output)
|
|
carry_out = port_name;
|
|
}
|
|
else
|
|
r.first->second.push_back(port_name);
|
|
}
|
|
if (carry_in != IdString()) {
|
|
r.first->second.push_back(carry_in);
|
|
r.first->second.push_back(carry_out);
|
|
}
|
|
}
|
|
}
|
|
else if (!yosys_celltypes.cell_known(cell->type))
|
|
continue;
|
|
|
|
// TODO: Speed up toposort -- we care about box ordering only
|
|
for (auto conn : cell->connections()) {
|
|
if (cell->input(conn.first))
|
|
for (auto bit : sigmap(conn.second))
|
|
bit_users[bit].insert(cell->name);
|
|
|
|
if (cell->output(conn.first) && !abc9_flop)
|
|
for (auto bit : sigmap(conn.second))
|
|
bit_drivers[bit].insert(cell->name);
|
|
}
|
|
toposort.node(cell->name);
|
|
}
|
|
|
|
if (box_ports.empty())
|
|
return;
|
|
|
|
for (auto &it : bit_users)
|
|
if (bit_drivers.count(it.first))
|
|
for (auto driver_cell : bit_drivers.at(it.first))
|
|
for (auto user_cell : it.second)
|
|
toposort.edge(driver_cell, user_cell);
|
|
|
|
if (ys_debug(1))
|
|
toposort.analyze_loops = true;
|
|
|
|
bool no_loops = toposort.sort();
|
|
|
|
if (ys_debug(1)) {
|
|
unsigned i = 0;
|
|
for (auto &it : toposort.loops) {
|
|
log(" loop %d\n", i++);
|
|
for (auto cell_name : it) {
|
|
auto cell = module->cell(cell_name);
|
|
log_assert(cell);
|
|
log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
log_assert(no_loops);
|
|
|
|
auto r = saved_designs.emplace("$abc9_holes", nullptr);
|
|
if (r.second)
|
|
r.first->second = new Design;
|
|
RTLIL::Design *holes_design = r.first->second;
|
|
log_assert(holes_design);
|
|
RTLIL::Module *holes_module = holes_design->addModule(module->name);
|
|
log_assert(holes_module);
|
|
|
|
dict<IdString, Cell*> cell_cache;
|
|
TimingInfo timing;
|
|
|
|
int port_id = 1, box_count = 0;
|
|
for (auto cell_name : toposort.sorted) {
|
|
RTLIL::Cell *cell = module->cell(cell_name);
|
|
log_assert(cell);
|
|
|
|
RTLIL::Module* box_module = design->module(cell->type);
|
|
if (!box_module)
|
|
continue;
|
|
if (!box_module->get_bool_attribute(ID::abc9_box))
|
|
continue;
|
|
if (!cell->parameters.empty())
|
|
{
|
|
// At this stage of the ABC9 flow, all modules must be nonparametric, because ABC itself requires concrete netlists, and the presence of
|
|
// parameters implies a non-concrete netlist. This means an (* abc9_box *) parametric module but due to a bug somewhere this hasn't been
|
|
// uniquified into a concrete parameter-free module. This is a bug, and a bug report would be welcomed.
|
|
log_error("Not expecting parameters on module '%s' marked (* abc9_box *)\n", log_id(cell_name));
|
|
}
|
|
log_assert(box_module->get_blackbox_attribute());
|
|
|
|
cell->attributes[ID::abc9_box_seq] = box_count++;
|
|
|
|
auto r = cell_cache.insert(cell->type);
|
|
auto &holes_cell = r.first->second;
|
|
if (r.second) {
|
|
if (box_module->get_bool_attribute(ID::whitebox)) {
|
|
holes_cell = holes_module->addCell(cell->name, cell->type);
|
|
|
|
if (box_module->has_processes())
|
|
Pass::call_on_module(design, box_module, "proc");
|
|
|
|
int box_inputs = 0;
|
|
for (auto port_name : box_ports.at(cell->type)) {
|
|
RTLIL::Wire *w = box_module->wire(port_name);
|
|
log_assert(w);
|
|
log_assert(!w->port_input || !w->port_output);
|
|
auto &conn = holes_cell->connections_[port_name];
|
|
if (w->port_input) {
|
|
for (int i = 0; i < GetSize(w); i++) {
|
|
box_inputs++;
|
|
RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
|
|
if (!holes_wire) {
|
|
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
|
|
holes_wire->port_input = true;
|
|
holes_wire->port_id = port_id++;
|
|
holes_module->ports.push_back(holes_wire->name);
|
|
}
|
|
conn.append(holes_wire);
|
|
}
|
|
}
|
|
else if (w->port_output)
|
|
conn = holes_module->addWire(stringf("%s.%s", cell->type.c_str(), log_id(port_name)), GetSize(w));
|
|
}
|
|
}
|
|
else // box_module is a blackbox
|
|
log_assert(holes_cell == nullptr);
|
|
}
|
|
|
|
for (auto port_name : box_ports.at(cell->type)) {
|
|
RTLIL::Wire *w = box_module->wire(port_name);
|
|
log_assert(w);
|
|
if (!w->port_output)
|
|
continue;
|
|
Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w));
|
|
holes_wire->port_output = true;
|
|
holes_wire->port_id = port_id++;
|
|
holes_module->ports.push_back(holes_wire->name);
|
|
if (holes_cell) // whitebox
|
|
holes_module->connect(holes_wire, holes_cell->getPort(port_name));
|
|
else // blackbox
|
|
