yosys/techlibs/greenpak4/cells_sim.v

431 lines
8.4 KiB
Verilog

`timescale 1ns/1ps
module GP_2LUT(input IN0, IN1, output OUT);
parameter [3:0] INIT = 0;
assign OUT = INIT[{IN1, IN0}];
endmodule
module GP_3LUT(input IN0, IN1, IN2, output OUT);
parameter [7:0] INIT = 0;
assign OUT = INIT[{IN2, IN1, IN0}];
endmodule
module GP_4LUT(input IN0, IN1, IN2, IN3, output OUT);
parameter [15:0] INIT = 0;
assign OUT = INIT[{IN3, IN2, IN1, IN0}];
endmodule
module GP_ABUF(input wire IN, output wire OUT);
assign OUT = IN;
//cannot simulate mixed signal IP
endmodule
module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT);
parameter BANDWIDTH = "HIGH";
parameter VIN_ATTEN = 1;
parameter VIN_ISRC_EN = 0;
parameter HYSTERESIS = 0;
initial OUT = 0;
//cannot simulate mixed signal IP
endmodule
module GP_BANDGAP(output reg OK);
parameter AUTO_PWRDN = 1;
parameter CHOPPER_EN = 1;
parameter OUT_DELAY = 100;
//cannot simulate mixed signal IP
endmodule
module GP_COUNT8(input CLK, input wire RST, output reg OUT);
parameter RESET_MODE = "RISING";
parameter COUNT_TO = 8'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
reg[7:0] count = COUNT_TO;
//Combinatorially output whenever we wrap low
always @(*) begin
OUT <= (count == 8'h0);
end
//POR or SYSRST reset value is COUNT_TO. Datasheet is unclear but conversations w/ Silego confirm.
//Runtime reset value is clearly 0 except in count/FSM cells where it's configurable but we leave at 0 for now.
//Datasheet seems to indicate that reset is asynchronous, but for now we model as sync due to Yosys issues...
always @(posedge CLK) begin
count <= count - 1'd1;
if(count == 0)
count <= COUNT_TO;
/*
if((RESET_MODE == "RISING") && RST)
count <= 0;
if((RESET_MODE == "FALLING") && !RST)
count <= 0;
if((RESET_MODE == "BOTH") && RST)
count <= 0;
*/
end
endmodule
module GP_COUNT14(input CLK, input wire RST, output reg OUT);
parameter RESET_MODE = "RISING";
parameter COUNT_TO = 14'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
endmodule
module GP_COUNT8_ADV(input CLK, input RST, output reg OUT,
input UP, input KEEP);
parameter RESET_MODE = "RISING";
parameter RESET_VALUE = "ZERO";
parameter COUNT_TO = 8'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
endmodule
module GP_COUNT14_ADV(input CLK, input RST, output reg OUT,
input UP, input KEEP);
parameter RESET_MODE = "RISING";
parameter RESET_VALUE = "ZERO";
parameter COUNT_TO = 14'h1;
parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet
endmodule
module GP_DAC(input[7:0] DIN, input wire VREF, output reg VOUT);
initial VOUT = 0;
//analog hard IP is not supported for simulation
endmodule
module GP_DELAY(input IN, output reg OUT);
parameter DELAY_STEPS = 1;
//TODO: additional delay/glitch filter mode
initial OUT = 0;
generate
//TODO: These delays are PTV dependent! For now, hard code 3v3 timing
//Change simulation-mode delay depending on global Vdd range (how to specify this?)
