yosys/passes/memory/memory_map.cc

511 lines
16 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/log.h"
#include "kernel/mem.h"
#include <sstream>
#include <set>
#include <stdlib.h>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct MemoryMapWorker
{
bool attr_icase = false;
bool rom_only = false;
bool keepdc = false;
bool formal = false;
dict<RTLIL::IdString, std::vector<RTLIL::Const>> attributes;
RTLIL::Design *design;
RTLIL::Module *module;
SigMap sigmap;
FfInitVals initvals;
std::map<std::pair<RTLIL::SigSpec, RTLIL::SigSpec>, RTLIL::SigBit> decoder_cache;
MemoryMapWorker(RTLIL::Design *design, RTLIL::Module *module) : design(design), module(module), sigmap(module), initvals(&sigmap, module) {}
std::string map_case(std::string value) const
{
if (attr_icase) {
for (char &c : value)
c = tolower(c);
}
return value;
}
RTLIL::Const map_case(RTLIL::Const value) const
{
if (value.flags & RTLIL::CONST_FLAG_STRING)
return map_case(value.decode_string());
return value;
}
std::string genid(RTLIL::IdString name, std::string token1 = "", int i = -1, std::string token2 = "", int j = -1, std::string token3 = "", int k = -1, std::string token4 = "")
{
std::stringstream sstr;
sstr << "$memory" << name.str() << token1;
if (i >= 0)
sstr << "[" << i << "]";
sstr << token2;
if (j >= 0)
sstr << "[" << j << "]";
sstr << token3;
if (k >= 0)
sstr << "[" << k << "]";
sstr << token4 << "$" << (autoidx++);
return sstr.str();
}
RTLIL::Wire *addr_decode(RTLIL::SigSpec addr_sig, RTLIL::SigSpec addr_val)
{
std::pair<RTLIL::SigSpec, RTLIL::SigSpec> key(addr_sig, addr_val);
log_assert(GetSize(addr_sig) == GetSize(addr_val));
if (decoder_cache.count(key) == 0) {
if (GetSize(addr_sig) < 2) {
decoder_cache[key] = module->Eq(NEW_ID, addr_sig, addr_val);
} else {
int split_at = GetSize(addr_sig) / 2;
RTLIL::SigBit left_eq = addr_decode(addr_sig.extract(0, split_at), addr_val.extract(0, split_at));
RTLIL::SigBit right_eq = addr_decode(addr_sig.extract(split_at, GetSize(addr_sig) - split_at), addr_val.extract(split_at, GetSize(addr_val) - split_at));
decoder_cache[key] = module->And(NEW_ID, left_eq, right_eq);
}
}
RTLIL::SigBit bit = decoder_cache.at(key);
log_assert(bit.wire != nullptr && GetSize(bit.wire) == 1);
return bit.wire;
}
void handle_memory(Mem &mem)
{
std::set<int> static_ports;
std::map<int, RTLIL::SigSpec> static_cells_map;
SigSpec init_data = mem.get_init_data();
if (!mem.wr_ports.empty() && rom_only)
return;
// check if attributes allow us to infer FFRAM for this memory
for (const auto &attr : attributes) {
if (mem.attributes.count(attr.first)) {
const auto &cell_attr = mem.attributes[attr.first];
if (attr.second.empty()) {
log("Not mapping memory %s in module %s (attribute %s is set).\n",
mem.memid.c_str(), module->name.c_str(), attr.first.c_str());
return;
}
bool found = false;
for (auto &value : attr.second) {
if (map_case(cell_attr) == map_case(value)) {
found = true;
break;
}
}
if (!found) {
if (cell_attr.flags & RTLIL::CONST_FLAG_STRING) {
log("Not mapping memory %s in module %s (attribute %s is set to \"%s\").\n",
mem.memid.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.decode_string().c_str());
} else {
log("Not mapping memory %s in module %s (attribute %s is set to %d).\n",
mem.memid.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.as_int());
}
return;
}
}
}
// delete unused memory cell
if (mem.rd_ports.empty()) {
