mirror of https://github.com/YosysHQ/yosys.git
431 lines
8.4 KiB
Verilog
431 lines
8.4 KiB
Verilog
`timescale 1ns/1ps
|
|
|
|
module GP_2LUT(input IN0, IN1, output OUT);
|
|
parameter [3:0] INIT = 0;
|
|
assign OUT = INIT[{IN1, IN0}];
|
|
endmodule
|
|
|
|
module GP_3LUT(input IN0, IN1, IN2, output OUT);
|
|
parameter [7:0] INIT = 0;
|
|
assign OUT = INIT[{IN2, IN1, IN0}];
|
|
endmodule
|
|
|
|
module GP_4LUT(input IN0, IN1, IN2, IN3, output OUT);
|
|
parameter [15:0] INIT = 0;
|
|
assign OUT = INIT[{IN3, IN2, IN1, IN0}];
|
|
endmodule
|
|
|
|
module GP_ABUF(input wire IN, output wire OUT);
|
|
|
|
assign OUT = IN;
|
|
|
|
//cannot simulate mixed signal IP
|
|
|
|
endmodule
|
|
|
|
module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT);
|
|
|
|
parameter BANDWIDTH = "HIGH";
|
|
parameter VIN_ATTEN = 1;
|
|
parameter VIN_ISRC_EN = 0;
|
|
parameter HYSTERESIS = 0;
|
|
|
|
initial OUT = 0;
|
|
|
|
//cannot simulate mixed signal IP
|
|
|
|
endmodule
|
|
|
|
module GP_BANDGAP(output reg OK);
|
|
parameter AUTO_PWRDN = 1;
|
|
parameter CHOPPER_EN = 1;
|
|
parameter OUT_DELAY = 100;
|
|
|
|
//cannot simulate mixed signal IP
|
|
|
|
endmodule
|
|
|
|
module GP_COUNT8(input CLK, input wire RST, output reg OUT);
|
|
|
|
parameter RESET_MODE = "RISING";
|
|
|
|
parameter COUNT_TO = 8'h1;
|
|
parameter CLKIN_DIVIDE = 1;
|
|
|
|
//more complex hard IP blocks are not supported for simulation yet
|
|
|
|
reg[7:0] count = COUNT_TO;
|
|
|
|
//Combinatorially output whenever we wrap low
|
|
always @(*) begin
|
|
OUT <= (count == 8'h0);
|
|
end
|
|
|
|
//POR or SYSRST reset value is COUNT_TO. Datasheet is unclear but conversations w/ Silego confirm.
|
|
//Runtime reset value is clearly 0 except in count/FSM cells where it's configurable but we leave at 0 for now.
|
|
//Datasheet seems to indicate that reset is asynchronous, but for now we model as sync due to Yosys issues...
|
|
always @(posedge CLK) begin
|
|
|
|
count <= count - 1'd1;
|
|
|
|
if(count == 0)
|
|
count <= COUNT_TO;
|
|
|
|
/*
|
|
if((RESET_MODE == "RISING") && RST)
|
|
count <= 0;
|
|
if((RESET_MODE == "FALLING") && !RST)
|
|
count <= 0;
|
|
if((RESET_MODE == "BOTH") && RST)
|
|
count <= 0;
|
|
*/
|
|
end
|
|
|
|
endmodule
|
|
|
|
module GP_COUNT14(input CLK, input wire RST, output reg OUT);
|
|
|
|
parameter RESET_MODE = "RISING";
|
|
|
|
parameter COUNT_TO = 14'h1;
|
|
parameter CLKIN_DIVIDE = 1;
|
|
|
|
//more complex hard IP blocks are not supported for simulation yet
|
|
|
|
endmodule
|
|
|
|
module GP_COUNT8_ADV(input CLK, input RST, output reg OUT,
|
|
input UP, input KEEP);
|
|
|
|
parameter RESET_MODE = "RISING";
|
|
parameter RESET_VALUE = "ZERO";
|
|
|
|
parameter COUNT_TO = 8'h1;
|
|
parameter CLKIN_DIVIDE = 1;
|
|
|
|
//more complex hard IP blocks are not supported for simulation yet
|
|
|
|
endmodule
|
|
|
|
module GP_COUNT14_ADV(input CLK, input RST, output reg OUT,
|
|
input UP, input KEEP);
|
|
|
|
parameter RESET_MODE = "RISING";
|
|
parameter RESET_VALUE = "ZERO";
|
|
|
|
parameter COUNT_TO = 14'h1;
|
|
parameter CLKIN_DIVIDE = 1;
|
|
|
|
//more complex hard IP blocks are not supported for simulation yet
|
|
|
|
endmodule
|
|
|
|
module GP_DAC(input[7:0] DIN, input wire VREF, output reg VOUT);
|
|
|
|
initial VOUT = 0;
|
|
|
|
//analog hard IP is not supported for simulation
|
|
|
|
endmodule
|
|
|
|
module GP_DELAY(input IN, output reg OUT);
|
|
|
|
parameter DELAY_STEPS = 1;
|
|
|
|
//TODO: additional delay/glitch filter mode
|
|
|
|
initial OUT = 0;
|
|
|
|
generate
|
|
|
|
//TODO: These delays are PTV dependent! For now, hard code 3v3 timing
|
|
//Change simulation-mode delay depending on global Vdd range (how to specify this?)
