yosys/kernel/rtlil.cc

5672 lines
159 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/macc.h"
#include "kernel/celltypes.h"
#include "kernel/binding.h"
#include "kernel/sigtools.h"
#include "frontends/verilog/verilog_frontend.h"
#include "frontends/verilog/preproc.h"
#include "backends/rtlil/rtlil_backend.h"
#include <string.h>
#include <algorithm>
#include <optional>
YOSYS_NAMESPACE_BEGIN
bool RTLIL::IdString::destruct_guard_ok = false;
RTLIL::IdString::destruct_guard_t RTLIL::IdString::destruct_guard;
std::vector<char*> RTLIL::IdString::global_id_storage_;
dict<char*, int> RTLIL::IdString::global_id_index_;
#ifndef YOSYS_NO_IDS_REFCNT
std::vector<int> RTLIL::IdString::global_refcount_storage_;
std::vector<int> RTLIL::IdString::global_free_idx_list_;
#endif
#ifdef YOSYS_USE_STICKY_IDS
int RTLIL::IdString::last_created_idx_[8];
int RTLIL::IdString::last_created_idx_ptr_;
#endif
#define X(_id) IdString RTLIL::ID::_id;
#include "kernel/constids.inc"
#undef X
dict<std::string, std::string> RTLIL::constpad;
const pool<IdString> &RTLIL::builtin_ff_cell_types() {
static const pool<IdString> res = {
ID($sr),
ID($ff),
ID($dff),
ID($dffe),
ID($dffsr),
ID($dffsre),
ID($adff),
ID($adffe),
ID($aldff),
ID($aldffe),
ID($sdff),
ID($sdffe),
ID($sdffce),
ID($dlatch),
ID($adlatch),
ID($dlatchsr),
ID($_DFFE_NN_),
ID($_DFFE_NP_),
ID($_DFFE_PN_),
ID($_DFFE_PP_),
ID($_DFFSR_NNN_),
ID($_DFFSR_NNP_),
ID($_DFFSR_NPN_),
ID($_DFFSR_NPP_),
ID($_DFFSR_PNN_),
ID($_DFFSR_PNP_),
ID($_DFFSR_PPN_),
ID($_DFFSR_PPP_),
ID($_DFFSRE_NNNN_),
ID($_DFFSRE_NNNP_),
ID($_DFFSRE_NNPN_),
ID($_DFFSRE_NNPP_),
ID($_DFFSRE_NPNN_),
ID($_DFFSRE_NPNP_),
ID($_DFFSRE_NPPN_),
ID($_DFFSRE_NPPP_),
ID($_DFFSRE_PNNN_),
ID($_DFFSRE_PNNP_),
ID($_DFFSRE_PNPN_),
ID($_DFFSRE_PNPP_),
ID($_DFFSRE_PPNN_),
ID($_DFFSRE_PPNP_),
ID($_DFFSRE_PPPN_),
ID($_DFFSRE_PPPP_),
ID($_DFF_N_),
ID($_DFF_P_),
ID($_DFF_NN0_),
ID($_DFF_NN1_),
ID($_DFF_NP0_),
ID($_DFF_NP1_),
ID($_DFF_PN0_),
ID($_DFF_PN1_),
ID($_DFF_PP0_),
ID($_DFF_PP1_),
ID($_DFFE_NN0N_),
ID($_DFFE_NN0P_),
ID($_DFFE_NN1N_),
ID($_DFFE_NN1P_),
ID($_DFFE_NP0N_),
ID($_DFFE_NP0P_),
ID($_DFFE_NP1N_),
ID($_DFFE_NP1P_),
ID($_DFFE_PN0N_),
ID($_DFFE_PN0P_),
ID($_DFFE_PN1N_),
ID($_DFFE_PN1P_),
ID($_DFFE_PP0N_),
ID($_DFFE_PP0P_),
ID($_DFFE_PP1N_),
ID($_DFFE_PP1P_),
ID($_ALDFF_NN_),
ID($_ALDFF_NP_),
ID($_ALDFF_PN_),
ID($_ALDFF_PP_),
ID($_ALDFFE_NNN_),
ID($_ALDFFE_NNP_),
ID($_ALDFFE_NPN_),
ID($_ALDFFE_NPP_),
ID($_ALDFFE_PNN_),
ID($_ALDFFE_PNP_),
ID($_ALDFFE_PPN_),
ID($_ALDFFE_PPP_),
ID($_SDFF_NN0_),
ID($_SDFF_NN1_),
ID($_SDFF_NP0_),
ID($_SDFF_NP1_),
ID($_SDFF_PN0_),
ID($_SDFF_PN1_),
ID($_SDFF_PP0_),
ID($_SDFF_PP1_),
ID($_SDFFE_NN0N_),
ID($_SDFFE_NN0P_),
ID($_SDFFE_NN1N_),
ID($_SDFFE_NN1P_),
ID($_SDFFE_NP0N_),
ID($_SDFFE_NP0P_),
ID($_SDFFE_NP1N_),
ID($_SDFFE_NP1P_),
ID($_SDFFE_PN0N_),
ID($_SDFFE_PN0P_),
ID($_SDFFE_PN1N_),
ID($_SDFFE_PN1P_),
ID($_SDFFE_PP0N_),
ID($_SDFFE_PP0P_),
ID($_SDFFE_PP1N_),
ID($_SDFFE_PP1P_),
ID($_SDFFCE_NN0N_),
ID($_SDFFCE_NN0P_),
ID($_SDFFCE_NN1N_),
ID($_SDFFCE_NN1P_),
ID($_SDFFCE_NP0N_),
ID($_SDFFCE_NP0P_),
ID($_SDFFCE_NP1N_),
ID($_SDFFCE_NP1P_),
ID($_SDFFCE_PN0N_),
ID($_SDFFCE_PN0P_),
ID($_SDFFCE_PN1N_),
ID($_SDFFCE_PN1P_),
ID($_SDFFCE_PP0N_),
ID($_SDFFCE_PP0P_),
ID($_SDFFCE_PP1N_),
ID($_SDFFCE_PP1P_),
ID($_SR_NN_),
ID($_SR_NP_),
ID($_SR_PN_),
ID($_SR_PP_),
ID($_DLATCH_N_),
ID($_DLATCH_P_),
ID($_DLATCH_NN0_),
ID($_DLATCH_NN1_),
ID($_DLATCH_NP0_),
ID($_DLATCH_NP1_),
ID($_DLATCH_PN0_),
ID($_DLATCH_PN1_),
ID($_DLATCH_PP0_),
ID($_DLATCH_PP1_),
ID($_DLATCHSR_NNN_),
ID($_DLATCHSR_NNP_),
ID($_DLATCHSR_NPN_),
ID($_DLATCHSR_NPP_),
ID($_DLATCHSR_PNN_),
ID($_DLATCHSR_PNP_),
ID($_DLATCHSR_PPN_),
ID($_DLATCHSR_PPP_),
ID($_FF_),
};
return res;
}
#define check(condition) log_assert(condition && "malformed Const union")
Const::bitvectype& Const::get_bits() const {
check(is_bits());
return *get_if_bits();
}
std::string& Const::get_str() const {
check(is_str());
return *get_if_str();
}
RTLIL::Const::Const(const std::string &str)
{
flags = RTLIL::CONST_FLAG_STRING;
new ((void*)&str_) std::string(str);
tag = backing_tag::string;
}
RTLIL::Const::Const(long long val, int width)
{
flags = RTLIL::CONST_FLAG_NONE;
new ((void*)&bits_) bitvectype();
tag = backing_tag::bits;
bitvectype& bv = get_bits();
bv.reserve(width);
for (int i = 0; i < width; i++) {
bv.push_back((val & 1) != 0 ? State::S1 : State::S0);
val = val >> 1;
}
}
RTLIL::Const::Const(RTLIL::State bit, int width)
{
flags = RTLIL::CONST_FLAG_NONE;
new ((void*)&bits_) bitvectype();
tag = backing_tag::bits;
bitvectype& bv = get_bits();
bv.reserve(width);
for (int i = 0; i < width; i++)
bv.push_back(bit);
}
RTLIL::Const::Const(const std::vector<bool> &bits)
{
flags = RTLIL::CONST_FLAG_NONE;
new ((void*)&bits_) bitvectype();
tag = backing_tag::bits;
bitvectype& bv = get_bits();
bv.reserve(bits.size());
for (const auto &b : bits)
bv.emplace_back(b ? State::S1 : State::S0);
}
RTLIL::Const::Const(const RTLIL::Const &other) {
tag = other.tag;
flags = other.flags;
if (is_str())
new ((void*)&str_) std::string(other.get_str());
else if (is_bits())
new ((void*)&bits_) bitvectype(other.get_bits());
else
check(false);
}
RTLIL::Const::Const(RTLIL::Const &&other) {
tag = other.tag;
flags = other.flags;
if (is_str())
new ((void*)&str_) std::string(std::move(other.get_str()));
else if (is_bits())
new ((void*)&bits_) bitvectype(std::move(other.get_bits()));
else
check(false);
}
RTLIL::Const &RTLIL::Const::operator =(const RTLIL::Const &other) {