mem.remove();
return;
}
// all write ports must share the same clock
RTLIL::SigSpec refclock;
bool refclock_pol = false;
bool async_wr = false;
bool static_only = true;
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
auto &port = mem.wr_ports[i];
if (port.en.is_fully_const() && !port.en.as_bool()) {
static_ports.insert(i);
continue;
}
if (!port.clk_enable) {
if (port.addr.is_fully_const() && port.en.is_fully_ones()) {
for (int sub = 0; sub < (1 << port.wide_log2); sub++)
static_cells_map[port.addr.as_int() + sub] = port.data.extract(sub * mem.width, mem.width);
static_ports.insert(i);
continue;
}
static_only = false;
if (GetSize(refclock) != 0)
log("Not mapping memory %s in module %s (mixed clocked and async write ports).\n",
mem.memid.c_str(), module->name.c_str());
if (!formal)
log("Not mapping memory %s in module %s (write port %d has no clock).\n",
mem.memid.c_str(), module->name.c_str(), i);
async_wr = true;
continue;
}
static_only = false;
if (async_wr)
log("Not mapping memory %s in module %s (mixed clocked and async write ports).\n",
mem.memid.c_str(), module->name.c_str());
if (refclock.size() == 0) {
refclock = port.clk;
refclock_pol = port.clk_polarity;
}
if (port.clk != refclock || port.clk_polarity != refclock_pol) {
log("Not mapping memory %s in module %s (write clock %d is incompatible with other clocks).\n",
mem.memid.c_str(), module->name.c_str(), i);
return;
}
}
log("Mapping memory %s in module %s:\n", mem.memid.c_str(), module->name.c_str());
int abits = ceil_log2(mem.size);
std::vector<RTLIL::SigSpec> data_reg_in(1 << abits);
std::vector<RTLIL::SigSpec> data_reg_out(1 << abits);
std::vector<RTLIL::SigSpec> &data_read = async_wr ? data_reg_in : data_reg_out;
int count_static = 0;
for (int i = 0; i < mem.size; i++)
{
int addr = i + mem.start_offset;
int idx = addr & ((1 << abits) - 1);
SigSpec w_init = init_data.extract(i*mem.width, mem.width);
if (static_cells_map.count(addr) > 0)
{
data_read[idx] = static_cells_map[addr];
count_static++;
}
else if (static_only && (!keepdc || w_init.is_fully_def()))
{
data_read[idx] = w_init;
}
else
{
RTLIL::Cell *c;
auto ff_id = genid(mem.memid, "", addr);
if (static_only) {
// non-static part is a ROM, we only reach this with keepdc
if (formal) {
c = module->addCell(ff_id, ID($ff));
} else {
c = module->addCell(ff_id, ID($dff));
c->parameters[ID::CLK_POLARITY] = RTLIL::Const(RTLIL::State::S1);
c->setPort(ID::CLK, RTLIL::SigSpec(RTLIL::State::S0));
}
} else if (async_wr) {
log_assert(formal); // General async write not implemented yet, checked against above
c = module->addCell(ff_id, ID($ff));
} else {
c = module->addCell(ff_id, ID($dff));
c->parameters[ID::CLK_POLARITY] = RTLIL::Const(refclock_pol);
c->setPort(ID::CLK, refclock);
}
c->parameters[ID::WIDTH] = mem.width;
RTLIL::Wire *w_in = module->addWire(genid(mem.memid, "", addr, "$d"), mem.width);
data_reg_in[idx] = w_in;
c->setPort(ID::D, w_in);
std::string w_out_name = stringf("%s[%d]", mem.memid.c_str(), addr);
if (module->wires_.count(w_out_name) > 0)
w_out_name = genid(mem.memid, "", addr, "$q");
RTLIL::Wire *w_out = module->addWire(w_out_name, mem.width);
if (formal && mem.packed && mem.cell->name.c_str()[0] == '\\') {
auto hdlname = mem.cell->get_hdlname_attribute();
if (hdlname.empty())
hdlname.push_back(mem.cell->name.c_str() + 1);
hdlname.push_back(stringf("[%d]", addr));