holes_module->connect(holes_wire, Const(State::S0, GetSize(w)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void prep_lut(RTLIL::Design *design, int maxlut)
|
|
{
|
|
TimingInfo timing;
|
|
|
|
struct t_lut {
|
|
IdString name;
|
|
int area;
|
|
std::vector<int> delays;
|
|
};
|
|
std::map<int,t_lut> table;
|
|
for (auto module : design->modules()) {
|
|
auto it = module->attributes.find(ID::abc9_lut);
|
|
if (it == module->attributes.end())
|
|
continue;
|
|
|
|
auto &t = timing.setup_module(module);
|
|
|
|
TimingInfo::NameBit o;
|
|
std::vector<int> delays;
|
|
for (const auto &i : t.comb) {
|
|
auto &d = i.first.second;
|
|
if (o == TimingInfo::NameBit())
|
|
o = d;
|
|
else if (o != d)
|
|
log_error("Module '%s' with (* abc9_lut *) has more than one output.\n", log_id(module));
|
|
delays.push_back(i.second);
|
|
}
|
|
|
|
if (GetSize(delays) == 0)
|
|
log_error("Module '%s' with (* abc9_lut *) has no specify entries.\n", log_id(module));
|
|
if (maxlut && GetSize(delays) > maxlut)
|
|
continue;
|
|
// ABC requires non-decreasing LUT input delays
|
|
std::sort(delays.begin(), delays.end());
|
|
|
|
int K = GetSize(delays);
|
|
auto entry = t_lut{module->name, it->second.as_int(), std::move(delays)};
|
|
auto r = table.emplace(K, entry);
|
|
if (!r.second) {
|
|
if (r.first->second.area != entry.area)
|
|
log_error("Modules '%s' and '%s' have conflicting (* abc9_lut *) values.\n", log_id(module), log_id(r.first->second.name));
|
|
if (r.first->second.delays != entry.delays)
|
|
log_error("Modules '%s' and '%s' have conflicting specify entries.\n", log_id(module), log_id(r.first->second.name));
|
|
}
|
|
}
|
|
|
|
if (table.empty())
|
|
log_error("Design does not contain any modules with (* abc9_lut *).\n");
|
|
|
|
std::stringstream ss;
|
|
const auto &front = *table.begin();
|
|
// If the first entry does not start from a 1-input LUT,
|
|
// (as ABC requires) crop the first entry to do so
|
|
for (int i = 1; i < front.first; i++) {
|
|
ss << "# $__ABC9_LUT" << i << std::endl;
|
|
ss << i << " " << front.second.area;
|
|
for (int j = 0; j < i; j++)
|
|
ss << " " << front.second.delays[j];
|
|
ss << std::endl;
|
|
}
|
|
for (const auto &i : table) {
|
|
ss << "# " << log_id(i.second.name) << std::endl;
|
|
ss << i.first << " " << i.second.area;
|
|
for (const auto &j : i.second.delays)
|
|
ss << " " << j;
|
|
ss << std::endl;
|
|
}
|
|
design->scratchpad_set_string("abc9_ops.lut_library", ss.str());
|
|
}
|
|
|
|
void write_lut(RTLIL::Module *module, const std::string &dst) {
|
|
std::ofstream ofs(dst);
|
|
log_assert(ofs.is_open());
|
|
ofs << module->design->scratchpad_get_string("abc9_ops.lut_library");
|
|
ofs.close();
|
|
}
|
|
|
|
void prep_box(RTLIL::Design *design)
|
|
{
|
|
TimingInfo timing;
|
|
|
|
std::stringstream ss;
|
|
int abc9_box_id = 1;
|
|
for (auto module : design->modules()) {
|
|
auto it = module->attributes.find(ID::abc9_box_id);
|
|
if (it == module->attributes.end())
|
|
continue;
|
|
abc9_box_id = std::max(abc9_box_id, it->second.as_int());
|
|
}
|
|
|
|
dict<IdString,std::vector<IdString>> box_ports;
|
|
for (auto module : design->modules()) {
|
|
auto it = module->attributes.find(ID::abc9_box);
|
|
if (it == module->attributes.end())
|
|
continue;
|
|
bool box = it->second.as_bool();
|
|
module->attributes.erase(it);
|
|
if (!box)
|
|
continue;
|
|
|
|
auto r = module->attributes.insert(ID::abc9_box_id);
|
|
if (!r.second)
|
|
continue;
|
|
r.first->second = abc9_box_id++;
|
|
|
|
if (module->get_bool_attribute(ID::abc9_flop)) {
|
|
int num_inputs = 0, num_outputs = 0;
|
|
for (auto port_name : module->ports) {
|
|
auto wire = module->wire(port_name);
|
|
log_assert(GetSize(wire) == 1);
|
|
if (wire->port_input) num_inputs++;
|
|
if (wire->port_output) num_outputs++;
|
|
}
|
|
log_assert(num_outputs == 1);
|
|
|
|
ss << log_id(module) << " " << r.first->second.as_int();
|
|
log_assert(module->get_bool_attribute(ID::whitebox));
|
|
ss << " " << "1";
|
|
ss << " " << num_inputs << " " << num_outputs << std::endl;
|
|
|
|
ss << "#";
|
|
bool first = true;
|
|
for (auto port_name : module->ports) {
|
|
auto wire = module->wire(port_name);
|
|
if (!wire->port_input)
|
|
continue;
|
|
if (first)
|
|
first = false;
|
|
else
|
|
ss << " ";
|
|
ss << log_id(wire);
|
|
}
|
|
ss << std::endl;
|
|
|
|
auto &t = timing.setup_module(module).required;
|
|
if (t.empty())
|
|
