yosys/passes/techmap/abc9_ops.cc

1808 lines
59 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/celltypes.h"
#include "kernel/timinginfo.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
int map_autoidx;
inline std::string remap_name(RTLIL::IdString abc9_name)
{
return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
}
void check(RTLIL::Design *design, bool dff_mode)
{
dict<IdString,IdString> box_lookup;
for (auto m : design->modules()) {
auto flop = m->get_bool_attribute(ID::abc9_flop);
auto it = m->attributes.find(ID::abc9_box_id);
if (!flop) {
if (it == m->attributes.end())
continue;
auto id = it->second.as_int();
auto r = box_lookup.insert(std::make_pair(stringf("$__boxid%d", id), m->name));
if (!r.second)
log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n",
log_id(m), id, log_id(r.first->second));
}
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : m->ports) {
auto w = m->wire(port_name);
log_assert(w);
if (w->get_bool_attribute(ID::abc9_carry)) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one (* abc9_carry *) input port.\n", log_id(m));
carry_in = port_name;
}
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one (* abc9_carry *) output port.\n", log_id(m));
carry_out = port_name;
}
}
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an (* abc9_carry *) input port but no output port.\n", log_id(m));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an (* abc9_carry *) output port but no input port.\n", log_id(m));
if (flop) {
int num_outputs = 0;
for (auto port_name : m->ports) {
auto wire = m->wire(port_name);
if (wire->port_output) num_outputs++;
}
if (num_outputs != 1)
log_error("Module '%s' with (* abc9_flop *) has %d outputs (expect 1).\n", log_id(m), num_outputs);
}
}
if (dff_mode) {
static pool<IdString> unsupported{
ID($adff), ID($dlatch), ID($dlatchsr), ID($sr),
ID($_DFF_NN0_), ID($_DFF_NN1_), ID($_DFF_NP0_), ID($_DFF_NP1_),
ID($_DFF_PN0_), ID($_DFF_PN1_), ID($_DFF_PP0_), ID($_DFF_PP1_),
ID($_DLATCH_N_), ID($_DLATCH_P_),
ID($_DLATCHSR_NNN_), ID($_DLATCHSR_NNP_), ID($_DLATCHSR_NPN_), ID($_DLATCHSR_NPP_),
ID($_DLATCHSR_PNN_), ID($_DLATCHSR_PNP_), ID($_DLATCHSR_PPN_), ID($_DLATCHSR_PPP_),
ID($_SR_NN_), ID($_SR_NP_), ID($_SR_PN_), ID($_SR_PP_)
};
pool<IdString> processed;
for (auto module : design->selected_modules())
for (auto cell : module->cells()) {
auto inst_module = design->module(cell->type);
if (!inst_module)
continue;
IdString derived_type;
Module *derived_module;
if (cell->parameters.empty()) {
derived_type = cell->type;
derived_module = inst_module;
}
else {
// Check potential (since its value may depend on a parameter,
// but not its existence)
if (!inst_module->has_attribute(ID::abc9_flop))
continue;
derived_type = inst_module->derive(design, cell->parameters);
derived_module = design->module(derived_type);
log_assert(derived_module);
}
if (!derived_module->get_bool_attribute(ID::abc9_flop))
continue;
if (derived_module->get_blackbox_attribute(true /* ignore_wb */))
log_error("Module '%s' with (* abc9_flop *) is a blackbox.\n", log_id(derived_type));
if (derived_module->has_processes())
Pass::call_on_module(design, derived_module, "proc");
bool found = false;
for (auto derived_cell : derived_module->cells()) {
if (derived_cell->type.in(ID($dff), ID($_DFF_N_), ID($_DFF_P_))) {
if (found)
log_error("Whitebox '%s' with (* abc9_flop *) contains more than one $_DFF_[NP]_ cell.\n", log_id(derived_module));
found = true;
SigBit Q = derived_cell->getPort(ID::Q);
log_assert(GetSize(Q.wire) == 1);
if (!Q.wire->port_output)
log_error("Whitebox '%s' with (* abc9_flop *) contains a %s cell where its 'Q' port does not drive a module output.\n", log_id(derived_module), log_id(derived_cell->type));
Const init = Q.wire->attributes.at(ID::init, State::Sx);
log_assert(GetSize(init) == 1);
}
else if (unsupported.count(derived_cell->type))
log_error("Whitebox '%s' with (* abc9_flop *) contains a %s cell, which is not supported for sequential synthesis.\n", log_id(derived_module), log_id(derived_cell->type));
}
}
}
}
void prep_hier(RTLIL::Design *design, bool dff_mode)
{
auto r = saved_designs.emplace("$abc9_unmap", nullptr);
if (r.second)
r.first->second = new Design;
Design *unmap_design = r.first->second;
// Keep track of derived versions of modules that we haven't used, to prevent these being used for unwanted techmaps later on.
pool<IdString> unused_derived;
for (auto module : design->selected_modules())
for (auto cell : module->cells()) {
auto inst_module = design->module(cell->type);
if (!inst_module)
continue;
IdString derived_type;
Module *derived_module;
if (cell->parameters.empty()) {
derived_type = cell->type;
derived_module = inst_module;
}
else {
derived_type = inst_module->derive(design, cell->parameters);
derived_module = design->module(derived_type);
unused_derived.insert(derived_type);
}
if (derived_module->get_bool_attribute(ID::abc9_flop)) {
if (!dff_mode)
continue;
}
else {
bool has_timing = false;
for (auto derived_cell : derived_module->cells()) {
if (derived_cell->type.in(ID($specify2), ID($specify3), ID($specrule))) {
// If the module contains timing; then we potentially care about deriving its content too,
// as timings (or associated port widths) could be dependent on parameters.