w_out->set_hdlname_attribute(hdlname);
}
if (!w_init.is_fully_undef())
w_out->attributes[ID::init] = w_init.as_const();
data_reg_out[idx] = w_out;
c->setPort(ID::Q, w_out);
if (static_only)
module->connect(RTLIL::SigSig(w_in, w_out));
}
}
log(" created %d %s cells and %d static cells of width %d.\n",
mem.size-count_static, formal && (static_only || async_wr) ? "$ff" : "$dff", count_static, mem.width);
int count_dff = 0, count_mux = 0, count_wrmux = 0;
for (int i = 0; i < GetSize(mem.rd_ports); i++)
{
auto &port = mem.rd_ports[i];
if (mem.extract_rdff(i, &initvals))
count_dff++;
RTLIL::SigSpec rd_addr = port.addr;
rd_addr.extend_u0(abits, false);
std::vector<RTLIL::SigSpec> rd_signals;
rd_signals.push_back(port.data);
for (int j = 0; j < abits - port.wide_log2; j++)
{
std::vector<RTLIL::SigSpec> next_rd_signals;
for (size_t k = 0; k < rd_signals.size(); k++)
{
RTLIL::Cell *c = module->addCell(genid(mem.memid, "$rdmux", i, "", j, "", k), ID($mux));
c->parameters[ID::WIDTH] = GetSize(port.data);
c->setPort(ID::Y, rd_signals[k]);
c->setPort(ID::S, rd_addr.extract(abits-j-1, 1));
count_mux++;
c->setPort(ID::A, module->addWire(genid(mem.memid, "$rdmux", i, "", j, "", k, "$a"), GetSize(port.data)));
c->setPort(ID::B, module->addWire(genid(mem.memid, "$rdmux", i, "", j, "", k, "$b"), GetSize(port.data)));
next_rd_signals.push_back(c->getPort(ID::A));
next_rd_signals.push_back(c->getPort(ID::B));
}
next_rd_signals.swap(rd_signals);
}
for (int j = 0; j < (1 << abits); j++)
if (data_read[j] != SigSpec())
module->connect(RTLIL::SigSig(rd_signals[j >> port.wide_log2].extract((j & ((1 << port.wide_log2) - 1)) * mem.width, mem.width), data_read[j]));
}
log(" read interface: %d $dff and %d $mux cells.\n", count_dff, count_mux);
if (!static_only)
{
for (int i = 0; i < mem.size; i++)
{
int addr = i + mem.start_offset;
int idx = addr & ((1 << abits) - 1);
if (static_cells_map.count(addr) > 0)
continue;
RTLIL::SigSpec sig = data_reg_out[idx];
for (int j = 0; j < GetSize(mem.wr_ports); j++)
{
auto &port = mem.wr_ports[j];
RTLIL::SigSpec wr_addr = port.addr.extract_end(port.wide_log2);
RTLIL::Wire *w_seladdr = addr_decode(wr_addr, RTLIL::SigSpec(addr >> port.wide_log2, GetSize(wr_addr)));
int sub = addr & ((1 << port.wide_log2) - 1);
int wr_offset = 0;
while (wr_offset < mem.width)
{
int wr_width = 1;
RTLIL::SigSpec wr_bit = port.en.extract(wr_offset + sub * mem.width, 1);
while (wr_offset + wr_width < mem.width) {
RTLIL::SigSpec next_wr_bit = port.en.extract(wr_offset + wr_width + sub * mem.width, 1);
if (next_wr_bit != wr_bit)
break;
wr_width++;
}
RTLIL::Wire *w = w_seladdr;
if (wr_bit != State::S1)
{
RTLIL::Cell *c = module->addCell(genid(mem.memid, "$wren", addr, "", j, "", wr_offset), ID($and));
c->parameters[ID::A_SIGNED] = RTLIL::Const(0);
c->parameters[ID::B_SIGNED] = RTLIL::Const(0);
c->parameters[ID::A_WIDTH] = RTLIL::Const(1);
c->parameters[ID::B_WIDTH] = RTLIL::Const(1);
c->parameters[ID::Y_WIDTH] = RTLIL::Const(1);
c->setPort(ID::A, w);
c->setPort(ID::B, wr_bit);
w = module->addWire(genid(mem.memid, "$wren", addr, "", j, "", wr_offset, "$y"));
c->setPort(ID::Y, RTLIL::SigSpec(w));
}
RTLIL::Cell *c = module->addCell(genid(mem.memid, "$wrmux", addr, "", j, "", wr_offset), ID($mux));
c->parameters[ID::WIDTH] = wr_width;
c->setPort(ID::A, sig.extract(wr_offset, wr_width));
c->setPort(ID::B, port.data.extract(wr_offset + sub * mem.width, wr_width));