log_error("Module '%s' with (* abc9_flop *) has no clk-to-q timing (and thus no connectivity) information.\n", log_id(module));
|
|
|
|
first = true;
|
|
for (auto port_name : module->ports) {
|
|
auto wire = module->wire(port_name);
|
|
if (!wire->port_input)
|
|
continue;
|
|
if (first)
|
|
first = false;
|
|
else
|
|
ss << " ";
|
|
log_assert(GetSize(wire) == 1);
|
|
auto it = t.find(TimingInfo::NameBit(port_name,0));
|
|
if (it == t.end())
|
|
// Assume no connectivity if no setup time
|
|
ss << "-";
|
|
else {
|
|
ss << it->second;
|
|
|
|
#ifndef NDEBUG
|
|
if (ys_debug(1)) {
|
|
static std::set<std::pair<IdString,IdString>> seen;
|
|
if (seen.emplace(module->name, port_name).second) log("%s.%s abc9_required = %d\n", log_id(module),
|
|
log_id(port_name), it->second);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
ss << " # $_DFF_[NP]_.D" << std::endl;
|
|
ss << std::endl;
|
|
}
|
|
else {
|
|
auto r2 = box_ports.insert(module->name);
|
|
if (r2.second) {
|
|
// Make carry in the last PI, and carry out the last PO
|
|
// since ABC requires it this way
|
|
IdString carry_in, carry_out;
|
|
for (const auto &port_name : module->ports) {
|
|
auto w = module->wire(port_name);
|
|
log_assert(w);
|
|
if (w->get_bool_attribute(ID::abc9_carry)) {
|
|
log_assert(w->port_input != w->port_output);
|
|
if (w->port_input)
|
|
carry_in = port_name;
|
|
else if (w->port_output)
|
|
carry_out = port_name;
|
|
}
|
|
else
|
|
r2.first->second.push_back(port_name);
|
|
}
|
|
|
|
if (carry_in != IdString()) {
|
|
r2.first->second.push_back(carry_in);
|
|
r2.first->second.push_back(carry_out);
|
|
}
|
|
}
|
|
|
|
std::vector<SigBit> inputs, outputs;
|
|
for (auto port_name : r2.first->second) {
|
|
auto wire = module->wire(port_name);
|
|
if (wire->port_input)
|
|
for (int i = 0; i < GetSize(wire); i++)
|
|
inputs.emplace_back(wire, i);
|
|
if (wire->port_output)
|
|
for (int i = 0; i < GetSize(wire); i++)
|
|
outputs.emplace_back(wire, i);
|
|
}
|
|
|
|
ss << log_id(module) << " " << module->attributes.at(ID::abc9_box_id).as_int();
|
|
ss << " " << (module->get_bool_attribute(ID::whitebox) ? "1" : "0");
|
|
ss << " " << GetSize(inputs) << " " << GetSize(outputs) << std::endl;
|
|
|
|
bool first = true;
|
|
ss << "#";
|
|
for (const auto &i : inputs) {
|
|
if (first)
|
|
first = false;
|
|
else
|
|
ss << " ";
|
|
if (GetSize(i.wire) == 1)
|
|
ss << log_id(i.wire);
|
|
else
|
|
ss << log_id(i.wire) << "[" << i.offset << "]";
|
|
}
|
|
ss << std::endl;
|
|
|
|
auto &t = timing.setup_module(module);
|
|
if (t.comb.empty())
|
|
log_error("Module '%s' with (* abc9_box *) has no timing (and thus no connectivity) information.\n", log_id(module));
|
|
|
|
for (const auto &o : outputs) {
|
|
first = true;
|
|
for (const auto &i : inputs) {
|
|
if (first)
|
|
first = false;
|
|
else
|
|
ss << " ";
|
|
auto jt = t.comb.find(TimingInfo::BitBit(i,o));
|
|
if (jt == t.comb.end())
|
|
ss << "-";
|
|
else
|
|
ss << jt->second;
|
|
}
|
|
ss << " # ";
|
|
if (GetSize(o.wire) == 1)
|
|
ss << log_id(o.wire);
|
|
else
|
|
ss << log_id(o.wire) << "[" << o.offset << "]";
|
|
ss << std::endl;
|
|
}
|
|
ss << std::endl;
|
|
}
|
|
}
|
|
|
|
// ABC expects at least one box
|
|
if (ss.tellp() == 0)
|
|
ss << "(dummy) 1 0 0 0";
|
|
|
|
design->scratchpad_set_string("abc9_ops.box_library", ss.str());
|
|
}
|
|
|
|
void write_box(RTLIL::Module *module, const std::string &dst) {
|
|
std::ofstream ofs(dst);
|
|
log_assert(ofs.is_open());
|
|
ofs << module->design->scratchpad_get_string("abc9_ops.box_library");
|
|
ofs.close();
|
|
}
|
|
|
|
void reintegrate(RTLIL::Module *module, bool dff_mode)
|
|
{
|
|
auto design = module->design;
|
|
log_assert(design);
|
|
|
|
map_autoidx = autoidx++;
|
|
|
|
RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str()));
|
|
if (mapped_mod == NULL)
|
|
log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module));
|
|
|
|
for (auto w : mapped_mod->wires()) {
|
|
auto nw = module->addWire(remap_name(w->name), GetSize(w));
|
|
nw->start_offset = w->start_offset;
|
|
// Remove all (* init *) since they only exist on $_DFF_[NP]_
|
|
w->attributes.erase(ID::init);
|
|
}
|
|
|
|
dict<IdString,std::vector<IdString>> box_ports;
|
|
|
|
for (auto m : design->modules()) {
|
|
if (!m->attributes.count(ID::abc9_box_id))
|
|
continue;
|
|
|
|
auto r = box_ports.insert(m->name);
|
|
if (!r.second)
|
|
continue;
|
|
|
|