has_timing = true;
break;
}
}
if (!derived_module->get_bool_attribute(ID::abc9_box) && !derived_module->get_bool_attribute(ID::abc9_bypass) && !has_timing) {
if (unmap_design->module(derived_type)) {
// If derived_type is present in unmap_design, it means that it was processed previously, but found to be incompatible -- e.g. if
// it contained a non-zero initial state. In this case, continue to replace the cell type/parameters so that it has the same properties
// as a compatible type, yet will be safely unmapped later
cell->type = derived_type;
cell->parameters.clear();
unused_derived.erase(derived_type);
}
continue;
}
}
if (!unmap_design->module(derived_type)) {
if (derived_module->has_processes())
Pass::call_on_module(design, derived_module, "proc");
if (derived_module->get_bool_attribute(ID::abc9_flop)) {
for (auto derived_cell : derived_module->cells())
if (derived_cell->type.in(ID($dff), ID($_DFF_N_), ID($_DFF_P_))) {
SigBit Q = derived_cell->getPort(ID::Q);
Const init = Q.wire->attributes.at(ID::init, State::Sx);
log_assert(GetSize(init) == 1);
// Block sequential synthesis on cells with (* init *) != 1'b0
// because ABC9 doesn't support them
if (init != State::S0) {
log_warning("Whitebox '%s' with (* abc9_flop *) contains a %s cell with non-zero initial state -- this is not supported for ABC9 sequential synthesis. Treating as a blackbox.\n", log_id(derived_module), log_id(derived_cell->type));
derived_module->set_bool_attribute(ID::abc9_flop, false);
}
break;
}
}
else if (derived_module->get_bool_attribute(ID::abc9_box)) {
for (auto derived_cell : derived_module->cells())
if (derived_cell->is_mem_cell() || RTLIL::builtin_ff_cell_types().count(derived_cell->type)) {
derived_module->set_bool_attribute(ID::abc9_box, false);
derived_module->set_bool_attribute(ID::abc9_bypass);
break;
}
}
if (derived_type != cell->type) {
auto unmap_module = unmap_design->addModule(derived_type);
auto replace_cell = unmap_module->addCell(ID::_TECHMAP_REPLACE_, cell->type);
for (auto port : derived_module->ports) {
auto w = unmap_module->addWire(port, derived_module->wire(port));
// Do not propagate (* init *) values into the box,
// in fact, remove it from outside too
if (w->port_output)
w->attributes.erase(ID::init);
// Attach (* techmap_autopurge *) to all ports to ensure that
// undriven inputs/unused outputs are propagated through to
// the techmapped cell
w->attributes[ID::techmap_autopurge] = 1;
replace_cell->setPort(port, w);
}
unmap_module->ports = derived_module->ports;
unmap_module->check();
replace_cell->parameters = cell->parameters;
}
}
cell->type = derived_type;
cell->parameters.clear();
unused_derived.erase(derived_type);
}
for (auto unused : unused_derived) {
design->remove(design->module(unused));
}
}
void prep_bypass(RTLIL::Design *design)
{
auto r = saved_designs.emplace("$abc9_map", nullptr);
if (r.second)
r.first->second = new Design;
Design *map_design = r.first->second;
r = saved_designs.emplace("$abc9_unmap", nullptr);
if (r.second)
r.first->second = new Design;
Design *unmap_design = r.first->second;
pool<IdString> processed;
for (auto module : design->selected_modules())
for (auto cell : module->cells()) {
if (!processed.insert(cell->type).second)
continue;
auto inst_module = design->module(cell->type);
if (!inst_module)
continue;
if (!inst_module->get_bool_attribute(ID::abc9_bypass))
continue;
log_assert(!inst_module->get_blackbox_attribute(true /* ignore_wb */));
log_assert(cell->parameters.empty());
// The idea is to create two techmap designs, one which maps:
//
// box u0 (.i(i), .o(o));
//
// to
//
// wire $abc9$o;
// box u0 (.i(i), .o($abc9_byp$o));
// box_$abc9_byp (.i(i), .$abc9_byp$o($abc9_byp$o), .o(o));
//
// the purpose being to move the (* abc9_box *) status from 'box'
// (which is stateful) to 'box_$abc9_byp' (which becomes a new
// combinatorial black- (not white-) box with all state elements
// removed). This has the effect of preserving any combinatorial
// paths through an otherwise sequential primitive -- e.g. LUTRAMs.
//
// The unmap design performs the reverse:
//
// wire $abc9$o;
// box u0 (.i(i), .o($abc9_byp$o));
// box_$abc9_byp (.i(i), .$abc9_byp$o($abc9_byp$o), .o(o));
//
// to:
//
// wire $abc9$o;
// box u0 (.i(i), .o($abc9_byp$o));
// assign o = $abc9_byp$o;
// Copy inst_module into map_design, with the same interface
// and duplicate $abc9$* wires for its output ports
auto map_module = map_design->addModule(cell->type);
for (auto port_name : inst_module->ports) {
auto w = map_module->addWire(port_name, inst_module->wire(port_name));
if (w->port_output)
w->attributes.erase(ID::init);
}
map_module->ports = inst_module->ports;
map_module->check();
map_module->set_bool_attribute(ID::whitebox);
// Create the bypass module in the user design, which has the same
// interface as the derived module but with additional input
// ports driven by the outputs of the replaced cell
auto bypass_module = design->addModule(cell->type.str() + "_$abc9_byp");
for (auto port_name : inst_module->ports) {
auto port = inst_module->wire(port_name);
if (!port->port_output)
continue;
auto dst = bypass_module->addWire(port_name, port);
auto src = bypass_module->addWire("$abc9byp$" + port_name.str(), GetSize(port));
src->port_input = true;
// For these new input ports driven by the replaced
// cell, then create a new simple-path specify entry:
// (input => output) = 0
auto specify = bypass_module->addCell(NEW_ID, ID($specify2));
specify->setPort(ID::EN, State::S1);
specify->setPort(ID::SRC, src);
specify->setPort(ID::DST, dst);
specify->setParam(ID::FULL, 0);
specify->setParam(ID::SRC_WIDTH, GetSize(src));
specify->setParam(ID::DST_WIDTH, GetSize(dst));
specify->setParam(ID::SRC_DST_PEN, 0);
specify->setParam(ID::SRC_DST_POL, 0);
specify->setParam(ID::T_RISE_MIN, 0);
specify->setParam(ID::T_RISE_TYP, 0);
specify->setParam(ID::T_RISE_MAX, 0);
specify->setParam(ID::T_FALL_MIN, 0);
specify->setParam(ID::T_FALL_TYP, 0);
specify->setParam(ID::T_FALL_MAX, 0);
}
bypass_module->set_bool_attribute(ID::blackbox);
bypass_module->set_bool_attribute(ID::abc9_box);
// Copy any 'simple' (combinatorial) specify paths from
// the derived module into the bypass module, if EN
// is not false and SRC/DST are driven only by
// module ports; create new input port if one doesn't
// already exist
for (auto cell : inst_module->cells()) {