flags = other.flags;
if (other.is_str()) {
if (!is_str()) {
// sketchy zone
check(is_bits());
bits_.~bitvectype();
(void)new ((void*)&str_) std::string();
}
tag = other.tag;
get_str() = other.get_str();
} else if (other.is_bits()) {
if (!is_bits()) {
// sketchy zone
check(is_str());
str_.~string();
(void)new ((void*)&bits_) bitvectype();
}
tag = other.tag;
get_bits() = other.get_bits();
} else {
check(false);
}
return *this;
}
RTLIL::Const::~Const() {
if (is_bits())
bits_.~bitvectype();
else if (is_str())
str_.~string();
else
check(false);
}
bool RTLIL::Const::operator<(const RTLIL::Const &other) const
{
if (size() != other.size())
return size() < other.size();
for (int i = 0; i < size(); i++)
if ((*this)[i] != other[i])
return (*this)[i] < other[i];
return false;
}
bool RTLIL::Const::operator ==(const RTLIL::Const &other) const
{
if (size() != other.size())
return false;
for (int i = 0; i < size(); i++)
if ((*this)[i] != other[i])
return false;
return true;
}
bool RTLIL::Const::operator !=(const RTLIL::Const &other) const
{
return !(*this == other);
}
std::vector<RTLIL::State>& RTLIL::Const::bits()
{
bitvectorize();
return get_bits();
}
std::vector<RTLIL::State> RTLIL::Const::to_bits() const
{
std::vector<State> v;
for (auto bit : *this)
v.push_back(bit);
return v;
}
bool RTLIL::Const::as_bool() const
{
bitvectorize();
bitvectype& bv = get_bits();
for (size_t i = 0; i < bv.size(); i++)
if (bv[i] == State::S1)
return true;
return false;
}
int RTLIL::Const::as_int(bool is_signed) const
{
bitvectorize();
bitvectype& bv = get_bits();
int32_t ret = 0;
for (size_t i = 0; i < bv.size() && i < 32; i++)
if (bv[i] == State::S1)
ret |= 1 << i;
if (is_signed && bv.back() == State::S1)
for (size_t i = bv.size(); i < 32; i++)
ret |= 1 << i;
return ret;
}
int RTLIL::Const::get_min_size(bool is_signed) const
{
if (empty()) return 0;
// back to front (MSB to LSB)
RTLIL::State leading_bit;
if (is_signed)
leading_bit = (back() == RTLIL::State::Sx) ? RTLIL::State::S0 : back();
else
leading_bit = RTLIL::State::S0;
auto idx = size();
while (idx > 0 && (*this)[idx -1] == leading_bit) {
idx--;
}
// signed needs one leading bit
if (is_signed && idx < size()) {
idx++;
}
// must be at least one bit
return (idx == 0) ? 1 : idx;
}
void RTLIL::Const::compress(bool is_signed)
{
auto idx = get_min_size(is_signed);
bits().erase(bits().begin() + idx, bits().end());
}
std::optional<int> RTLIL::Const::as_int_compress(bool is_signed) const
{
auto size = get_min_size(is_signed);
if(size == 0 || size > 32)
return std::nullopt;
int32_t ret = 0;
for (auto i = 0; i < size && i < 32; i++)
if ((*this)[i] == State::S1)
ret |= 1 << i;
if (is_signed && (*this)[size-1] == State::S1)
for (auto i = size; i < 32; i++)
ret |= 1 << i;
return ret;
}
std::string RTLIL::Const::as_string(const char* any) const
{
bitvectorize();
bitvectype& bv = get_bits();
std::string ret;
ret.reserve(bv.size());
for (size_t i = bv.size(); i > 0; i--)
switch (bv[i-1]) {
case S0: ret += "0"; break;
case S1: ret += "1"; break;
case Sx: ret += "x"; break;
case Sz: ret += "z"; break;
case Sa: ret += any; break;
case Sm: ret += "m"; break;
}
return ret;
}
RTLIL::Const RTLIL::Const::from_string(const std::string &str)
{
Const c;
bitvectype& bv = c.get_bits();
bv.reserve(str.size());
for (auto it = str.rbegin(); it != str.rend(); it++)
switch (*it) {
case '0': bv.push_back(State::S0); break;
case '1': bv.push_back(State::S1); break;
case 'x': bv.push_back(State::Sx); break;
case 'z': bv.push_back(State::Sz); break;
case 'm': bv.push_back(State::Sm); break;
default: bv.push_back(State::Sa);
}
return c;
}
std::string RTLIL::Const::decode_string() const
{
if (auto str = get_if_str())
return *str;
bitvectorize();
bitvectype& bv = get_bits();
const int n = GetSize(bv);
const int n_over_8 = n / 8;
std::string s;
s.reserve(n_over_8);
int i = n_over_8 * 8;
if (i < n) {
char ch = 0;
for (int j = 0; j < (n - i); j++) {
if (bv[i + j] == RTLIL::State::S1) {
ch |= 1 << j;
}
}
if (ch != 0)
s.append({ch});
}
i -= 8;
for (; i >= 0; i -= 8) {
char ch = 0;
for (int j = 0; j < 8; j++) {
if (bv[i + j] == RTLIL::State::S1) {
ch |= 1 << j;
}
}
if (ch != 0)
s.append({ch});
}
return s;
}
int RTLIL::Const::size() const {
if (is_str())
return 8 * str_.size();
else {
check(is_bits());
return bits_.size();
}
}
bool RTLIL::Const::empty() const {
if (is_str())
return str_.empty();
else {
check(is_bits());
return bits_.empty();
}
}
void RTLIL::Const::bitvectorize() const {
if (tag == backing_tag::bits)
return;
check(is_str());
bitvectype new_bits;
new_bits.reserve(str_.size() * 8);
for (int i = str_.size() - 1; i >= 0; i--) {
unsigned char ch = str_[i];
for (int j = 0; j < 8; j++) {
new_bits.push_back((ch & 1) != 0 ? State::S1 : State::S0);
ch = ch >> 1;
}
}
{
// sketchy zone
str_.~string();
(void)new ((void*)&bits_) bitvectype(std::move(new_bits));
tag = backing_tag::bits;
}
}
RTLIL::State RTLIL::Const::const_iterator::operator*() const {
if (auto bv = parent.get_if_bits())
return (*bv)[idx];
int char_idx = parent.get_str().size() - idx / 8 - 1;
bool bit = (parent.get_str()[char_idx] & (1 << (idx % 8)));
return bit ? State::S1 : State::S0;
}
bool RTLIL::Const::is_fully_zero() const
{
bitvectorize();
bitvectype& bv = get_bits();
cover("kernel.rtlil.const.is_fully_zero");
for (const auto &bit : bv)
if (bit != RTLIL::State::S0)
return false;
return true;
}
bool RTLIL::Const::is_fully_ones() const
{
bitvectorize();