// Make carry in the last PI, and carry out the last PO
|
|
// since ABC requires it this way
|
|
IdString carry_in, carry_out;
|
|
for (const auto &port_name : m->ports) {
|
|
auto w = m->wire(port_name);
|
|
log_assert(w);
|
|
if (w->get_bool_attribute(ID::abc9_carry)) {
|
|
log_assert(w->port_input != w->port_output);
|
|
if (w->port_input)
|
|
carry_in = port_name;
|
|
else if (w->port_output)
|
|
carry_out = port_name;
|
|
}
|
|
else
|
|
r.first->second.push_back(port_name);
|
|
}
|
|
|
|
if (carry_in != IdString()) {
|
|
r.first->second.push_back(carry_in);
|
|
r.first->second.push_back(carry_out);
|
|
}
|
|
}
|
|
|
|
SigMap initmap;
|
|
if (dff_mode) {
|
|
// Build a sigmap prioritising bits with (* init *)
|
|
initmap.set(module);
|
|
for (auto w : module->wires()) {
|
|
auto it = w->attributes.find(ID::init);
|
|
if (it == w->attributes.end())
|
|
continue;
|
|
for (auto i = 0; i < GetSize(w); i++)
|
|
if (it->second[i] == State::S0 || it->second[i] == State::S1)
|
|
initmap.add(w);
|
|
}
|
|
}
|
|
|
|
std::vector<Cell*> boxes;
|
|
for (auto cell : module->cells().to_vector()) {
|
|
if (cell->has_keep_attr())
|
|
continue;
|
|
|
|
// Short out (so that existing name can be preserved) and remove
|
|
// $_DFF_[NP]_ cells since flop box already has all the information
|
|
// we need to reconstruct them
|
|
if (dff_mode && cell->type.in(ID($_DFF_N_), ID($_DFF_P_)) && !cell->get_bool_attribute(ID::abc9_keep)) {
|
|
SigBit Q = cell->getPort(ID::Q);
|
|
module->connect(Q, cell->getPort(ID::D));
|
|
module->remove(cell);
|
|
auto Qi = initmap(Q);
|
|
auto it = Qi.wire->attributes.find(ID::init);
|
|
if (it != Qi.wire->attributes.end())
|
|
it->second[Qi.offset] = State::Sx;
|
|
}
|
|
else if (cell->type.in(ID($_AND_), ID($_NOT_)))
|
|
module->remove(cell);
|
|
else if (cell->attributes.erase(ID::abc9_box_seq))
|
|
boxes.emplace_back(cell);
|
|
}
|
|
|
|
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
|
|
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
|
|
dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
|
|
dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
|
|
|
|
std::map<IdString, int> cell_stats;
|
|
for (auto mapped_cell : mapped_mod->cells())
|
|
{
|
|
// Short out $_FF_ cells since the flop box already has
|
|
// all the information we need to reconstruct cell
|
|
if (dff_mode && mapped_cell->type == ID($_FF_)) {
|
|
SigBit D = mapped_cell->getPort(ID::D);
|
|
SigBit Q = mapped_cell->getPort(ID::Q);
|
|
if (D.wire)
|
|
D.wire = module->wires_.at(remap_name(D.wire->name));
|
|
Q.wire = module->wires_.at(remap_name(Q.wire->name));
|
|
module->connect(Q, D);
|
|
continue;
|
|
}
|
|
|
|
// TODO: Speed up toposort -- we care about NOT ordering only
|
|
toposort.node(mapped_cell->name);
|
|
|
|
if (mapped_cell->type == ID($_NOT_)) {
|
|
RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
|
|
RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
|
|
bit_users[a_bit].insert(mapped_cell->name);
|
|
// Ignore inouts for topo ordering
|
|
if (y_bit.wire && !(y_bit.wire->port_input && y_bit.wire->port_output))
|
|
bit_drivers[y_bit].insert(mapped_cell->name);
|
|
|
|
if (!a_bit.wire) {
|
|
mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
|
|
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
|
|
log_assert(wire);
|
|
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
|
|
}
|
|
else {
|
|
RTLIL::Cell* driver_lut = nullptr;
|
|
// ABC can return NOT gates that drive POs
|
|
if (!a_bit.wire->port_input) {
|
|
// If it's not a NOT gate that that comes from a PI directly,
|
|
// find the driver LUT and clone that to guarantee that we won't
|
|
// increase the max logic depth
|
|
// (TODO: Optimise by not cloning unless will increase depth)
|
|
RTLIL::IdString driver_name;
|
|
if (GetSize(a_bit.wire) == 1)
|
|
driver_name = stringf("$lut%s", a_bit.wire->name.c_str());
|
|
else
|
|
driver_name = stringf("$lut%s[%d]", a_bit.wire->name.c_str(), a_bit.offset);
|
|
driver_lut = mapped_mod->cell(driver_name);
|
|
}
|
|
|
|
if (!driver_lut) {
|
|
// If a driver couldn't be found (could be from PI or box CI)
|
|
// then implement using a LUT
|
|
RTLIL::Cell *cell = module->addLut(remap_name(stringf("$lut%s", mapped_cell->name.c_str())),
|
|
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
|
|
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
|
|
RTLIL::Const::from_string("01"));
|
|