if (cell->type != ID($specify2))
continue;
auto EN = cell->getPort(ID::EN).as_bit();
SigBit newEN;
if (!EN.wire && EN != State::S1)
continue;
auto SRC = cell->getPort(ID::SRC);
for (const auto &c : SRC.chunks())
if (c.wire && !c.wire->port_input) {
SRC = SigSpec();
break;
}
if (SRC.empty())
continue;
auto DST = cell->getPort(ID::DST);
for (const auto &c : DST.chunks())
if (c.wire && !c.wire->port_output) {
DST = SigSpec();
break;
}
if (DST.empty())
continue;
auto rw = [bypass_module](RTLIL::SigSpec &sig)
{
SigSpec new_sig;
for (auto c : sig.chunks()) {
if (c.wire) {
auto port = bypass_module->wire(c.wire->name);
if (!port)
port = bypass_module->addWire(c.wire->name, c.wire);
c.wire = port;
}
new_sig.append(std::move(c));
}
sig = std::move(new_sig);
};
auto specify = bypass_module->addCell(NEW_ID, cell);
specify->rewrite_sigspecs(rw);
}
bypass_module->fixup_ports();
// Create an _TECHMAP_REPLACE_ cell identical to the original cell,
// and a bypass cell that has the same inputs/outputs as the
// original cell, but with additional inputs taken from the
// replaced cell
auto replace_cell = map_module->addCell(ID::_TECHMAP_REPLACE_, cell->type);
auto bypass_cell = map_module->addCell(NEW_ID, cell->type.str() + "_$abc9_byp");
for (const auto &conn : cell->connections()) {
auto port = map_module->wire(conn.first);
if (cell->input(conn.first)) {
replace_cell->setPort(conn.first, port);
if (bypass_module->wire(conn.first))
bypass_cell->setPort(conn.first, port);
}
if (cell->output(conn.first)) {
bypass_cell->setPort(conn.first, port);
auto n = "$abc9byp$" + conn.first.str();
auto w = map_module->addWire(n, GetSize(conn.second));
replace_cell->setPort(conn.first, w);
bypass_cell->setPort(n, w);
}
}
// Lastly, create a new module in the unmap_design that shorts
// out the bypass cell back to leave the replace cell behind
// driving the outputs
auto unmap_module = unmap_design->addModule(cell->type.str() + "_$abc9_byp");
for (auto port_name : inst_module->ports) {
auto w = unmap_module->addWire(port_name, inst_module->wire(port_name));
if (w->port_output) {
w->attributes.erase(ID::init);
auto w2 = unmap_module->addWire("$abc9byp$" + port_name.str(), GetSize(w));
w2->port_input = true;
unmap_module->connect(w, w2);
}
}
unmap_module->fixup_ports();
design->scratchpad_set_bool("abc9_ops.prep_bypass.did_something", true);
}
}
void prep_dff(RTLIL::Design *design)
{
auto r = design->selection_vars.insert(std::make_pair(ID($abc9_flops), RTLIL::Selection(false)));
auto &modules_sel = r.first->second;
for (auto module : design->selected_modules())
for (auto cell : module->cells()) {
if (modules_sel.selected_whole_module(cell->type))
continue;
auto inst_module = design->module(cell->type);
if (!inst_module)
continue;
if (!inst_module->get_bool_attribute(ID::abc9_flop))
continue;
log_assert(!inst_module->get_blackbox_attribute(true /* ignore_wb */));
if (!cell->parameters.empty())
{
// At this stage of the ABC9 flow, cells instantiating (* abc9_flop *) modules must not contain any parameters -- instead it should
// be instantiating the derived module which will have had any parameters constant-propagated.
// This task is expected to be performed by `abc9_ops -prep_hier`, but it looks like it failed to do so for this design.
// Please file a bug report!
log_error("Not expecting parameters on cell '%s' instantiating module '%s' marked (* abc9_flop *)\n", log_id(cell->name), log_id(cell->type));
}
modules_sel.select(inst_module);
}
}
void prep_dff_submod(RTLIL::Design *design)
{
for (auto module : design->modules()) {
vector<Cell*> specify_cells;
SigBit Q;
Cell* dff_cell = nullptr;
if (!module->get_bool_attribute(ID::abc9_flop))
continue;
for (auto cell : module->cells())
if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_))) {
log_assert(!dff_cell);
dff_cell = cell;
Q = cell->getPort(ID::Q);
log_assert(GetSize(Q.wire) == 1);
}
else if (cell->type.in(ID($specify3), ID($specrule)))
specify_cells.emplace_back(cell);
log_assert(dff_cell);
// Add an always-enabled CE mux that drives $_DFF_[NP]_.D so that:
// (a) flop box will have an output
// (b) $_DFF_[NP]_.Q will be present as an input
SigBit D = module->addWire(NEW_ID);
module->addMuxGate(NEW_ID, dff_cell->getPort(ID::D), Q, State::S0, D);
dff_cell->setPort(ID::D, D);
// Rewrite $specify cells that end with $_DFF_[NP]_.Q
// to $_DFF_[NP]_.D since it will be moved into
// the submodule
for (auto cell : specify_cells) {
auto DST = cell->getPort(ID::DST);
DST.replace(Q, D);
cell->setPort(ID::DST, DST);
}
design->scratchpad_set_bool("abc9_ops.prep_dff_submod.did_something", true);
}
}
void prep_dff_unmap(RTLIL::Design *design)
{
Design *unmap_design = saved_designs.at("$abc9_unmap");
for (auto module : design->modules()) {
if (!module->get_bool_attribute(ID::abc9_flop) || module->get_bool_attribute(ID::abc9_box))
continue;
// Make sure the box module has all the same ports present on flop cell
auto replace_cell = module->cell(ID::_TECHMAP_REPLACE_);
log_assert(replace_cell);
auto box_module = design->module(module->name.str() + "_$abc9_flop");
log_assert(box_module);
for (auto port_name : module->ports) {
auto port = module->wire(port_name);
auto box_port = box_module->wire(port_name);
if (box_port) {
// Do not propagate init -- already captured by box
box_port->attributes.erase(ID::init);
continue;
}
log_assert(port->port_input);
box_module->addWire(port_name, port);
replace_cell->setPort(port_name, port);
}
box_module->fixup_ports();
auto unmap_module = unmap_design->addModule(box_module->name);
replace_cell = unmap_module->addCell(ID::_TECHMAP_REPLACE_, module->name);
for (auto port_name : box_module->ports) {
auto w = unmap_module->addWire(port_name, box_module->wire(port_name));
if (module->wire(port_name))
replace_cell->setPort(port_name, w);
}
unmap_module->ports = box_module->ports;
unmap_module->check();
}
}
void break_scc(RTLIL::Module *module)
{
// For every unique SCC found, (arbitrarily) find the first
// cell in the component, and interrupt all its output connections
// with the $__ABC9_SCC_BREAKER cell
// Do not break SCCs which have a cell instantiating an abc9_bypass-able
// module (but which wouldn't have been bypassed)
auto design = module->design;
pool<RTLIL::Cell*> scc_cells;
pool<RTLIL::Const> ids_seen;
for (auto cell : module->cells()) {
auto it = cell->attributes.find(ID::abc9_scc_id);