bitvectype& bv = get_bits();
cover("kernel.rtlil.const.is_fully_ones");
for (const auto &bit : bv)
if (bit != RTLIL::State::S1)
return false;
return true;
}
bool RTLIL::Const::is_fully_def() const
{
cover("kernel.rtlil.const.is_fully_def");
bitvectorize();
bitvectype& bv = get_bits();
for (const auto &bit : bv)
if (bit != RTLIL::State::S0 && bit != RTLIL::State::S1)
return false;
return true;
}
bool RTLIL::Const::is_fully_undef() const
{
cover("kernel.rtlil.const.is_fully_undef");
bitvectorize();
bitvectype& bv = get_bits();
for (const auto &bit : bv)
if (bit != RTLIL::State::Sx && bit != RTLIL::State::Sz)
return false;
return true;
}
bool RTLIL::Const::is_fully_undef_x_only() const
{
cover("kernel.rtlil.const.is_fully_undef_x_only");
bitvectorize();
bitvectype& bv = get_bits();
for (const auto &bit : bv)
if (bit != RTLIL::State::Sx)
return false;
return true;
}
bool RTLIL::Const::is_onehot(int *pos) const
{
cover("kernel.rtlil.const.is_onehot");
bitvectorize();
bitvectype& bv = get_bits();
bool found = false;
for (int i = 0; i < GetSize(*this); i++) {
auto &bit = bv[i];
if (bit != RTLIL::State::S0 && bit != RTLIL::State::S1)
return false;
if (bit == RTLIL::State::S1) {
if (found)
return false;
if (pos)
*pos = i;
found = true;
}
}
return found;
}
RTLIL::Const RTLIL::Const::extract(int offset, int len, RTLIL::State padding) const {
bitvectype ret_bv;
ret_bv.reserve(len);
for (int i = offset; i < offset + len; i++)
ret_bv.push_back(i < GetSize(*this) ? (*this)[i] : padding);
return RTLIL::Const(ret_bv);
}
#undef check /* check(condition) for Const */
bool RTLIL::AttrObject::has_attribute(const RTLIL::IdString &id) const
{
return attributes.count(id);
}
void RTLIL::AttrObject::set_bool_attribute(const RTLIL::IdString &id, bool value)
{
if (value)
attributes[id] = RTLIL::Const(1);
else
attributes.erase(id);
}
bool RTLIL::AttrObject::get_bool_attribute(const RTLIL::IdString &id) const
{
const auto it = attributes.find(id);
if (it == attributes.end())
return false;
return it->second.as_bool();
}
void RTLIL::AttrObject::set_string_attribute(const RTLIL::IdString& id, string value)
{
if (value.empty())
attributes.erase(id);
else
attributes[id] = value;
}
string RTLIL::AttrObject::get_string_attribute(const RTLIL::IdString &id) const
{
std::string value;
const auto it = attributes.find(id);
if (it != attributes.end())
value = it->second.decode_string();
return value;
}
void RTLIL::AttrObject::set_strpool_attribute(const RTLIL::IdString& id, const pool<string> &data)
{
string attrval;
for (const auto &s : data) {
if (!attrval.empty())
attrval += "|";
attrval += s;
}
set_string_attribute(id, attrval);
}
void RTLIL::AttrObject::add_strpool_attribute(const RTLIL::IdString& id, const pool<string> &data)
{
pool<string> union_data = get_strpool_attribute(id);
union_data.insert(data.begin(), data.end());
if (!union_data.empty())
set_strpool_attribute(id, union_data);
}
pool<string> RTLIL::AttrObject::get_strpool_attribute(const RTLIL::IdString &id) const
{
pool<string> data;
if (attributes.count(id) != 0)
for (auto s : split_tokens(get_string_attribute(id), "|"))
data.insert(s);
return data;
}
void RTLIL::AttrObject::set_hdlname_attribute(const vector<string> &hierarchy)
{
string attrval;
for (const auto &ident : hierarchy) {
if (!attrval.empty())
attrval += " ";
attrval += ident;
}
set_string_attribute(ID::hdlname, attrval);
}
vector<string> RTLIL::AttrObject::get_hdlname_attribute() const
{
return split_tokens(get_string_attribute(ID::hdlname), " ");
}
void RTLIL::AttrObject::set_intvec_attribute(const RTLIL::IdString& id, const vector<int> &data)
{
std::stringstream attrval;
for (auto &i : data) {
if (attrval.tellp() > 0)
attrval << " ";
attrval << i;
}
attributes[id] = RTLIL::Const(attrval.str());
}
vector<int> RTLIL::AttrObject::get_intvec_attribute(const RTLIL::IdString &id) const
{
vector<int> data;
auto it = attributes.find(id);
if (it != attributes.end())
for (const auto &s : split_tokens(attributes.at(id).decode_string())) {
char *end = nullptr;
errno = 0;
long value = strtol(s.c_str(), &end, 10);
if (end != s.c_str() + s.size())
log_cmd_error("Literal for intvec attribute has invalid format");
if (errno == ERANGE || value < INT_MIN || value > INT_MAX)
log_cmd_error("Literal for intvec attribute is out of range");
data.push_back(value);
}
return data;
}
bool RTLIL::Selection::selected_module(const RTLIL::IdString &mod_name) const
{
if (full_selection)
return true;
if (selected_modules.count(mod_name) > 0)
return true;
if (selected_members.count(mod_name) > 0)
return true;
return false;
}
bool RTLIL::Selection::selected_whole_module(const RTLIL::IdString &mod_name) const
{
if (full_selection)
return true;
if (selected_modules.count(mod_name) > 0)
return true;
return false;
}
bool RTLIL::Selection::selected_member(const RTLIL::IdString &mod_name, const RTLIL::IdString &memb_name) const
{
if (full_selection)
return true;
if (selected_modules.count(mod_name) > 0)
return true;
if (selected_members.count(mod_name) > 0)
if (selected_members.at(mod_name).count(memb_name) > 0)
return true;
return false;
}
void RTLIL::Selection::optimize(RTLIL::Design *design)
{
if (full_selection) {
selected_modules.clear();
selected_members.clear();
return;
}
std::vector<RTLIL::IdString> del_list, add_list;
del_list.clear();
for (auto mod_name : selected_modules) {
if (design->modules_.count(mod_name) == 0)
del_list.push_back(mod_name);
selected_members.erase(mod_name);