bit2sinks[cell->getPort(ID::A)].push_back(cell);
|
|
cell_stats[ID($lut)]++;
|
|
}
|
|
else
|
|
not2drivers[mapped_cell] = driver_lut;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (mapped_cell->type == ID($lut)) {
|
|
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
|
|
cell->parameters = mapped_cell->parameters;
|
|
cell->attributes = mapped_cell->attributes;
|
|
|
|
for (auto &mapped_conn : mapped_cell->connections()) {
|
|
RTLIL::SigSpec newsig;
|
|
for (auto c : mapped_conn.second.chunks()) {
|
|
if (c.width == 0)
|
|
continue;
|
|
//log_assert(c.width == 1);
|
|
if (c.wire)
|
|
c.wire = module->wires_.at(remap_name(c.wire->name));
|
|
newsig.append(c);
|
|
}
|
|
cell->setPort(mapped_conn.first, newsig);
|
|
|
|
if (cell->input(mapped_conn.first)) {
|
|
for (auto i : newsig)
|
|
bit2sinks[i].push_back(cell);
|
|
for (auto i : mapped_conn.second)
|
|
bit_users[i].insert(mapped_cell->name);
|
|
}
|
|
if (cell->output(mapped_conn.first))
|
|
for (auto i : mapped_conn.second)
|
|
// Ignore inouts for topo ordering
|
|
if (i.wire && !(i.wire->port_input && i.wire->port_output))
|
|
bit_drivers[i].insert(mapped_cell->name);
|
|
}
|
|
}
|
|
else {
|
|
RTLIL::Cell *existing_cell = module->cell(mapped_cell->name);
|
|
if (!existing_cell)
|
|
log_error("Cannot find existing box cell with name '%s' in original design.\n", log_id(mapped_cell));
|
|
|
|
if (existing_cell->type.begins_with("$paramod$__ABC9_DELAY\\DELAY=")) {
|
|
SigBit I = mapped_cell->getPort(ID(i));
|
|
SigBit O = mapped_cell->getPort(ID(o));
|
|
if (I.wire)
|
|
I.wire = module->wires_.at(remap_name(I.wire->name));
|
|
log_assert(O.wire);
|
|
O.wire = module->wires_.at(remap_name(O.wire->name));
|
|
module->connect(O, I);
|
|
continue;
|
|
}
|
|
|
|
RTLIL::Module* box_module = design->module(existing_cell->type);
|
|
log_assert(existing_cell->parameters.empty());
|
|
log_assert(mapped_cell->type == stringf("$__boxid%d", box_module->attributes.at(ID::abc9_box_id).as_int()));
|
|
mapped_cell->type = existing_cell->type;
|
|
|
|
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
|
|
cell->parameters = existing_cell->parameters;
|
|
cell->attributes = existing_cell->attributes;
|
|
module->swap_names(cell, existing_cell);
|
|
|
|
auto jt = mapped_cell->connections_.find(ID(i));
|
|
log_assert(jt != mapped_cell->connections_.end());
|
|
SigSpec inputs = std::move(jt->second);
|
|
mapped_cell->connections_.erase(jt);
|
|
jt = mapped_cell->connections_.find(ID(o));
|
|
log_assert(jt != mapped_cell->connections_.end());
|
|
SigSpec outputs = std::move(jt->second);
|
|
mapped_cell->connections_.erase(jt);
|
|
|
|
auto abc9_flop = box_module->get_bool_attribute(ID::abc9_flop);
|
|
if (abc9_flop) {
|
|
// Link this sole flop box output to the output of the existing
|
|
// flop box, so that any (public) signal it drives will be
|
|
// preserved
|
|
SigBit old_q;
|
|
for (const auto &port_name : box_ports.at(existing_cell->type)) {
|
|
RTLIL::Wire *w = box_module->wire(port_name);
|
|
log_assert(w);
|
|
if (!w->port_output)
|
|
continue;
|
|
log_assert(old_q == SigBit());
|
|
log_assert(GetSize(w) == 1);
|
|
old_q = existing_cell->getPort(port_name);
|
|
}
|
|
auto new_q = outputs[0];
|
|
new_q.wire = module->wires_.at(remap_name(new_q.wire->name));
|
|
module->connect(old_q, new_q);
|
|
}
|
|
else {
|
|
for (const auto &i : inputs)
|
|
bit_users[i].insert(mapped_cell->name);
|
|
for (const auto &i : outputs)
|
|
// Ignore inouts for topo ordering
|
|
if (i.wire && !(i.wire->port_input && i.wire->port_output))
|
|
bit_drivers[i].insert(mapped_cell->name);
|
|
}
|
|
|
|
int input_count = 0, output_count = 0;
|
|
for (const auto &port_name : box_ports.at(existing_cell->type)) {
|
|
RTLIL::Wire *w = box_module->wire(port_name);
|
|
log_assert(w);
|
|
|
|
SigSpec sig;
|
|
if (w->port_input) {
|
|
sig = inputs.extract(input_count, GetSize(w));
|
|
input_count += GetSize(w);
|
|
}
|
|
if (w->port_output) {
|
|
sig = outputs.extract(output_count, GetSize(w));
|
|
output_count += GetSize(w);
|
|
}
|
|
|
|
SigSpec newsig;
|
|
for (auto c : sig.chunks()) {
|
|
if (c.width == 0)
|
|
continue;
|
|
//log_assert(c.width == 1);
|
|
if (c.wire)
|
|
c.wire = module->wires_.at(remap_name(c.wire->name));
|
|
newsig.append(c);
|
|
}
|
|
|
|
if (w->port_input && !abc9_flop)
|
|
for (const auto &i : newsig)
|
|
bit2sinks[i].push_back(cell);
|
|
|
|
cell->setPort(port_name, std::move(newsig));