|
|
always @(*) begin
|
|
case(DELAY_STEPS)
|
|
1: #166 OUT = IN;
|
|
2: #318 OUT = IN;
|
|
2: #471 OUT = IN;
|
|
3: #622 OUT = IN;
|
|
default: begin
|
|
$display("ERROR: GP_DELAY must have DELAY_STEPS in range [1,4]");
|
|
$finish;
|
|
end
|
|
endcase
|
|
end
|
|
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
module GP_DFF(input D, CLK, output reg Q);
|
|
parameter [0:0] INIT = 1'bx;
|
|
initial Q = INIT;
|
|
always @(posedge CLK) begin
|
|
Q <= D;
|
|
end
|
|
endmodule
|
|
|
|
module GP_DFFI(input D, CLK, output reg nQ);
|
|
parameter [0:0] INIT = 1'bx;
|
|
initial nQ = INIT;
|
|
always @(posedge CLK) begin
|
|
nQ <= ~D;
|
|
end
|
|
endmodule
|
|
|
|
module GP_DFFR(input D, CLK, nRST, output reg Q);
|
|
parameter [0:0] INIT = 1'bx;
|
|
initial Q = INIT;
|
|
always @(posedge CLK, negedge nRST) begin
|
|
if (!nRST)
|
|
Q <= 1'b0;
|
|
else
|
|
Q <= D;
|
|
end
|
|
endmodule
|
|
|
|
module GP_DFFRI(input D, CLK, nRST, output reg nQ);
|
|
parameter [0:0] INIT = 1'bx;
|
|
initial nQ = INIT;
|
|
always @(posedge CLK, negedge nRST) begin
|
|
if (!nRST)
|
|
nQ <= 1'b1;
|
|
else
|
|
nQ <= ~D;
|
|
end
|
|
endmodule
|
|
|
|
module GP_DFFS(input D, CLK, nSET, output reg Q);
|
|
parameter [0:0] INIT = 1'bx;
|
|
initial Q = INIT;
|
|
always @(posedge CLK, negedge nSET) begin
|
|
if (!nSET)
|
|
Q <= 1'b1;
|
|
else
|
|
Q <= D;
|
|
end
|
|
endmodule
|
|
|
|
module GP_DFFSI(input D, CLK, nSET, output reg nQ);
|
|
parameter [0:0] INIT = 1'bx;
|
|
initial nQ = INIT;
|
|
always @(posedge CLK, negedge nSET) begin
|
|
if (!nSET)
|
|
nQ <= 1'b0;
|
|
else
|
|
nQ <= ~D;
|
|
end
|
|
endmodule
|
|
|
|
module GP_DFFSR(input D, CLK, nSR, output reg Q);
|
|
parameter [0:0] INIT = 1'bx;
|
|
parameter [0:0] SRMODE = 1'bx;
|
|
initial Q = INIT;
|
|
always @(posedge CLK, negedge nSR) begin
|
|
if (!nSR)
|
|
Q <= SRMODE;
|
|
else
|
|
Q <= D;
|
|
end
|
|
endmodule
|
|
|
|
module GP_DFFSRI(input D, CLK, nSR, output reg nQ);
|
|
parameter [0:0] INIT = 1'bx;
|
|
parameter [0:0] SRMODE = 1'bx;
|
|
initial nQ = INIT;
|
|
always @(posedge CLK, negedge nSR) begin
|
|
if (!nSR)
|
|
nQ <= ~SRMODE;
|
|
else
|
|
nQ <= ~D;
|
|
end
|
|
endmodule
|
|
|
|
module GP_IBUF(input IN, output OUT);
|
|
assign OUT = IN;
|
|
endmodule
|
|
|
|
module GP_IOBUF(input IN, input OE, output OUT, inout IO);
|
|
assign OUT = IO;
|
|
assign IO = OE ? IN : 1'bz;
|
|
endmodule
|
|
|
|
module GP_INV(input IN, output OUT);
|
|
assign OUT = ~IN;
|
|
endmodule
|
|
|
|
module GP_LFOSC(input PWRDN, output reg CLKOUT);
|
|
|
|
parameter PWRDN_EN = 0;
|
|
parameter AUTO_PWRDN = 0;
|
|
parameter OUT_DIV = 1;
|
|
|
|
initial CLKOUT = 0;
|
|
|
|
//auto powerdown not implemented for simulation
|
|
//output dividers not implemented for simulation
|
|
|
|
always begin
|
|
if(PWRDN)
|
|
CLKOUT = 0;
|
|
else begin
|
|
//half period of 1730 Hz
|
|
#289017;
|
|
CLKOUT = ~CLKOUT;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
module GP_OBUF(input IN, output OUT);
|
|
assign OUT = IN;
|
|
endmodule
|
|
|
|
module GP_OBUFT(input IN, input OE, output OUT);