if (it == cell->attributes.end())
continue;
scc_cells.insert(cell);
auto inst_module = design->module(cell->type);
if (inst_module && inst_module->has_attribute(ID::abc9_bypass))
ids_seen.insert(it->second);
}
SigSpec I, O;
for (auto cell : scc_cells) {
auto it = cell->attributes.find(ID::abc9_scc_id);
log_assert(it != cell->attributes.end());
auto id = it->second;
auto r = ids_seen.insert(id);
cell->attributes.erase(it);
if (!r.second)
continue;
for (auto &c : cell->connections_) {
if (c.second.is_fully_const()) continue;
if (cell->output(c.first)) {
Wire *w = module->addWire(NEW_ID, GetSize(c.second));
I.append(w);
O.append(c.second);
c.second = w;
}
}
}
if (!I.empty())
{
auto cell = module->addCell(NEW_ID, ID($__ABC9_SCC_BREAKER));
log_assert(GetSize(I) == GetSize(O));
cell->setParam(ID::WIDTH, GetSize(I));
cell->setPort(ID::I, std::move(I));
cell->setPort(ID::O, std::move(O));
}
}
void prep_delays(RTLIL::Design *design, bool dff_mode)
{
TimingInfo timing;
// Derive all Yosys blackbox modules that are not combinatorial abc9 boxes
// (e.g. DSPs, RAMs, etc.) nor abc9 flops and collect all such instantiations
std::vector<Cell*> cells;
for (auto module : design->selected_modules()) {
if (module->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(module));
continue;
}
for (auto cell : module->cells()) {
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($_DFF_N_), ID($_DFF_P_)))
continue;
log_assert(!cell->type.begins_with("$paramod$__ABC9_DELAY\\DELAY="));
RTLIL::Module* inst_module = design->module(cell->type);
if (!inst_module)
continue;
if (!inst_module->get_blackbox_attribute())
continue;
if (!cell->parameters.empty())
continue;
if (inst_module->get_bool_attribute(ID::abc9_box))
continue;
if (inst_module->get_bool_attribute(ID::abc9_bypass))
continue;
if (dff_mode && inst_module->get_bool_attribute(ID::abc9_flop)) {
continue; // do not add $__ABC9_DELAY boxes to flops
// as delays will be captured in the flop box
}
if (!timing.count(cell->type))
timing.setup_module(inst_module);
cells.emplace_back(cell);
}
}
// Insert $__ABC9_DELAY cells on all cells that instantiate blackboxes
// (or bypassed white-boxes with required times)
dict<int, IdString> box_cache;
Module *delay_module = design->module(ID($__ABC9_DELAY));
log_assert(delay_module);
for (auto cell : cells) {
auto module = cell->module;
auto inst_module = design->module(cell->type);
log_assert(inst_module);
for (auto &i : timing.at(cell->type).required) {
auto port_wire = inst_module->wire(i.first.name);
if (!port_wire)
log_error("Port %s in cell %s (type %s) from module %s does not actually exist",
log_id(i.first.name), log_id(cell), log_id(cell->type), log_id(module));
log_assert(port_wire->port_input);
auto d = i.second.first;
if (d == 0)
continue;
auto offset = i.first.offset;
if (!cell->hasPort(i.first.name))
continue;
auto rhs = cell->getPort(i.first.name);
if (offset >= rhs.size())
continue;
auto O = module->addWire(NEW_ID);
#ifndef NDEBUG
if (ys_debug(1)) {
static pool<std::pair<IdString,TimingInfo::NameBit>> seen;
if (seen.emplace(cell->type, i.first).second) log("%s.%s[%d] abc9_required = %d\n",
log_id(cell->type), log_id(i.first.name), offset, d);
}
#endif
auto r = box_cache.insert(d);
if (r.second) {
r.first->second = delay_module->derive(design, {{ID::DELAY, d}});
log_assert(r.first->second.begins_with("$paramod$__ABC9_DELAY\\DELAY="));
}
auto box = module->addCell(NEW_ID, r.first->second);
box->setPort(ID::I, rhs[offset]);
box->setPort(ID::O, O);
rhs[offset] = O;
cell->setPort(i.first.name, rhs);
}
}
}
void prep_xaiger(RTLIL::Module *module, bool dff)
{
auto design = module->design;
log_assert(design);
SigMap sigmap(module);
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<IdString, std::vector<IdString>> box_ports;
for (auto cell : module->cells()) {
if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_)))
continue;
if (cell->has_keep_attr())
continue;
auto inst_module = design->module(cell->type);
bool abc9_flop = inst_module && inst_module->get_bool_attribute(ID::abc9_flop);
if (abc9_flop && !dff)
continue;
if (inst_module && inst_module->get_bool_attribute(ID::abc9_box)) {
auto r = box_ports.insert(cell->type);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : inst_module->ports) {
auto w = inst_module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute(ID::abc9_carry)) {
log_assert(w->port_input != w->port_output);
if (w->port_input)
carry_in = port_name;
else if (w->port_output)
carry_out = port_name;
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
}
else if (!yosys_celltypes.cell_known(cell->type))
continue;
// TODO: Speed up toposort -- we care about box ordering only
for (auto conn : cell->connections()) {
if (cell->input(conn.first))
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
if (cell->output(conn.first) && !abc9_flop)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
}
toposort.node(cell->name);
}
if (box_ports.empty())
return;
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
if (ys_debug(1))
toposort.analyze_loops = true;
bool no_loops = toposort.sort();
if (ys_debug(1)) {
unsigned i = 0;
for (auto &it : toposort.loops) {
log(" loop %d\n", i++);
for (auto cell_name : it) {
auto cell = module->cell(cell_name);
log_assert(cell);
log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
}
}
}
log_assert(no_loops);
auto r = saved_designs.emplace("$abc9_holes", nullptr);
if (r.second)
r.first->second = new Design;
RTLIL::Design *holes_design = r.first->second;
log_assert(holes_design);
RTLIL::Module *holes_module = holes_design->addModule(module->name);
log_assert(holes_module);
dict<IdString, Cell*> cell_cache;
TimingInfo timing;
int port_id = 1, box_count = 0;
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
log_assert(cell);
RTLIL::Module* box_module = design->module(cell->type);
if (!box_module)
continue;
if (!box_module->get_bool_attribute(ID::abc9_box))
continue;
if (!cell->parameters.empty())
{
// At this stage of the ABC9 flow, cells instantiating (* abc9_box *) modules must not contain any parameters -- instead it should
// be instantiating the derived module which will have had any parameters constant-propagated.
// This task is expected to be performed by `abc9_ops -prep_hier`, but it looks like it failed to do so for this design.
// Please file a bug report!