}
for (auto mod_name : del_list)
selected_modules.erase(mod_name);
del_list.clear();
for (auto &it : selected_members)
if (design->modules_.count(it.first) == 0)
del_list.push_back(it.first);
for (auto mod_name : del_list)
selected_members.erase(mod_name);
for (auto &it : selected_members) {
del_list.clear();
for (auto memb_name : it.second)
if (design->modules_[it.first]->count_id(memb_name) == 0)
del_list.push_back(memb_name);
for (auto memb_name : del_list)
it.second.erase(memb_name);
}
del_list.clear();
add_list.clear();
for (auto &it : selected_members)
if (it.second.size() == 0)
del_list.push_back(it.first);
else if (it.second.size() == design->modules_[it.first]->wires_.size() + design->modules_[it.first]->memories.size() +
design->modules_[it.first]->cells_.size() + design->modules_[it.first]->processes.size())
add_list.push_back(it.first);
for (auto mod_name : del_list)
selected_members.erase(mod_name);
for (auto mod_name : add_list) {
selected_members.erase(mod_name);
selected_modules.insert(mod_name);
}
if (selected_modules.size() == design->modules_.size()) {
full_selection = true;
selected_modules.clear();
selected_members.clear();
}
}
RTLIL::Design::Design()
: verilog_defines (new define_map_t)
{
static unsigned int hashidx_count = 123456789;
hashidx_count = mkhash_xorshift(hashidx_count);
hashidx_ = hashidx_count;
refcount_modules_ = 0;
selection_stack.push_back(RTLIL::Selection());
#ifdef WITH_PYTHON
RTLIL::Design::get_all_designs()->insert(std::pair<unsigned int, RTLIL::Design*>(hashidx_, this));
#endif
}
RTLIL::Design::~Design()
{
for (auto &pr : modules_)
delete pr.second;
for (auto n : bindings_)
delete n;
for (auto n : verilog_packages)
delete n;
for (auto n : verilog_globals)
delete n;
#ifdef WITH_PYTHON
RTLIL::Design::get_all_designs()->erase(hashidx_);
#endif
}
#ifdef WITH_PYTHON
static std::map<unsigned int, RTLIL::Design*> all_designs;
std::map<unsigned int, RTLIL::Design*> *RTLIL::Design::get_all_designs(void)
{
return &all_designs;
}
#endif
RTLIL::ObjRange<RTLIL::Module*> RTLIL::Design::modules()
{
return RTLIL::ObjRange<RTLIL::Module*>(&modules_, &refcount_modules_);
}
RTLIL::Module *RTLIL::Design::module(const RTLIL::IdString& name)
{
return modules_.count(name) ? modules_.at(name) : NULL;
}
const RTLIL::Module *RTLIL::Design::module(const RTLIL::IdString& name) const
{
return modules_.count(name) ? modules_.at(name) : NULL;
}
RTLIL::Module *RTLIL::Design::top_module()
{
RTLIL::Module *module = nullptr;
int module_count = 0;
for (auto mod : selected_modules()) {
if (mod->get_bool_attribute(ID::top))
return mod;
module_count++;
module = mod;
}
return module_count == 1 ? module : nullptr;
}
void RTLIL::Design::add(RTLIL::Module *module)
{
log_assert(modules_.count(module->name) == 0);
log_assert(refcount_modules_ == 0);
modules_[module->name] = module;
module->design = this;
for (auto mon : monitors)
mon->notify_module_add(module);
if (yosys_xtrace) {
log("#X# New Module: %s\n", log_id(module));
log_backtrace("-X- ", yosys_xtrace-1);
}
}
void RTLIL::Design::add(RTLIL::Binding *binding)
{
log_assert(binding != nullptr);
bindings_.push_back(binding);
}
RTLIL::Module *RTLIL::Design::addModule(RTLIL::IdString name)
{
if (modules_.count(name) != 0)
log_error("Attempted to add new module named '%s', but a module by that name already exists\n", name.c_str());
log_assert(refcount_modules_ == 0);
RTLIL::Module *module = new RTLIL::Module;
modules_[name] = module;
module->design = this;
module->name = name;
for (auto mon : monitors)
mon->notify_module_add(module);
if (yosys_xtrace) {
log("#X# New Module: %s\n", log_id(module));
log_backtrace("-X- ", yosys_xtrace-1);
}
return module;
}
void RTLIL::Design::scratchpad_unset(const std::string &varname)
{
scratchpad.erase(varname);
}
void RTLIL::Design::scratchpad_set_int(const std::string &varname, int value)
{
scratchpad[varname] = stringf("%d", value);
}
void RTLIL::Design::scratchpad_set_bool(const std::string &varname, bool value)
{
scratchpad[varname] = value ? "true" : "false";
}
void RTLIL::Design::scratchpad_set_string(const std::string &varname, std::string value)
{
scratchpad[varname] = std::move(value);
}
int RTLIL::Design::scratchpad_get_int(const std::string &varname, int default_value) const
{
auto it = scratchpad.find(varname);
if (it == scratchpad.end())
return default_value;
const std::string &str = it->second;
if (str == "0" || str == "false")
return 0;
if (str == "1" || str == "true")
return 1;
char *endptr = nullptr;
long int parsed_value = strtol(str.c_str(), &endptr, 10);
return *endptr ? default_value : parsed_value;
}
bool RTLIL::Design::scratchpad_get_bool(const std::string &varname, bool default_value) const
{
auto it = scratchpad.find(varname);
if (it == scratchpad.end())
return default_value;
const std::string &str = it->second;
if (str == "0" || str == "false")
return false;
if (str == "1" || str == "true")
return true;
return default_value;
}
std::string RTLIL::Design::scratchpad_get_string(const std::string &varname, const std::string &default_value) const
{
auto it = scratchpad.find(varname);
if (it == scratchpad.end())
return default_value;
return it->second;
}
void RTLIL::Design::remove(RTLIL::Module *module)
{
for (auto mon : monitors)
mon->notify_module_del(module);
if (yosys_xtrace) {
log("#X# Remove Module: %s\n", log_id(module));
log_backtrace("-X- ", yosys_xtrace-1);
}
log_assert(modules_.at(module->name) == module);