|
|
assign OUT = OE ? IN : 1'bz;
|
|
endmodule
|
|
|
|
module GP_PGA(input wire VIN_P, input wire VIN_N, input wire VIN_SEL, output reg VOUT);
|
|
|
|
parameter GAIN = 1;
|
|
parameter INPUT_MODE = "SINGLE";
|
|
|
|
initial VOUT = 0;
|
|
|
|
//cannot simulate mixed signal IP
|
|
|
|
endmodule
|
|
|
|
module GP_POR(output reg RST_DONE);
|
|
parameter POR_TIME = 500;
|
|
|
|
initial begin
|
|
RST_DONE = 0;
|
|
|
|
if(POR_TIME == 4)
|
|
#4000;
|
|
else if(POR_TIME == 500)
|
|
#500000;
|
|
else begin
|
|
$display("ERROR: bad POR_TIME for GP_POR cell");
|
|
$finish;
|
|
end
|
|
|
|
RST_DONE = 1;
|
|
|
|
end
|
|
|
|
endmodule
|
|
|
|
module GP_RCOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
|
|
|
|
parameter PWRDN_EN = 0;
|
|
parameter AUTO_PWRDN = 0;
|
|
parameter HARDIP_DIV = 1;
|
|
parameter FABRIC_DIV = 1;
|
|
parameter OSC_FREQ = "25k";
|
|
|
|
initial CLKOUT_HARDIP = 0;
|
|
initial CLKOUT_FABRIC = 0;
|
|
|
|
//output dividers not implemented for simulation
|
|
//auto powerdown not implemented for simulation
|
|
|
|
always begin
|
|
if(PWRDN) begin
|
|
CLKOUT_HARDIP = 0;
|
|
CLKOUT_FABRIC = 0;
|
|
end
|
|
else begin
|
|
|
|
if(OSC_FREQ == "25k") begin
|
|
//half period of 25 kHz
|
|
#20000;
|
|
end
|
|
|
|
else begin
|
|
//half period of 2 MHz
|
|
#250;
|
|
end
|
|
|
|
CLKOUT_HARDIP = ~CLKOUT_HARDIP;
|
|
CLKOUT_FABRIC = ~CLKOUT_FABRIC;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
module GP_RINGOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
|
|
|
|
parameter PWRDN_EN = 0;
|
|
parameter AUTO_PWRDN = 0;
|
|
parameter HARDIP_DIV = 1;
|
|
parameter FABRIC_DIV = 1;
|
|
|
|
initial CLKOUT_HARDIP = 0;
|
|
initial CLKOUT_FABRIC = 0;
|
|
|
|
//output dividers not implemented for simulation
|
|
//auto powerdown not implemented for simulation
|
|
|
|
always begin
|
|
if(PWRDN) begin
|
|
CLKOUT_HARDIP = 0;
|
|
CLKOUT_FABRIC = 0;
|
|
end
|
|
else begin
|
|
//half period of 27 MHz
|
|
#18.518;
|
|
CLKOUT_HARDIP = ~CLKOUT_HARDIP;
|
|
CLKOUT_FABRIC = ~CLKOUT_FABRIC;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB);
|
|
|
|
parameter OUTA_TAP = 1;
|
|
parameter OUTA_INVERT = 0;
|
|
parameter OUTB_TAP = 1;
|
|
|
|
reg[15:0] shreg = 0;
|
|
|
|
always @(posedge CLK, negedge nRST) begin
|
|
|
|
if(!nRST)
|
|
shreg = 0;
|
|
|
|
else
|
|
shreg <= {shreg[14:0], IN};
|
|
|
|
end
|
|
|
|
assign OUTA = (OUTA_INVERT) ? ~shreg[OUTA_TAP - 1] : shreg[OUTA_TAP - 1];
|
|
assign OUTB = shreg[OUTB_TAP - 1];
|
|
|
|
endmodule
|
|
|
|
//keep constraint needed to prevent optimization since we have no outputs
|
|
(* keep *)
|
|
module GP_SYSRESET(input RST);
|
|
parameter RESET_MODE = "RISING";
|
|
|
|
//cannot simulate whole system reset
|
|
|
|
endmodule
|
|
|
|
module GP_VDD(output OUT);
|
|
assign OUT = 1;
|
|
endmodule
|
|
|
|
module GP_VREF(input VIN, output reg VOUT);
|
|
parameter VIN_DIV = 1;
|
|
parameter VREF = 0;
|
|
//cannot simulate mixed signal IP
|
|
endmodule
|
|
|
|
module GP_VSS(output OUT);
|
|
assign OUT = 0;
|
|
endmodule
|