|
|
}
|
|
}
|
|
|
|
cell_stats[mapped_cell->type]++;
|
|
}
|
|
|
|
for (auto cell : boxes)
|
|
module->remove(cell);
|
|
|
|
// Copy connections (and rename) from mapped_mod to module
|
|
for (auto conn : mapped_mod->connections()) {
|
|
if (!conn.first.is_fully_const()) {
|
|
auto chunks = conn.first.chunks();
|
|
for (auto &c : chunks)
|
|
c.wire = module->wires_.at(remap_name(c.wire->name));
|
|
conn.first = std::move(chunks);
|
|
}
|
|
if (!conn.second.is_fully_const()) {
|
|
auto chunks = conn.second.chunks();
|
|
for (auto &c : chunks)
|
|
if (c.wire)
|
|
c.wire = module->wires_.at(remap_name(c.wire->name));
|
|
conn.second = std::move(chunks);
|
|
}
|
|
module->connect(conn);
|
|
}
|
|
|
|
for (auto &it : cell_stats)
|
|
log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
|
|
int in_wires = 0, out_wires = 0;
|
|
|
|
// Stitch in mapped_mod's inputs/outputs into module
|
|
for (auto port : mapped_mod->ports) {
|
|
RTLIL::Wire *mapped_wire = mapped_mod->wire(port);
|
|
RTLIL::Wire *wire = module->wire(port);
|
|
log_assert(wire);
|
|
|
|
RTLIL::Wire *remap_wire = module->wire(remap_name(port));
|
|
RTLIL::SigSpec signal(wire, remap_wire->start_offset-wire->start_offset, GetSize(remap_wire));
|
|
log_assert(GetSize(signal) >= GetSize(remap_wire));
|
|
|
|
RTLIL::SigSig conn;
|
|
if (mapped_wire->port_output) {
|
|
conn.first = signal;
|
|
conn.second = remap_wire;
|
|
out_wires++;
|
|
module->connect(conn);
|
|
}
|
|
else if (mapped_wire->port_input) {
|
|
conn.first = remap_wire;
|
|
conn.second = signal;
|
|
in_wires++;
|
|
module->connect(conn);
|
|
}
|
|
}
|
|
|
|
// ABC9 will return $_NOT_ gates in its mapping (since they are
|
|
// treated as being "free"), in particular driving primary
|
|
// outputs (real primary outputs, or cells treated as blackboxes)
|
|
// or driving box inputs.
|
|
// Instead of just mapping those $_NOT_ gates into 1-input $lut-s
|
|
// at an area and delay cost, see if it is possible to push
|
|
// this $_NOT_ into the driving LUT, or into all sink LUTs.
|
|
// When this is not possible, (i.e. this signal drives two primary
|
|
// outputs, only one of which is complemented) and when the driver
|
|
// is a LUT, then clone the LUT so that it can be inverted without
|
|
// increasing depth/delay.
|
|
for (auto &it : bit_users)
|
|
if (bit_drivers.count(it.first))
|
|
for (auto driver_cell : bit_drivers.at(it.first))
|
|
for (auto user_cell : it.second)
|
|
toposort.edge(driver_cell, user_cell);
|
|
bool no_loops = toposort.sort();
|
|
log_assert(no_loops);
|
|
|
|
for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
|
|
RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
|
|
log_assert(not_cell);
|
|
if (not_cell->type != ID($_NOT_))
|
|
continue;
|
|
auto it = not2drivers.find(not_cell);
|
|
if (it == not2drivers.end())
|
|
continue;
|
|
RTLIL::Cell *driver_lut = it->second;
|
|
RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
|
|
RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
|
|
RTLIL::Const driver_mask;
|
|
|
|
a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
|
|
y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));
|
|
|
|
auto jt = bit2sinks.find(a_bit);
|
|
if (jt == bit2sinks.end())
|
|
goto clone_lut;
|
|
|
|
for (auto sink_cell : jt->second)
|
|
if (sink_cell->type != ID($lut))
|
|
goto clone_lut;
|
|
|
|
// Push downstream LUTs past inverter
|
|
for (auto sink_cell : jt->second) {
|
|
SigSpec A = sink_cell->getPort(ID::A);
|
|
RTLIL::Const mask = sink_cell->getParam(ID::LUT);
|
|
int index = 0;
|
|
for (; index < GetSize(A); index++)
|
|
if (A[index] == a_bit)
|
|
break;
|
|
log_assert(index < GetSize(A));
|
|
int i = 0;
|
|
while (i < GetSize(mask)) {
|
|
for (int j = 0; j < (1 << index); j++)
|
|
std::swap(mask[i+j], mask[i+j+(1 << index)]);
|
|
i += 1 << (index+1);
|
|
}
|
|
A[index] = y_bit;
|
|
sink_cell->setPort(ID::A, A);
|
|
sink_cell->setParam(ID::LUT, mask);
|
|
}
|
|
|
|
// Since we have rewritten all sinks (which we know
|
|
// to be only LUTs) to be after the inverter, we can
|
|
// go ahead and clone the LUT with the expectation
|
|
// that the original driving LUT will become dangling
|
|
// and get cleaned away
|
|
clone_lut:
|
|
driver_mask = driver_lut->getParam(ID::LUT);
|
|
for (auto &b : driver_mask.bits) {
|
|
if (b == RTLIL::State::S0) b = RTLIL::State::S1;
|
|