log_assert(refcount_modules_ == 0);
modules_.erase(module->name);
delete module;
}
void RTLIL::Design::rename(RTLIL::Module *module, RTLIL::IdString new_name)
{
modules_.erase(module->name);
module->name = new_name;
add(module);
}
void RTLIL::Design::sort()
{
scratchpad.sort();
modules_.sort(sort_by_id_str());
for (auto &it : modules_)
it.second->sort();
}
void RTLIL::Design::check()
{
#ifndef NDEBUG
for (auto &it : modules_) {
log_assert(this == it.second->design);
log_assert(it.first == it.second->name);
log_assert(!it.first.empty());
it.second->check();
}
#endif
}
void RTLIL::Design::optimize()
{
for (auto &it : modules_)
it.second->optimize();
for (auto &it : selection_stack)
it.optimize(this);
for (auto &it : selection_vars)
it.second.optimize(this);
}
bool RTLIL::Design::selected_module(const RTLIL::IdString& mod_name) const
{
if (!selected_active_module.empty() && mod_name != selected_active_module)
return false;
if (selection_stack.size() == 0)
return true;
return selection_stack.back().selected_module(mod_name);
}
bool RTLIL::Design::selected_whole_module(const RTLIL::IdString& mod_name) const
{
if (!selected_active_module.empty() && mod_name != selected_active_module)
return false;
if (selection_stack.size() == 0)
return true;
return selection_stack.back().selected_whole_module(mod_name);
}
bool RTLIL::Design::selected_member(const RTLIL::IdString& mod_name, const RTLIL::IdString& memb_name) const
{
if (!selected_active_module.empty() && mod_name != selected_active_module)
return false;
if (selection_stack.size() == 0)
return true;
return selection_stack.back().selected_member(mod_name, memb_name);
}
bool RTLIL::Design::selected_module(RTLIL::Module *mod) const
{
return selected_module(mod->name);
}
bool RTLIL::Design::selected_whole_module(RTLIL::Module *mod) const
{
return selected_whole_module(mod->name);
}
std::vector<RTLIL::Module*> RTLIL::Design::selected_modules() const
{
std::vector<RTLIL::Module*> result;
result.reserve(modules_.size());
for (auto &it : modules_)
if (selected_module(it.first) && !it.second->get_blackbox_attribute())
result.push_back(it.second);
return result;
}
std::vector<RTLIL::Module*> RTLIL::Design::selected_whole_modules() const
{
std::vector<RTLIL::Module*> result;
result.reserve(modules_.size());
for (auto &it : modules_)
if (selected_whole_module(it.first) && !it.second->get_blackbox_attribute())
result.push_back(it.second);
return result;
}
std::vector<RTLIL::Module*> RTLIL::Design::selected_whole_modules_warn(bool include_wb) const
{
std::vector<RTLIL::Module*> result;
result.reserve(modules_.size());
for (auto &it : modules_)
if (it.second->get_blackbox_attribute(include_wb))
continue;
else if (selected_whole_module(it.first))
result.push_back(it.second);
else if (selected_module(it.first))
log_warning("Ignoring partially selected module %s.\n", log_id(it.first));
return result;
}
RTLIL::Module::Module()
{
static unsigned int hashidx_count = 123456789;
hashidx_count = mkhash_xorshift(hashidx_count);
hashidx_ = hashidx_count;
design = nullptr;
refcount_wires_ = 0;
refcount_cells_ = 0;
#ifdef WITH_PYTHON
RTLIL::Module::get_all_modules()->insert(std::pair<unsigned int, RTLIL::Module*>(hashidx_, this));
#endif
}
RTLIL::Module::~Module()
{
for (auto &pr : wires_)
delete pr.second;
for (auto &pr : memories)
delete pr.second;
for (auto &pr : cells_)
delete pr.second;
for (auto &pr : processes)
delete pr.second;
for (auto binding : bindings_)
delete binding;
#ifdef WITH_PYTHON
RTLIL::Module::get_all_modules()->erase(hashidx_);
#endif
}
#ifdef WITH_PYTHON
static std::map<unsigned int, RTLIL::Module*> all_modules;
std::map<unsigned int, RTLIL::Module*> *RTLIL::Module::get_all_modules(void)
{
return &all_modules;
}
#endif
void RTLIL::Module::makeblackbox()
{
pool<RTLIL::Wire*> delwires;
for (auto it = wires_.begin(); it != wires_.end(); ++it)
if (!it->second->port_input && !it->second->port_output)
delwires.insert(it->second);
for (auto it = memories.begin(); it != memories.end(); ++it)
delete it->second;
memories.clear();
for (auto it = cells_.begin(); it != cells_.end(); ++it)
delete it->second;
cells_.clear();
for (auto it = processes.begin(); it != processes.end(); ++it)
delete it->second;
processes.clear();
connections_.clear();
remove(delwires);
set_bool_attribute(ID::blackbox);
}
void RTLIL::Module::expand_interfaces(RTLIL::Design *, const dict<RTLIL::IdString, RTLIL::Module *> &)
{
log_error("Class doesn't support expand_interfaces (module: `%s')!\n", id2cstr(name));
}
bool RTLIL::Module::reprocess_if_necessary(RTLIL::Design *)
{
return false;
}
RTLIL::IdString RTLIL::Module::derive(RTLIL::Design*, const dict<RTLIL::IdString, RTLIL::Const> &, bool mayfail)
{
if (mayfail)
return RTLIL::IdString();
log_error("Module `%s' is used with parameters but is not parametric!\n", id2cstr(name));
}
RTLIL::IdString RTLIL::Module::derive(RTLIL::Design*, const dict<RTLIL::IdString, RTLIL::Const> &, const dict<RTLIL::IdString, RTLIL::Module*> &, const dict<RTLIL::IdString, RTLIL::IdString> &, bool mayfail)
{
if (mayfail)
return RTLIL::IdString();
log_error("Module `%s' is used with parameters but is not parametric!\n", id2cstr(name));
}
size_t RTLIL::Module::count_id(const RTLIL::IdString& id)
{
return wires_.count(id) + memories.count(id) + cells_.count(id) + processes.count(id);
}
#ifndef NDEBUG
namespace {
struct InternalCellChecker
{
RTLIL::Module *module;
RTLIL::Cell *cell;