always @(*) begin
case(DELAY_STEPS)
1: #166 OUT = IN;
2: #318 OUT = IN;
2: #471 OUT = IN;
3: #622 OUT = IN;
default: begin
$display("ERROR: GP_DELAY must have DELAY_STEPS in range [1,4]");
$finish;
end
endcase
end
endgenerate
endmodule
module GP_DFF(input D, CLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK) begin
Q <= D;
end
endmodule
module GP_DFFI(input D, CLK, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK) begin
nQ <= ~D;
end
endmodule
module GP_DFFR(input D, CLK, nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nRST) begin
if (!nRST)
Q <= 1'b0;
else
Q <= D;
end
endmodule
module GP_DFFRI(input D, CLK, nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nRST) begin
if (!nRST)
nQ <= 1'b1;
else
nQ <= ~D;
end
endmodule
module GP_DFFS(input D, CLK, nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSET) begin
if (!nSET)
Q <= 1'b1;
else
Q <= D;
end
endmodule
module GP_DFFSI(input D, CLK, nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nSET) begin
if (!nSET)
nQ <= 1'b0;
else
nQ <= ~D;
end
endmodule
module GP_DFFSR(input D, CLK, nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
Q <= SRMODE;
else
Q <= D;
end
endmodule
module GP_DFFSRI(input D, CLK, nSR, output reg nQ);
parameter [0:0] INIT = 1'bx;
parameter [0:0] SRMODE = 1'bx;
initial nQ = INIT;
always @(posedge CLK, negedge nSR) begin
if (!nSR)
nQ <= ~SRMODE;
else
nQ <= ~D;
end
endmodule
module GP_IBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_IOBUF(input IN, input OE, output OUT, inout IO);
assign OUT = IO;
assign IO = OE ? IN : 1'bz;
endmodule
module GP_INV(input IN, output OUT);
assign OUT = ~IN;
endmodule
module GP_LFOSC(input PWRDN, output reg CLKOUT);
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter OUT_DIV = 1;
initial CLKOUT = 0;
//auto powerdown not implemented for simulation
//output dividers not implemented for simulation
always begin
if(PWRDN)
CLKOUT = 0;
else begin
//half period of 1730 Hz
#289017;
CLKOUT = ~CLKOUT;
end
end
endmodule
module GP_OBUF(input IN, output OUT);
assign OUT = IN;
endmodule
module GP_OBUFT(input IN, input OE, output OUT);
assign OUT = OE ? IN : 1'bz;
endmodule
module GP_PGA(input wire VIN_P, input wire VIN_N, input wire VIN_SEL, output reg VOUT);
parameter GAIN = 1;
parameter INPUT_MODE = "SINGLE";
initial VOUT = 0;
//cannot simulate mixed signal IP
endmodule
module GP_POR(output reg RST_DONE);
parameter POR_TIME = 500;
initial begin
RST_DONE = 0;
if(POR_TIME == 4)
#4000;
else if(POR_TIME == 500)
#500000;
else begin
$display("ERROR: bad POR_TIME for GP_POR cell");
$finish;
end
RST_DONE = 1;
end
endmodule
module GP_RCOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter HARDIP_DIV = 1;
parameter FABRIC_DIV = 1;
parameter OSC_FREQ = "25k";
initial CLKOUT_HARDIP = 0;
initial CLKOUT_FABRIC = 0;
//output dividers not implemented for simulation
//auto powerdown not implemented for simulation
always begin
if(PWRDN) begin
CLKOUT_HARDIP = 0;
CLKOUT_FABRIC = 0;
end
else begin
if(OSC_FREQ == "25k") begin
//half period of 25 kHz
#20000;
end
else begin
//half period of 2 MHz
#250;
end
CLKOUT_HARDIP = ~CLKOUT_HARDIP;
CLKOUT_FABRIC = ~CLKOUT_FABRIC;
end
end
endmodule
module GP_RINGOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0;
parameter HARDIP_DIV = 1;
parameter FABRIC_DIV = 1;
initial CLKOUT_HARDIP = 0;
initial CLKOUT_FABRIC = 0;
//output dividers not implemented for simulation
//auto powerdown not implemented for simulation
always begin
if(PWRDN) begin
CLKOUT_HARDIP = 0;
CLKOUT_FABRIC = 0;
end
else begin
//half period of 27 MHz
#18.518;
CLKOUT_HARDIP = ~CLKOUT_HARDIP;
CLKOUT_FABRIC = ~CLKOUT_FABRIC;
end
end
endmodule
module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB);
parameter OUTA_TAP = 1;
parameter OUTA_INVERT = 0;
parameter OUTB_TAP = 1;
reg[15:0] shreg = 0;
always @(posedge CLK, negedge nRST) begin
if(!nRST)
shreg = 0;
else
shreg <= {shreg[14:0], IN};
end
assign OUTA = (OUTA_INVERT) ? ~shreg[OUTA_TAP - 1] : shreg[OUTA_TAP - 1];
assign OUTB = shreg[OUTB_TAP - 1];
endmodule
//keep constraint needed to prevent optimization since we have no outputs
(* keep *)
module GP_SYSRESET(input RST);
parameter RESET_MODE = "RISING";
//cannot simulate whole system reset
endmodule
module GP_VDD(output OUT);
assign OUT = 1;
endmodule
module GP_VREF(input VIN, output reg VOUT);
parameter VIN_DIV = 1;
parameter VREF = 0;
//cannot simulate mixed signal IP
endmodule
module GP_VSS(output OUT);
assign OUT = 0;
endmodule