log_error("Not expecting parameters on cell '%s' instantiating module '%s' marked (* abc9_box *)\n", log_id(cell_name), log_id(cell->type));
}
log_assert(box_module->get_blackbox_attribute());
cell->attributes[ID::abc9_box_seq] = box_count++;
auto r = cell_cache.insert(cell->type);
auto &holes_cell = r.first->second;
if (r.second) {
if (box_module->get_bool_attribute(ID::whitebox)) {
holes_cell = holes_module->addCell(NEW_ID, cell->type);
if (box_module->has_processes())
Pass::call_on_module(design, box_module, "proc");
int box_inputs = 0;
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
log_assert(!w->port_input || !w->port_output);
auto &conn = holes_cell->connections_[port_name];
if (w->port_input) {
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
conn.append(holes_wire);
}
}
else if (w->port_output)
conn = holes_module->addWire(stringf("%s.%s", cell->type.c_str(), log_id(port_name)), GetSize(w));
}
}
else // box_module is a blackbox
log_assert(holes_cell == nullptr);
}
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
if (!w->port_output)
continue;
Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w));
holes_wire->port_output = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
if (holes_cell) // whitebox
holes_module->connect(holes_wire, holes_cell->getPort(port_name));
else // blackbox
holes_module->connect(holes_wire, Const(State::S0, GetSize(w)));
}
}
}
void prep_lut(RTLIL::Design *design, int maxlut)
{
TimingInfo timing;
struct t_lut {
IdString name;
int area;
std::vector<int> delays;
};
std::map<int,t_lut> table;
for (auto module : design->modules()) {
auto it = module->attributes.find(ID::abc9_lut);
if (it == module->attributes.end())
continue;
auto &t = timing.setup_module(module);
TimingInfo::NameBit o;
std::vector<int> delays;
for (const auto &i : t.comb) {
auto &d = i.first.second;
if (o == TimingInfo::NameBit())
o = d;
else if (o != d)
log_error("Module '%s' with (* abc9_lut *) has more than one output.\n", log_id(module));
delays.push_back(i.second);
}
if (GetSize(delays) == 0)
log_error("Module '%s' with (* abc9_lut *) has no specify entries.\n", log_id(module));
if (maxlut && GetSize(delays) > maxlut)
continue;
// ABC requires non-decreasing LUT input delays
std::sort(delays.begin(), delays.end());
int K = GetSize(delays);
auto entry = t_lut{module->name, it->second.as_int(), std::move(delays)};
auto r = table.emplace(K, entry);
if (!r.second) {
if (r.first->second.area != entry.area)
log_error("Modules '%s' and '%s' have conflicting (* abc9_lut *) values.\n", log_id(module), log_id(r.first->second.name));
if (r.first->second.delays != entry.delays)
log_error("Modules '%s' and '%s' have conflicting specify entries.\n", log_id(module), log_id(r.first->second.name));
}
}
if (table.empty())
log_error("Design does not contain any modules with (* abc9_lut *).\n");
std::stringstream ss;
const auto &front = *table.begin();
// If the first entry does not start from a 1-input LUT,
// (as ABC requires) crop the first entry to do so
for (int i = 1; i < front.first; i++) {
ss << "# $__ABC9_LUT" << i << std::endl;
ss << i << " " << front.second.area;
for (int j = 0; j < i; j++)
ss << " " << front.second.delays[j];
ss << std::endl;
}
for (const auto &i : table) {
ss << "# " << log_id(i.second.name) << std::endl;
ss << i.first << " " << i.second.area;
for (const auto &j : i.second.delays)
ss << " " << j;
ss << std::endl;
}
design->scratchpad_set_string("abc9_ops.lut_library", ss.str());
}
void write_lut(RTLIL::Module *module, const std::string &dst) {
std::ofstream ofs(dst);
log_assert(ofs.is_open());
ofs << module->design->scratchpad_get_string("abc9_ops.lut_library");
ofs.close();
}
void prep_box(RTLIL::Design *design)
{
TimingInfo timing;
int abc9_box_id = 1;
std::stringstream ss;
dict<IdString,std::vector<IdString>> box_ports;
for (auto module : design->modules()) {
auto it = module->attributes.find(ID::abc9_box);
if (it == module->attributes.end())
continue;
bool box = it->second.as_bool();
module->attributes.erase(it);
if (!box)
continue;
auto r = module->attributes.insert(ID::abc9_box_id);
if (!r.second)
continue;
r.first->second = abc9_box_id++;
if (module->get_bool_attribute(ID::abc9_flop)) {
int num_inputs = 0, num_outputs = 0;
for (auto port_name : module->ports) {
auto wire = module->wire(port_name);
log_assert(GetSize(wire) == 1);
if (wire->port_input) num_inputs++;
if (wire->port_output) num_outputs++;
}
log_assert(num_outputs == 1);
ss << log_id(module) << " " << r.first->second.as_int();
log_assert(module->get_bool_attribute(ID::whitebox));
ss << " " << "1";
ss << " " << num_inputs << " " << num_outputs << std::endl;
ss << "#";
bool first = true;
for (auto port_name : module->ports) {
auto wire = module->wire(port_name);
if (!wire->port_input)
continue;
if (first)
first = false;
else
ss << " ";
ss << log_id(wire);
}
ss << std::endl;
auto &t = timing.setup_module(module).required;
if (t.empty())
log_error("Module '%s' with (* abc9_flop *) has no clk-to-q timing (and thus no connectivity) information.\n", log_id(module));
first = true;
for (auto port_name : module->ports) {
auto wire = module->wire(port_name);
if (!wire->port_input)
continue;
if (first)
first = false;
else
ss << " ";
log_assert(GetSize(wire) == 1);
auto it = t.find(TimingInfo::NameBit(port_name,0));
if (it == t.end())
// Assume that no setup time means zero
ss << 0;
else {
ss << it->second.first;
#ifndef NDEBUG
if (ys_debug(1)) {
static std::set<std::pair<IdString,IdString>> seen;
if (seen.emplace(module->name, port_name).second) log("%s.%s abc9_required = %d\n", log_id(module),
log_id(port_name), it->second.first);
}
#endif
}
}
ss << " # $_DFF_[NP]_.D" << std::endl;
ss << std::endl;
}
else {
auto r2 = box_ports.insert(module->name);
if (r2.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : module->ports) {
auto w = module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute(ID::abc9_carry)) {
log_assert(w->port_input != w->port_output);
if (w->port_input)
carry_in = port_name;
else if (w->port_output)
carry_out = port_name;
}
else
r2.first->second.push_back(port_name);
}
if (carry_in != IdString()) {
r2.first->second.push_back(carry_in);
r2.first->second.push_back(carry_out);
}
}
std::vector<SigBit> inputs, outputs;
for (auto port_name : r2.first->second) {
auto wire = module->wire(port_name);
if (wire->port_input)
for (int i = 0; i < GetSize(wire); i++)
inputs.emplace_back(wire, i);
if (wire->port_output)
for (int i = 0; i < GetSize(wire); i++)
outputs.emplace_back(wire, i);
}
ss << log_id(module) << " " << module->attributes.at(ID::abc9_box_id).as_int();
ss << " " << (module->get_bool_attribute(ID::whitebox) ? "1" : "0");