else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
|
|
}
|
|
auto cell = module->addLut(NEW_ID,
|
|
driver_lut->getPort(ID::A),
|
|
y_bit,
|
|
driver_mask);
|
|
for (auto &bit : cell->connections_.at(ID::A)) {
|
|
bit.wire = module->wires_.at(remap_name(bit.wire->name));
|
|
bit2sinks[bit].push_back(cell);
|
|
}
|
|
}
|
|
|
|
//log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
|
|
log("ABC RESULTS: input signals: %8d\n", in_wires);
|
|
log("ABC RESULTS: output signals: %8d\n", out_wires);
|
|
|
|
design->remove(mapped_mod);
|
|
}
|
|
|
|
struct Abc9OpsPass : public Pass {
|
|
Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { }
|
|
void help() override
|
|
{
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
log("\n");
|
|
log(" abc9_ops [options] [selection]\n");
|
|
log("\n");
|
|
log("This pass contains a set of supporting operations for use during ABC technology\n");
|
|
log("mapping, and is expected to be called in conjunction with other operations from\n");
|
|
log("the `abc9' script pass. Only fully-selected modules are supported.\n");
|
|
log("\n");
|
|
log(" -check\n");
|
|
log(" check that the design is valid, e.g. (* abc9_box_id *) values are unique,\n");
|
|
log(" (* abc9_carry *) is only given for one input/output port, etc.\n");
|
|
log("\n");
|
|
log(" -prep_hier\n");
|
|
log(" derive all used (* abc9_box *) or (* abc9_flop *) (if -dff option)\n");
|
|
log(" whitebox modules. with (* abc9_flop *) modules, only those containing\n");
|
|
log(" $dff/$_DFF_[NP]_ cells with zero initial state -- due to an ABC limitation\n");
|
|
log(" -- will be derived.\n");
|
|
log("\n");
|
|
log(" -prep_bypass\n");
|
|
log(" create techmap rules in the '$abc9_map' and '$abc9_unmap' designs for\n");
|
|
log(" bypassing sequential (* abc9_box *) modules using a combinatorial box\n");
|
|
log(" (named *_$abc9_byp). bypassing is necessary if sequential elements (e.g.\n");
|
|
log(" $dff, $mem, etc.) are discovered inside so that any combinatorial paths\n");
|
|
log(" will be correctly captured. this bypass box will only contain ports that\n");
|
|
log(" are referenced by a simple path declaration ($specify2 cell) inside a\n");
|
|
log(" specify block.\n");
|
|
log("\n");
|
|
log(" -prep_dff\n");
|
|
log(" select all (* abc9_flop *) modules instantiated in the design and store\n");
|
|
log(" in the named selection '$abc9_flops'.\n");
|
|
log("\n");
|
|
log(" -prep_dff_submod\n");
|
|
log(" within (* abc9_flop *) modules, rewrite all edge-sensitive path\n");
|
|
log(" declarations and $setup() timing checks ($specify3 and $specrule cells)\n");
|
|
log(" that share a 'DST' port with the $_DFF_[NP]_.Q port from this 'Q' port to\n");
|
|
log(" the DFF's 'D' port. this is to prepare such specify cells to be moved\n");
|
|
log(" into the flop box.\n");
|
|
log("\n");
|
|
log(" -prep_dff_unmap\n");
|
|
log(" populate the '$abc9_unmap' design with techmap rules for mapping *_$abc9_flop\n");
|
|
log(" cells back into their derived cell types (where the rules created by\n");
|
|
log(" -prep_hier will then map back to the original cell with parameters).\n");
|
|
log("\n");
|
|
log(" -prep_delays\n");
|
|
log(" insert `$__ABC9_DELAY' blackbox cells into the design to account for\n");
|
|
log(" certain required times.\n");
|
|
log("\n");
|
|
log(" -break_scc\n");
|
|
log(" for an arbitrarily chosen cell in each unique SCC of each selected module\n");
|
|
log(" (tagged with an (* abc9_scc_id = <int> *) attribute) interrupt all wires\n");
|
|
log(" driven by this cell's outputs with a temporary $__ABC9_SCC_BREAKER cell\n");
|
|
log(" to break the SCC.\n");
|
|
log("\n");
|
|
log(" -prep_xaiger\n");
|
|
log(" prepare the design for XAIGER output. this includes computing the\n");
|
|
log(" topological ordering of ABC9 boxes, as well as preparing the '$abc9_holes'\n");
|
|
log(" design that contains the logic behaviour of ABC9 whiteboxes.\n");
|
|
log("\n");
|
|
log(" -dff\n");
|
|
log(" consider flop cells (those instantiating modules marked with (* abc9_flop *))\n");
|
|
log(" during -prep_{delays,xaiger,box}.\n");
|
|
log("\n");
|
|
log(" -prep_lut <maxlut>\n");
|
|
log(" pre-compute the lut library by analysing all modules marked with\n");
|
|
log(" (* abc9_lut=<area> *).\n");
|
|
log("\n");
|
|
log(" -write_lut <dst>\n");
|
|
log(" write the pre-computed lut library to <dst>.\n");
|
|
log("\n");
|
|
log(" -prep_box\n");
|
|