pool<RTLIL::IdString> expected_params, expected_ports;
InternalCellChecker(RTLIL::Module *module, RTLIL::Cell *cell) : module(module), cell(cell) { }
void error(int linenr)
{
std::stringstream buf;
RTLIL_BACKEND::dump_cell(buf, " ", cell);
log_error("Found error in internal cell %s%s%s (%s) at %s:%d:\n%s",
module ? module->name.c_str() : "", module ? "." : "",
cell->name.c_str(), cell->type.c_str(), __FILE__, linenr, buf.str().c_str());
}
int param(const RTLIL::IdString& name)
{
auto it = cell->parameters.find(name);
if (it == cell->parameters.end())
error(__LINE__);
expected_params.insert(name);
return it->second.as_int();
}
int param_bool(const RTLIL::IdString& name)
{
int v = param(name);
if (GetSize(cell->parameters.at(name)) > 32)
error(__LINE__);
if (v != 0 && v != 1)
error(__LINE__);
return v;
}
int param_bool(const RTLIL::IdString& name, bool expected)
{
int v = param_bool(name);
if (v != expected)
error(__LINE__);
return v;
}
void param_bits(const RTLIL::IdString& name, int width)
{
param(name);
if (GetSize(cell->parameters.at(name)) != width)
error(__LINE__);
}
std::string param_string(const RTLIL::IdString &name)
{
param(name);
return cell->parameters.at(name).decode_string();
}
void port(const RTLIL::IdString& name, int width)
{
auto it = cell->connections_.find(name);
if (it == cell->connections_.end())
error(__LINE__);
if (GetSize(it->second) != width)
error(__LINE__);
expected_ports.insert(name);
}
void check_expected(bool check_matched_sign = false)
{
for (auto &para : cell->parameters)
if (expected_params.count(para.first) == 0)
error(__LINE__);
for (auto &conn : cell->connections())
if (expected_ports.count(conn.first) == 0)
error(__LINE__);
if (check_matched_sign) {
log_assert(expected_params.count(ID::A_SIGNED) != 0 && expected_params.count(ID::B_SIGNED) != 0);
bool a_is_signed = cell->parameters.at(ID::A_SIGNED).as_bool();
bool b_is_signed = cell->parameters.at(ID::B_SIGNED).as_bool();
if (a_is_signed != b_is_signed)
error(__LINE__);
}
}
void check()
{
if (!cell->type.begins_with("$") || cell->type.begins_with("$__") || cell->type.begins_with("$paramod") || cell->type.begins_with("$fmcombine") ||
cell->type.begins_with("$verific$") || cell->type.begins_with("$array:") || cell->type.begins_with("$extern:"))
return;
if (cell->type == ID($buf)) {
port(ID::A, param(ID::WIDTH));
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($not), ID($pos), ID($neg))) {
param_bool(ID::A_SIGNED);
port(ID::A, param(ID::A_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($and), ID($or), ID($xor), ID($xnor))) {
param_bool(ID::A_SIGNED);
param_bool(ID::B_SIGNED);
port(ID::A, param(ID::A_WIDTH));
port(ID::B, param(ID::B_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected(true);
return;
}
if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool))) {
param_bool(ID::A_SIGNED);
port(ID::A, param(ID::A_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr))) {
param_bool(ID::A_SIGNED);
param_bool(ID::B_SIGNED, /*expected=*/false);
port(ID::A, param(ID::A_WIDTH));
port(ID::B, param(ID::B_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected(/*check_matched_sign=*/false);
return;
}
if (cell->type.in(ID($shift), ID($shiftx))) {
if (cell->type == ID($shiftx)) {
param_bool(ID::A_SIGNED, /*expected=*/false);
} else {
param_bool(ID::A_SIGNED);
}
param_bool(ID::B_SIGNED);
port(ID::A, param(ID::A_WIDTH));
port(ID::B, param(ID::B_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected(/*check_matched_sign=*/false);
return;
}
if (cell->type.in(ID($lt), ID($le), ID($eq), ID($ne), ID($eqx), ID($nex), ID($ge), ID($gt))) {
param_bool(ID::A_SIGNED);
param_bool(ID::B_SIGNED);
port(ID::A, param(ID::A_WIDTH));
port(ID::B, param(ID::B_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected(true);
return;
}
if (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($divfloor), ID($modfloor), ID($pow))) {
param_bool(ID::A_SIGNED);
param_bool(ID::B_SIGNED);
port(ID::A, param(ID::A_WIDTH));
port(ID::B, param(ID::B_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected(cell->type != ID($pow));
return;
}
if (cell->type == ID($fa)) {
port(ID::A, param(ID::WIDTH));
port(ID::B, param(ID::WIDTH));
port(ID::C, param(ID::WIDTH));
port(ID::X, param(ID::WIDTH));
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($lcu)) {
port(ID::P, param(ID::WIDTH));
port(ID::G, param(ID::WIDTH));
port(ID::CI, 1);
port(ID::CO, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($alu)) {
param_bool(ID::A_SIGNED);
param_bool(ID::B_SIGNED);
port(ID::A, param(ID::A_WIDTH));
port(ID::B, param(ID::B_WIDTH));
port(ID::CI, 1);
port(ID::BI, 1);
port(ID::X, param(ID::Y_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
port(ID::CO, param(ID::Y_WIDTH));
check_expected(true);
return;
}
if (cell->type == ID($macc)) {
param(ID::CONFIG);
param(ID::CONFIG_WIDTH);
port(ID::A, param(ID::A_WIDTH));
port(ID::B, param(ID::B_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected();
Macc().from_cell(cell);
return;
}
if (cell->type == ID($logic_not)) {
param_bool(ID::A_SIGNED);
port(ID::A, param(ID::A_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($logic_and), ID($logic_or))) {
param_bool(ID::A_SIGNED);
param_bool(ID::B_SIGNED);
port(ID::A, param(ID::A_WIDTH));
port(ID::B, param(ID::B_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
check_expected(/*check_matched_sign=*/false);
return;
}
if (cell->type == ID($slice)) {
param(ID::OFFSET);
port(ID::A, param(ID::A_WIDTH));