ss << " " << GetSize(inputs) << " " << GetSize(outputs) << std::endl;
bool first = true;
ss << "#";
for (const auto &i : inputs) {
if (first)
first = false;
else
ss << " ";
if (GetSize(i.wire) == 1)
ss << log_id(i.wire);
else
ss << log_id(i.wire) << "[" << i.offset << "]";
}
ss << std::endl;
auto &t = timing.setup_module(module);
if (t.comb.empty())
log_error("Module '%s' with (* abc9_box *) has no timing (and thus no connectivity) information.\n", log_id(module));
for (const auto &o : outputs) {
first = true;
for (const auto &i : inputs) {
if (first)
first = false;
else
ss << " ";
auto jt = t.comb.find(TimingInfo::BitBit(i,o));
if (jt == t.comb.end())
ss << "-";
else
ss << jt->second;
}
ss << " # ";
if (GetSize(o.wire) == 1)
ss << log_id(o.wire);
else
ss << log_id(o.wire) << "[" << o.offset << "]";
ss << std::endl;
}
ss << std::endl;
}
}
// ABC expects at least one box
if (ss.tellp() == 0)
ss << "(dummy) 1 0 0 0";
design->scratchpad_set_string("abc9_ops.box_library", ss.str());
}
void write_box(RTLIL::Module *module, const std::string &dst) {
std::ofstream ofs(dst);
log_assert(ofs.is_open());
ofs << module->design->scratchpad_get_string("abc9_ops.box_library");
ofs.close();
}
void reintegrate(RTLIL::Module *module, bool dff_mode)
{
auto design = module->design;
log_assert(design);
map_autoidx = autoidx++;
RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str()));
if (mapped_mod == NULL)
log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module));
for (auto w : mapped_mod->wires()) {
auto nw = module->addWire(remap_name(w->name), GetSize(w));
nw->start_offset = w->start_offset;
// Remove all (* init *) since they only exist on $_DFF_[NP]_
w->attributes.erase(ID::init);
}
dict<IdString,std::vector<IdString>> box_ports;
for (auto m : design->modules()) {
if (!m->attributes.count(ID::abc9_box_id))
continue;
auto r = box_ports.insert(m->name);
if (!r.second)
continue;
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : m->ports) {
auto w = m->wire(port_name);
log_assert(w);
if (w->get_bool_attribute(ID::abc9_carry)) {
log_assert(w->port_input != w->port_output);
if (w->port_input)
carry_in = port_name;
else if (w->port_output)
carry_out = port_name;
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
SigMap initmap;
if (dff_mode) {
// Build a sigmap prioritising bits with (* init *)
initmap.set(module);
for (auto w : module->wires()) {
auto it = w->attributes.find(ID::init);
if (it == w->attributes.end())
continue;
for (auto i = 0; i < GetSize(w); i++)
if (it->second[i] == State::S0 || it->second[i] == State::S1)
initmap.add(w);
}
}
std::vector<Cell*> boxes;
for (auto cell : module->cells().to_vector()) {
if (cell->has_keep_attr())
continue;
// Short out (so that existing name can be preserved) and remove
// $_DFF_[NP]_ cells since flop box already has all the information
// we need to reconstruct them
if (dff_mode && cell->type.in(ID($_DFF_N_), ID($_DFF_P_)) && !cell->get_bool_attribute(ID::abc9_keep)) {
SigBit Q = cell->getPort(ID::Q);
module->connect(Q, cell->getPort(ID::D));
module->remove(cell);
auto Qi = initmap(Q);
auto it = Qi.wire->attributes.find(ID::init);
if (it != Qi.wire->attributes.end())
it->second.bits()[Qi.offset] = State::Sx;
}
else if (cell->type.in(ID($_AND_), ID($_NOT_)))
module->remove(cell);
else if (cell->attributes.erase(ID::abc9_box_seq))
boxes.emplace_back(cell);
}
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
std::map<IdString, int> cell_stats;
for (auto mapped_cell : mapped_mod->cells())
{
// Short out $_FF_ cells since the flop box already has
// all the information we need to reconstruct cell
if (dff_mode && mapped_cell->type == ID($_FF_)) {
SigBit D = mapped_cell->getPort(ID::D);
SigBit Q = mapped_cell->getPort(ID::Q);
if (D.wire)
D.wire = module->wires_.at(remap_name(D.wire->name));
Q.wire = module->wires_.at(remap_name(Q.wire->name));
module->connect(Q, D);
continue;
}
// TODO: Speed up toposort -- we care about NOT ordering only
toposort.node(mapped_cell->name);
if (mapped_cell->type == ID($_NOT_)) {
RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
bit_users[a_bit].insert(mapped_cell->name);
// Ignore inouts for topo ordering
if (y_bit.wire && !(y_bit.wire->port_input && y_bit.wire->port_output))
bit_drivers[y_bit].insert(mapped_cell->name);
if (!a_bit.wire) {
mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
log_assert(wire);
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
}
else {
RTLIL::Cell* driver_lut = nullptr;
// ABC can return NOT gates that drive POs
if (!a_bit.wire->port_input) {
// If it's not a NOT gate that that comes from a PI directly,
// find the driver LUT and clone that to guarantee that we won't
// increase the max logic depth
// (TODO: Optimise by not cloning unless will increase depth)
RTLIL::IdString driver_name;
if (GetSize(a_bit.wire) == 1)
driver_name = stringf("$lut%s", a_bit.wire->name.c_str());
else
driver_name = stringf("$lut%s[%d]", a_bit.wire->name.c_str(), a_bit.offset);
driver_lut = mapped_mod->cell(driver_name);
}
if (!driver_lut) {
// If a driver couldn't be found (could be from PI or box CI)
// then implement using a LUT
RTLIL::Cell *cell = module->addLut(remap_name(stringf("$lut%s", mapped_cell->name.c_str())),
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
RTLIL::Const::from_string("01"));
bit2sinks[cell->getPort(ID::A)].push_back(cell);
cell_stats[ID($lut)]++;
}
else
not2drivers[mapped_cell] = driver_lut;
}
continue;
}
if (mapped_cell->type == ID($lut)) {
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = mapped_cell->parameters;
cell->attributes = mapped_cell->attributes;
for (auto &mapped_conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig;
for (auto c : mapped_conn.second.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
cell->setPort(mapped_conn.first, newsig);
if (cell->input(mapped_conn.first)) {
for (auto i : newsig)
bit2sinks[i].push_back(cell);
for (auto i : mapped_conn.second)
bit_users[i].insert(mapped_cell->name);
}
if (cell->output(mapped_conn.first))
for (auto i : mapped_conn.second)
// Ignore inouts for topo ordering
if (i.wire && !(i.wire->port_input && i.wire->port_output))
bit_drivers[i].insert(mapped_cell->name);
}
}
else {
RTLIL::Cell *existing_cell = module->cell(mapped_cell->name);
if (!existing_cell)
log_error("Cannot find existing box cell with name '%s' in original design.\n", log_id(mapped_cell));
if (existing_cell->type.begins_with("$paramod$__ABC9_DELAY\\DELAY=")) {
SigBit I = mapped_cell->getPort(ID(i));
SigBit O = mapped_cell->getPort(ID(o));
if (I.wire)
I.wire = module->wires_.at(remap_name(I.wire->name));
log_assert(O.wire);
O.wire = module->wires_.at(remap_name(O.wire->name));
module->connect(O, I);