log(" pre-compute the box library by analysing all modules marked with\n");
|
|
log(" (* abc9_box *).\n");
|
|
log("\n");
|
|
log(" -write_box <dst>\n");
|
|
log(" write the pre-computed box library to <dst>.\n");
|
|
log("\n");
|
|
log(" -reintegrate\n");
|
|
log(" for each selected module, re-intergrate the module '<module-name>$abc9'\n");
|
|
log(" by first recovering ABC9 boxes, and then stitching in the remaining primary\n");
|
|
log(" inputs and outputs.\n");
|
|
log("\n");
|
|
}
|
|
void execute(std::vector<std::string> args, RTLIL::Design *design) override
|
|
{
|
|
log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n");
|
|
|
|
bool check_mode = false;
|
|
bool prep_delays_mode = false;
|
|
bool break_scc_mode = false;
|
|
bool prep_hier_mode = false;
|
|
bool prep_bypass_mode = false;
|
|
bool prep_dff_mode = false, prep_dff_submod_mode = false, prep_dff_unmap_mode = false;
|
|
bool prep_xaiger_mode = false;
|
|
bool prep_lut_mode = false;
|
|
bool prep_box_mode = false;
|
|
bool reintegrate_mode = false;
|
|
bool dff_mode = false;
|
|
std::string write_lut_dst;
|
|
int maxlut = 0;
|
|
std::string write_box_dst;
|
|
|
|
bool valid = false;
|
|
size_t argidx;
|
|
for (argidx = 1; argidx < args.size(); argidx++) {
|
|
std::string arg = args[argidx];
|
|
if (arg == "-check") {
|
|
check_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-break_scc") {
|
|
break_scc_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-prep_hier") {
|
|
prep_hier_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-prep_bypass") {
|
|
prep_bypass_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-prep_dff") {
|
|
prep_dff_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-prep_dff_submod") {
|
|
prep_dff_submod_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-prep_dff_unmap") {
|
|
prep_dff_unmap_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-prep_xaiger") {
|
|
prep_xaiger_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-prep_delays") {
|
|
prep_delays_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-prep_lut" && argidx+1 < args.size()) {
|
|
prep_lut_mode = true;
|
|
maxlut = atoi(args[++argidx].c_str());
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-write_lut" && argidx+1 < args.size()) {
|
|
write_lut_dst = args[++argidx];
|
|
rewrite_filename(write_lut_dst);
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-prep_box") {
|
|
prep_box_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-write_box" && argidx+1 < args.size()) {
|
|
write_box_dst = args[++argidx];
|
|
rewrite_filename(write_box_dst);
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-reintegrate") {
|
|
reintegrate_mode = true;
|
|
valid = true;
|
|
continue;
|
|
}
|
|
if (arg == "-dff") {
|
|
dff_mode = true;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
extra_args(args, argidx, design);
|
|
|
|
if (!valid)
|
|
log_cmd_error("At least one of -check, -break_scc, -prep_{delays,xaiger,dff[123],lut,box}, -write_{lut,box}, -reintegrate must be specified.\n");
|
|
|
|
if (dff_mode && !check_mode && !prep_hier_mode && !prep_delays_mode && !prep_xaiger_mode && !reintegrate_mode)
|
|
log_cmd_error("'-dff' option is only relevant for -prep_{hier,delay,xaiger} or -reintegrate.\n");
|
|
|
|
if (check_mode)
|
|
check(design, dff_mode);
|
|
if (prep_hier_mode)
|
|
prep_hier(design, dff_mode);
|
|
if (prep_bypass_mode)
|
|
prep_bypass(design);
|
|
if (prep_dff_mode)
|
|
prep_dff(design);
|
|
if (prep_dff_submod_mode)
|
|
prep_dff_submod(design);
|
|
if (prep_dff_unmap_mode)
|
|
prep_dff_unmap(design);
|
|
if (prep_delays_mode)
|
|
prep_delays(design, dff_mode);
|
|
if (prep_lut_mode)
|
|
prep_lut(design, maxlut);
|
|
if (prep_box_mode)
|
|
prep_box(design);
|
|
|
|
for (auto mod : design->selected_modules()) {
|
|
if (mod->processes.size() > 0) {
|
|
log("Skipping module %s as it contains processes.\n", log_id(mod));
|
|
continue;
|
|
}
|
|
|
|
if (!design->selected_whole_module(mod))
|
|
log_error("Can't handle partially selected module %s!\n", log_id(mod));
|
|
|
|
if (!write_lut_dst.empty())
|
|
write_lut(mod, write_lut_dst);
|
|
if (!write_box_dst.empty())
|
|
write_box(mod, write_box_dst);
|
|
if (break_scc_mode)
|
|
break_scc(mod);
|
|
if (prep_xaiger_mode)
|
|
prep_xaiger(mod, dff_mode);
|
|
if (reintegrate_mode)
|
|
reintegrate(mod, dff_mode);
|
|
}
|
|
}
|
|
} Abc9OpsPass;
|
|
|
|
PRIVATE_NAMESPACE_END
|