c->setPort(ID::S, RTLIL::SigSpec(w));
w = module->addWire(genid(mem.memid, "$wrmux", addr, "", j, "", wr_offset, "$y"), wr_width);
c->setPort(ID::Y, w);
sig.replace(wr_offset, w);
wr_offset += wr_width;
count_wrmux++;
}
}
module->connect(RTLIL::SigSig(data_reg_in[idx], sig));
}
}
log(" write interface: %d write mux blocks.\n", count_wrmux);
mem.remove();
}
void run()
{
for (auto &mem : Mem::get_selected_memories(module))
handle_memory(mem);
}
};
struct MemoryMapPass : public Pass {
MemoryMapPass() : Pass("memory_map", "translate multiport memories to basic cells") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" memory_map [options] [selection]\n");
log("\n");
log("This pass converts multiport memory cells as generated by the memory_collect\n");
log("pass to word-wide DFFs and address decoders.\n");
log("\n");
log(" -attr !<name>\n");
log(" do not map memories that have attribute <name> set.\n");
log("\n");
log(" -attr <name>[=<value>]\n");
log(" for memories that have attribute <name> set, only map them if its value\n");
log(" is a string <value> (if specified), or an integer 1 (otherwise). if this\n");
log(" option is specified multiple times, map the memory if the attribute is\n");
log(" to any of the values.\n");
log("\n");
log(" -iattr\n");
log(" for -attr, ignore case of <value>.\n");
log("\n");
log(" -rom-only\n");
log(" only perform conversion for ROMs (memories with no write ports).\n");
log("\n");
log(" -keepdc\n");
log(" when mapping ROMs, keep x-bits shared across read ports.\n");
log("\n");
log(" -formal\n");
log(" map memories for a global clock based formal verification flow.\n");
log(" This implies -keepdc, uses $ff cells for ROMs and sets hdlname\n");
log(" attributes. It also has limited support for async write ports\n");
log(" as generated by clk2fflogic.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool attr_icase = false;
bool rom_only = false;
bool keepdc = false;
bool formal = false;
dict<RTLIL::IdString, std::vector<RTLIL::Const>> attributes;
log_header(design, "Executing MEMORY_MAP pass (converting memories to logic and flip-flops).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-attr" && argidx + 1 < args.size())
{
std::string attr_arg = args[++argidx];
std::string name;
RTLIL::Const value;
size_t eq_at = attr_arg.find('=');
if (eq_at != std::string::npos) {
name = attr_arg.substr(0, eq_at);
value = attr_arg.substr(eq_at + 1);
} else {
name = attr_arg;
value = RTLIL::Const(1);
}
if (attr_arg.size() > 1 && attr_arg[0] == '!') {
if (value != RTLIL::Const(1)) {
--argidx;
break; // we don't support -attr !<name>=<value>
}
attributes[RTLIL::escape_id(name.substr(1))].clear();
} else {
attributes[RTLIL::escape_id(name)].push_back(value);
}
continue;
}
if (args[argidx] == "-iattr")
{
attr_icase = true;
continue;
}
if (args[argidx] == "-rom-only")
{
rom_only = true;
continue;
}
if (args[argidx] == "-keepdc")
{
keepdc = true;
continue;
}
if (args[argidx] == "-formal")
{
formal = true;
keepdc = true;
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto mod : design->selected_modules()) {
if (mod->has_processes_warn())
continue;
MemoryMapWorker worker(design, mod);
worker.attr_icase = attr_icase;
worker.attributes = attributes;
worker.rom_only = rom_only;
worker.keepdc = keepdc;
worker.formal = formal;
worker.run();
}
}
} MemoryMapPass;
PRIVATE_NAMESPACE_END