continue;
}
RTLIL::Module* box_module = design->module(existing_cell->type);
log_assert(existing_cell->parameters.empty());
log_assert(mapped_cell->type == stringf("$__boxid%d", box_module->attributes.at(ID::abc9_box_id).as_int()));
mapped_cell->type = existing_cell->type;
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = existing_cell->parameters;
cell->attributes = existing_cell->attributes;
module->swap_names(cell, existing_cell);
auto jt = mapped_cell->connections_.find(ID(i));
log_assert(jt != mapped_cell->connections_.end());
SigSpec inputs = std::move(jt->second);
mapped_cell->connections_.erase(jt);
jt = mapped_cell->connections_.find(ID(o));
log_assert(jt != mapped_cell->connections_.end());
SigSpec outputs = std::move(jt->second);
mapped_cell->connections_.erase(jt);
auto abc9_flop = box_module->get_bool_attribute(ID::abc9_flop);
if (abc9_flop) {
// Link this sole flop box output to the output of the existing
// flop box, so that any (public) signal it drives will be
// preserved
SigBit old_q;
for (const auto &port_name : box_ports.at(existing_cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
if (!w->port_output)
continue;
log_assert(old_q == SigBit());
log_assert(GetSize(w) == 1);
old_q = existing_cell->getPort(port_name);
}
auto new_q = outputs[0];
new_q.wire = module->wires_.at(remap_name(new_q.wire->name));
module->connect(old_q, new_q);
}
else {
for (const auto &i : inputs)
bit_users[i].insert(mapped_cell->name);
for (const auto &i : outputs)
// Ignore inouts for topo ordering
if (i.wire && !(i.wire->port_input && i.wire->port_output))
bit_drivers[i].insert(mapped_cell->name);
}
int input_count = 0, output_count = 0;
for (const auto &port_name : box_ports.at(existing_cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
SigSpec sig;
if (w->port_input) {
sig = inputs.extract(input_count, GetSize(w));
input_count += GetSize(w);
}
if (w->port_output) {
sig = outputs.extract(output_count, GetSize(w));
output_count += GetSize(w);
}
SigSpec newsig;
for (auto c : sig.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
if (w->port_input && !abc9_flop)
for (const auto &i : newsig)
bit2sinks[i].push_back(cell);
cell->setPort(port_name, std::move(newsig));
}
}
cell_stats[mapped_cell->type]++;
}
for (auto cell : boxes)
module->remove(cell);
// Copy connections (and rename) from mapped_mod to module
for (auto conn : mapped_mod->connections()) {
if (!conn.first.is_fully_const()) {
auto chunks = conn.first.chunks();
for (auto &c : chunks)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.first = std::move(chunks);
}
if (!conn.second.is_fully_const()) {
auto chunks = conn.second.chunks();
for (auto &c : chunks)
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.second = std::move(chunks);
}
module->connect(conn);
}
for (auto &it : cell_stats)
log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
int in_wires = 0, out_wires = 0;
// Stitch in mapped_mod's inputs/outputs into module
for (auto port : mapped_mod->ports) {
RTLIL::Wire *mapped_wire = mapped_mod->wire(port);
RTLIL::Wire *wire = module->wire(port);
log_assert(wire);
RTLIL::Wire *remap_wire = module->wire(remap_name(port));
RTLIL::SigSpec signal(wire, remap_wire->start_offset-wire->start_offset, GetSize(remap_wire));
log_assert(GetSize(signal) >= GetSize(remap_wire));
RTLIL::SigSig conn;
if (mapped_wire->port_output) {
conn.first = signal;
conn.second = remap_wire;
out_wires++;
module->connect(conn);
}
else if (mapped_wire->port_input) {
conn.first = remap_wire;
conn.second = signal;
in_wires++;
module->connect(conn);
}
}
// ABC9 will return $_NOT_ gates in its mapping (since they are
// treated as being "free"), in particular driving primary
// outputs (real primary outputs, or cells treated as blackboxes)
// or driving box inputs.
// Instead of just mapping those $_NOT_ gates into 1-input $lut-s
// at an area and delay cost, see if it is possible to push
// this $_NOT_ into the driving LUT, or into all sink LUTs.
// When this is not possible, (i.e. this signal drives two primary
// outputs, only one of which is complemented) and when the driver
// is a LUT, then clone the LUT so that it can be inverted without
// increasing depth/delay.
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
bool no_loops = toposort.sort();
log_assert(no_loops);
for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
log_assert(not_cell);
if (not_cell->type != ID($_NOT_))
continue;
auto it = not2drivers.find(not_cell);
if (it == not2drivers.end())
continue;
RTLIL::Cell *driver_lut = it->second;
RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
RTLIL::Const driver_mask;
a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));
auto jt = bit2sinks.find(a_bit);
if (jt == bit2sinks.end())
goto clone_lut;
for (auto sink_cell : jt->second)
if (sink_cell->type != ID($lut))
goto clone_lut;
// Push downstream LUTs past inverter
for (auto sink_cell : jt->second) {
SigSpec A = sink_cell->getPort(ID::A);
RTLIL::Const mask = sink_cell->getParam(ID::LUT);
int index = 0;
for (; index < GetSize(A); index++)
if (A[index] == a_bit)
break;
log_assert(index < GetSize(A));
int i = 0;
while (i < GetSize(mask)) {
for (int j = 0; j < (1 << index); j++)
std::swap(mask.bits()[i+j], mask.bits()[i+j+(1 << index)]);
i += 1 << (index+1);
}
A[index] = y_bit;
sink_cell->setPort(ID::A, A);
sink_cell->setParam(ID::LUT, mask);
}
// Since we have rewritten all sinks (which we know
// to be only LUTs) to be after the inverter, we can
// go ahead and clone the LUT with the expectation
// that the original driving LUT will become dangling
// and get cleaned away
clone_lut:
driver_mask = driver_lut->getParam(ID::LUT);
for (auto &b : driver_mask.bits()) {
if (b == RTLIL::State::S0) b = RTLIL::State::S1;
else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
}
auto cell = module->addLut(NEW_ID,
driver_lut->getPort(ID::A),
y_bit,
driver_mask);
for (auto &bit : cell->connections_.at(ID::A)) {
bit.wire = module->wires_.at(remap_name(bit.wire->name));
bit2sinks[bit].push_back(cell);
}
}
//log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
log("ABC RESULTS: input signals: %8d\n", in_wires);
log("ABC RESULTS: output signals: %8d\n", out_wires);
design->remove(mapped_mod);
}
struct Abc9OpsPass : public Pass {
Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abc9_ops [options] [selection]\n");
log("\n");
log("This pass contains a set of supporting operations for use during ABC technology\n");
log("mapping, and is expected to be called in conjunction with other operations from\n");
log("the `abc9' script pass. Only fully-selected modules are supported.\n");
log("\n");
log(" -check\n");