port(ID::Y, param(ID::Y_WIDTH));
if (param(ID::OFFSET) + param(ID::Y_WIDTH) > param(ID::A_WIDTH))
error(__LINE__);
check_expected();
return;
}
if (cell->type == ID($concat)) {
port(ID::A, param(ID::A_WIDTH));
port(ID::B, param(ID::B_WIDTH));
port(ID::Y, param(ID::A_WIDTH) + param(ID::B_WIDTH));
check_expected();
return;
}
if (cell->type == ID($mux)) {
port(ID::A, param(ID::WIDTH));
port(ID::B, param(ID::WIDTH));
port(ID::S, 1);
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($pmux)) {
port(ID::A, param(ID::WIDTH));
port(ID::B, param(ID::WIDTH) * param(ID::S_WIDTH));
port(ID::S, param(ID::S_WIDTH));
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($bmux)) {
port(ID::A, param(ID::WIDTH) << param(ID::S_WIDTH));
port(ID::S, param(ID::S_WIDTH));
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($demux)) {
port(ID::A, param(ID::WIDTH));
port(ID::S, param(ID::S_WIDTH));
port(ID::Y, param(ID::WIDTH) << param(ID::S_WIDTH));
check_expected();
return;
}
if (cell->type == ID($lut)) {
param(ID::LUT);
port(ID::A, param(ID::WIDTH));
port(ID::Y, 1);
check_expected();
return;
}
if (cell->type == ID($sop)) {
param(ID::DEPTH);
param(ID::TABLE);
port(ID::A, param(ID::WIDTH));
port(ID::Y, 1);
check_expected();
return;
}
if (cell->type == ID($sr)) {
param_bool(ID::SET_POLARITY);
param_bool(ID::CLR_POLARITY);
port(ID::SET, param(ID::WIDTH));
port(ID::CLR, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($ff)) {
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($dff)) {
param_bool(ID::CLK_POLARITY);
port(ID::CLK, 1);
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($dffe)) {
param_bool(ID::CLK_POLARITY);
param_bool(ID::EN_POLARITY);
port(ID::CLK, 1);
port(ID::EN, 1);
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($dffsr)) {
param_bool(ID::CLK_POLARITY);
param_bool(ID::SET_POLARITY);
param_bool(ID::CLR_POLARITY);
port(ID::CLK, 1);
port(ID::SET, param(ID::WIDTH));
port(ID::CLR, param(ID::WIDTH));
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($dffsre)) {
param_bool(ID::CLK_POLARITY);
param_bool(ID::SET_POLARITY);
param_bool(ID::CLR_POLARITY);
param_bool(ID::EN_POLARITY);
port(ID::CLK, 1);
port(ID::EN, 1);
port(ID::SET, param(ID::WIDTH));
port(ID::CLR, param(ID::WIDTH));
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($adff)) {
param_bool(ID::CLK_POLARITY);
param_bool(ID::ARST_POLARITY);
param_bits(ID::ARST_VALUE, param(ID::WIDTH));
port(ID::CLK, 1);
port(ID::ARST, 1);
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($sdff)) {
param_bool(ID::CLK_POLARITY);
param_bool(ID::SRST_POLARITY);
param_bits(ID::SRST_VALUE, param(ID::WIDTH));
port(ID::CLK, 1);
port(ID::SRST, 1);
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($sdffe), ID($sdffce))) {
param_bool(ID::CLK_POLARITY);
param_bool(ID::EN_POLARITY);
param_bool(ID::SRST_POLARITY);
param_bits(ID::SRST_VALUE, param(ID::WIDTH));
port(ID::CLK, 1);
port(ID::EN, 1);
port(ID::SRST, 1);
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($adffe)) {
param_bool(ID::CLK_POLARITY);
param_bool(ID::EN_POLARITY);
param_bool(ID::ARST_POLARITY);
param_bits(ID::ARST_VALUE, param(ID::WIDTH));
port(ID::CLK, 1);
port(ID::EN, 1);
port(ID::ARST, 1);
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($aldff)) {
param_bool(ID::CLK_POLARITY);
param_bool(ID::ALOAD_POLARITY);
port(ID::CLK, 1);
port(ID::ALOAD, 1);
port(ID::D, param(ID::WIDTH));
port(ID::AD, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($aldffe)) {
param_bool(ID::CLK_POLARITY);
param_bool(ID::EN_POLARITY);
param_bool(ID::ALOAD_POLARITY);
port(ID::CLK, 1);
port(ID::EN, 1);
port(ID::ALOAD, 1);
port(ID::D, param(ID::WIDTH));
port(ID::AD, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($dlatch)) {
param_bool(ID::EN_POLARITY);
port(ID::EN, 1);
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($adlatch)) {
param_bool(ID::EN_POLARITY);
param_bool(ID::ARST_POLARITY);
param_bits(ID::ARST_VALUE, param(ID::WIDTH));
port(ID::EN, 1);
port(ID::ARST, 1);
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($dlatchsr)) {
param_bool(ID::EN_POLARITY);
param_bool(ID::SET_POLARITY);
param_bool(ID::CLR_POLARITY);
port(ID::EN, 1);
port(ID::SET, param(ID::WIDTH));
port(ID::CLR, param(ID::WIDTH));
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($fsm)) {
param(ID::NAME);
param_bool(ID::CLK_POLARITY);
param_bool(ID::ARST_POLARITY);
param(ID::STATE_BITS);
param(ID::STATE_NUM);
param(ID::STATE_NUM_LOG2);
param(ID::STATE_RST);
param_bits(ID::STATE_TABLE, param(ID::STATE_BITS) * param(ID::STATE_NUM));
param(ID::TRANS_NUM);
param_bits(ID::TRANS_TABLE, param(ID::TRANS_NUM) * (2*param(ID::STATE_NUM_LOG2) + param(ID::CTRL_IN_WIDTH) + param(ID::CTRL_OUT_WIDTH)));
port(ID::CLK, 1);
port(ID::ARST, 1);
port(ID::CTRL_IN, param(ID::CTRL_IN_WIDTH));
port(ID::CTRL_OUT, param(ID::CTRL_OUT_WIDTH));
check_expected();
return;
}
if (cell->type == ID($memrd)) {
param(ID::MEMID);
param_bool(ID::CLK_ENABLE);
param_bool(ID::CLK_POLARITY);
param_bool(ID::TRANSPARENT);
port(ID::CLK, 1);
port(ID::EN, 1);
port(ID::ADDR, param(ID::ABITS));
port(ID::DATA, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($memrd_v2)) {
param(ID::MEMID);
param_bool(ID::CLK_ENABLE);
param_bool(ID::CLK_POLARITY);
param(ID::TRANSPARENCY_MASK);
param(ID::COLLISION_X_MASK);
param_bool(ID::CE_OVER_SRST);
param_bits(ID::ARST_VALUE, param(ID::WIDTH));
param_bits(ID::SRST_VALUE, param(ID::WIDTH));
param_bits(ID::INIT_VALUE, param(ID::WIDTH));
port(ID::CLK, 1);