log(" check that the design is valid, e.g. (* abc9_box_id *) values are\n");
log(" unique, (* abc9_carry *) is only given for one input/output port, etc.\n");
log("\n");
log(" -prep_hier\n");
log(" derive all used (* abc9_box *) or (* abc9_flop *) (if -dff option)\n");
log(" whitebox modules. with (* abc9_flop *) modules, only those containing\n");
log(" $dff/$_DFF_[NP]_ cells with zero initial state -- due to an ABC\n");
log(" limitation -- will be derived.\n");
log("\n");
log(" -prep_bypass\n");
log(" create techmap rules in the '$abc9_map' and '$abc9_unmap' designs for\n");
log(" bypassing sequential (* abc9_box *) modules using a combinatorial box\n");
log(" (named *_$abc9_byp). bypassing is necessary if sequential elements (e.g.\n");
log(" $dff, $mem, etc.) are discovered inside so that any combinatorial paths\n");
log(" will be correctly captured. this bypass box will only contain ports that\n");
log(" are referenced by a simple path declaration ($specify2 cell) inside a\n");
log(" specify block.\n");
log("\n");
log(" -prep_dff\n");
log(" select all (* abc9_flop *) modules instantiated in the design and store\n");
log(" in the named selection '$abc9_flops'.\n");
log("\n");
log(" -prep_dff_submod\n");
log(" within (* abc9_flop *) modules, rewrite all edge-sensitive path\n");
log(" declarations and $setup() timing checks ($specify3 and $specrule cells)\n");
log(" that share a 'DST' port with the $_DFF_[NP]_.Q port from this 'Q' port\n");
log(" to the DFF's 'D' port. this is to prepare such specify cells to be moved\n");
log(" into the flop box.\n");
log("\n");
log(" -prep_dff_unmap\n");
log(" populate the '$abc9_unmap' design with techmap rules for mapping\n");
log(" *_$abc9_flop cells back into their derived cell types (where the rules\n");
log(" created by -prep_hier will then map back to the original cell with\n");
log(" parameters).\n");
log("\n");
log(" -prep_delays\n");
log(" insert `$__ABC9_DELAY' blackbox cells into the design to account for\n");
log(" certain required times.\n");
log("\n");
log(" -break_scc\n");
log(" for an arbitrarily chosen cell in each unique SCC of each selected\n");
log(" module (tagged with an (* abc9_scc_id = <int> *) attribute) interrupt\n");
log(" all wires driven by this cell's outputs with a temporary\n");
log(" $__ABC9_SCC_BREAKER cell to break the SCC.\n");
log("\n");
log(" -prep_xaiger\n");
log(" prepare the design for XAIGER output. this includes computing the\n");
log(" topological ordering of ABC9 boxes, as well as preparing the \n");
log(" '$abc9_holes' design that contains the logic behaviour of ABC9\n");
log(" whiteboxes.\n");
log("\n");
log(" -dff\n");
log(" consider flop cells (those instantiating modules marked with\n");
log(" (* abc9_flop *)) during -prep_{delays,xaiger,box}.\n");
log("\n");
log(" -prep_lut <maxlut>\n");
log(" pre-compute the lut library by analysing all modules marked with\n");
log(" (* abc9_lut=<area> *).\n");
log("\n");
log(" -write_lut <dst>\n");
log(" write the pre-computed lut library to <dst>.\n");
log("\n");
log(" -prep_box\n");
log(" pre-compute the box library by analysing all modules marked with\n");
log(" (* abc9_box *).\n");
log("\n");
log(" -write_box <dst>\n");
log(" write the pre-computed box library to <dst>.\n");
log("\n");
log(" -reintegrate\n");
log(" for each selected module, re-intergrate the module '<module-name>$abc9'\n");
log(" by first recovering ABC9 boxes, and then stitching in the remaining\n");
log(" primary inputs and outputs.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n");
bool check_mode = false;
bool prep_delays_mode = false;
bool break_scc_mode = false;
bool prep_hier_mode = false;
bool prep_bypass_mode = false;
bool prep_dff_mode = false, prep_dff_submod_mode = false, prep_dff_unmap_mode = false;
bool prep_xaiger_mode = false;
bool prep_lut_mode = false;
bool prep_box_mode = false;
bool reintegrate_mode = false;
bool dff_mode = false;
std::string write_lut_dst;
int maxlut = 0;
std::string write_box_dst;
bool valid = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-check") {
check_mode = true;
valid = true;
continue;
}
if (arg == "-break_scc") {
break_scc_mode = true;
valid = true;
continue;
}
if (arg == "-prep_hier") {
prep_hier_mode = true;
valid = true;
continue;
}
if (arg == "-prep_bypass") {
prep_bypass_mode = true;
valid = true;
continue;
}
if (arg == "-prep_dff") {
prep_dff_mode = true;
valid = true;
continue;
}
if (arg == "-prep_dff_submod") {
prep_dff_submod_mode = true;
valid = true;
continue;
}
if (arg == "-prep_dff_unmap") {
prep_dff_unmap_mode = true;
valid = true;
continue;
}
if (arg == "-prep_xaiger") {
prep_xaiger_mode = true;
valid = true;
continue;
}
if (arg == "-prep_delays") {
prep_delays_mode = true;
valid = true;
continue;
}
if (arg == "-prep_lut" && argidx+1 < args.size()) {
prep_lut_mode = true;
maxlut = atoi(args[++argidx].c_str());
valid = true;
continue;
}
if (arg == "-write_lut" && argidx+1 < args.size()) {
write_lut_dst = args[++argidx];
rewrite_filename(write_lut_dst);
valid = true;
continue;
}
if (arg == "-prep_box") {
prep_box_mode = true;
valid = true;
continue;
}
if (arg == "-write_box" && argidx+1 < args.size()) {
write_box_dst = args[++argidx];
rewrite_filename(write_box_dst);
valid = true;
continue;
}
if (arg == "-reintegrate") {
reintegrate_mode = true;
valid = true;
continue;
}
if (arg == "-dff") {
dff_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!valid)
log_cmd_error("At least one of -check, -break_scc, -prep_{delays,xaiger,dff[123],lut,box}, -write_{lut,box}, -reintegrate must be specified.\n");
if (dff_mode && !check_mode && !prep_hier_mode && !prep_delays_mode && !prep_xaiger_mode && !reintegrate_mode)
log_cmd_error("'-dff' option is only relevant for -prep_{hier,delay,xaiger} or -reintegrate.\n");
if (check_mode)
check(design, dff_mode);
if (prep_hier_mode)
prep_hier(design, dff_mode);
if (prep_bypass_mode)
prep_bypass(design);
if (prep_dff_mode)
prep_dff(design);
if (prep_dff_submod_mode)
prep_dff_submod(design);
if (prep_dff_unmap_mode)
prep_dff_unmap(design);
if (prep_delays_mode)
prep_delays(design, dff_mode);
if (prep_lut_mode)
prep_lut(design, maxlut);
if (prep_box_mode)
prep_box(design);
for (auto mod : design->selected_modules()) {
if (mod->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(mod));
continue;
}
if (!design->selected_whole_module(mod))
log_error("Can't handle partially selected module %s!\n", log_id(mod));
if (!write_lut_dst.empty())
write_lut(mod, write_lut_dst);
if (!write_box_dst.empty())
write_box(mod, write_box_dst);
if (break_scc_mode)
break_scc(mod);
if (prep_xaiger_mode)
prep_xaiger(mod, dff_mode);
if (reintegrate_mode)
reintegrate(mod, dff_mode);
}
}
} Abc9OpsPass;
PRIVATE_NAMESPACE_END