port(ID::EN, 1);
port(ID::ARST, 1);
port(ID::SRST, 1);
port(ID::ADDR, param(ID::ABITS));
port(ID::DATA, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($memwr)) {
param(ID::MEMID);
param_bool(ID::CLK_ENABLE);
param_bool(ID::CLK_POLARITY);
param(ID::PRIORITY);
port(ID::CLK, 1);
port(ID::EN, param(ID::WIDTH));
port(ID::ADDR, param(ID::ABITS));
port(ID::DATA, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($memwr_v2)) {
param(ID::MEMID);
param_bool(ID::CLK_ENABLE);
param_bool(ID::CLK_POLARITY);
param(ID::PORTID);
param(ID::PRIORITY_MASK);
port(ID::CLK, 1);
port(ID::EN, param(ID::WIDTH));
port(ID::ADDR, param(ID::ABITS));
port(ID::DATA, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($meminit)) {
param(ID::MEMID);
param(ID::PRIORITY);
port(ID::ADDR, param(ID::ABITS));
port(ID::DATA, param(ID::WIDTH) * param(ID::WORDS));
check_expected();
return;
}
if (cell->type == ID($meminit_v2)) {
param(ID::MEMID);
param(ID::PRIORITY);
port(ID::ADDR, param(ID::ABITS));
port(ID::DATA, param(ID::WIDTH) * param(ID::WORDS));
port(ID::EN, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($mem)) {
param(ID::MEMID);
param(ID::SIZE);
param(ID::OFFSET);
param(ID::INIT);
param_bits(ID::RD_CLK_ENABLE, max(1, param(ID::RD_PORTS)));
param_bits(ID::RD_CLK_POLARITY, max(1, param(ID::RD_PORTS)));
param_bits(ID::RD_TRANSPARENT, max(1, param(ID::RD_PORTS)));
param_bits(ID::WR_CLK_ENABLE, max(1, param(ID::WR_PORTS)));
param_bits(ID::WR_CLK_POLARITY, max(1, param(ID::WR_PORTS)));
port(ID::RD_CLK, param(ID::RD_PORTS));
port(ID::RD_EN, param(ID::RD_PORTS));
port(ID::RD_ADDR, param(ID::RD_PORTS) * param(ID::ABITS));
port(ID::RD_DATA, param(ID::RD_PORTS) * param(ID::WIDTH));
port(ID::WR_CLK, param(ID::WR_PORTS));
port(ID::WR_EN, param(ID::WR_PORTS) * param(ID::WIDTH));
port(ID::WR_ADDR, param(ID::WR_PORTS) * param(ID::ABITS));
port(ID::WR_DATA, param(ID::WR_PORTS) * param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($mem_v2)) {
param(ID::MEMID);
param(ID::SIZE);
param(ID::OFFSET);
param(ID::INIT);
param_bits(ID::RD_CLK_ENABLE, max(1, param(ID::RD_PORTS)));
param_bits(ID::RD_CLK_POLARITY, max(1, param(ID::RD_PORTS)));
param_bits(ID::RD_TRANSPARENCY_MASK, max(1, param(ID::RD_PORTS) * param(ID::WR_PORTS)));
param_bits(ID::RD_COLLISION_X_MASK, max(1, param(ID::RD_PORTS) * param(ID::WR_PORTS)));
param_bits(ID::RD_WIDE_CONTINUATION, max(1, param(ID::RD_PORTS)));
param_bits(ID::RD_CE_OVER_SRST, max(1, param(ID::RD_PORTS)));
param_bits(ID::RD_ARST_VALUE, max(1, param(ID::RD_PORTS) * param(ID::WIDTH)));
param_bits(ID::RD_SRST_VALUE, max(1, param(ID::RD_PORTS) * param(ID::WIDTH)));
param_bits(ID::RD_INIT_VALUE, max(1, param(ID::RD_PORTS) * param(ID::WIDTH)));
param_bits(ID::WR_CLK_ENABLE, max(1, param(ID::WR_PORTS)));
param_bits(ID::WR_CLK_POLARITY, max(1, param(ID::WR_PORTS)));
param_bits(ID::WR_WIDE_CONTINUATION, max(1, param(ID::WR_PORTS)));
param_bits(ID::WR_PRIORITY_MASK, max(1, param(ID::WR_PORTS) * param(ID::WR_PORTS)));
port(ID::RD_CLK, param(ID::RD_PORTS));
port(ID::RD_EN, param(ID::RD_PORTS));
port(ID::RD_ARST, param(ID::RD_PORTS));
port(ID::RD_SRST, param(ID::RD_PORTS));
port(ID::RD_ADDR, param(ID::RD_PORTS) * param(ID::ABITS));
port(ID::RD_DATA, param(ID::RD_PORTS) * param(ID::WIDTH));
port(ID::WR_CLK, param(ID::WR_PORTS));
port(ID::WR_EN, param(ID::WR_PORTS) * param(ID::WIDTH));
port(ID::WR_ADDR, param(ID::WR_PORTS) * param(ID::ABITS));
port(ID::WR_DATA, param(ID::WR_PORTS) * param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($tribuf)) {
port(ID::A, param(ID::WIDTH));
port(ID::Y, param(ID::WIDTH));
port(ID::EN, 1);
check_expected();
return;
}
if (cell->type == ID($bweqx)) {
port(ID::A, param(ID::WIDTH));
port(ID::B, param(ID::WIDTH));
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($bwmux)) {
port(ID::A, param(ID::WIDTH));
port(ID::B, param(ID::WIDTH));
port(ID::S, param(ID::WIDTH));
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($assert), ID($assume), ID($live), ID($fair), ID($cover))) {
port(ID::A, 1);
port(ID::EN, 1);
check_expected();
return;
}
if (cell->type == ID($initstate)) {
port(ID::Y, 1);
check_expected();
return;
}
if (cell->type.in(ID($anyconst), ID($anyseq), ID($allconst), ID($allseq))) {
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($anyinit))) {
port(ID::D, param(ID::WIDTH));
port(ID::Q, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type == ID($equiv)) {
port(ID::A, 1);
port(ID::B, 1);
port(ID::Y, 1);
check_expected();
return;
}
if (cell->type.in(ID($specify2), ID($specify3))) {
param_bool(ID::FULL);
param_bool(ID::SRC_DST_PEN);
param_bool(ID::SRC_DST_POL);
param(ID::T_RISE_MIN);
param(ID::T_RISE_TYP);
param(ID::T_RISE_MAX);
param(ID::T_FALL_MIN);
param(ID::T_FALL_TYP);
param(ID::T_FALL_MAX);
port(ID::EN, 1);
port(ID::SRC, param(ID::SRC_WIDTH));
port(ID::DST, param(ID::DST_WIDTH));
if (cell->type == ID($specify3)) {
param_bool(ID::EDGE_EN);
param_bool(ID::EDGE_POL);
param_bool(ID::DAT_DST_PEN);
param_bool(ID::DAT_DST_POL);
port(ID::DAT, param(ID::DST_WIDTH));
}
check_expected();
return;
}
if (cell->type == ID($specrule)) {
param(ID::TYPE);
param_bool(ID::SRC_PEN);
param_bool(ID::SRC_POL);
param_bool(ID::DST_PEN);
param_bool(ID::DST_POL);
param(ID::T_LIMIT_MIN);
param(ID::T_LIMIT_TYP);
param(ID::T_LIMIT_MAX);
param(ID::T_LIMIT2_MIN);
param(ID::T_LIMIT2_TYP);
param(ID::T_LIMIT2_MAX);
port(ID::SRC_EN, 1);
port(ID::DST_EN, 1);
port(ID::SRC, param(ID::SRC_WIDTH));
port(ID::DST, param(ID::DST_WIDTH));
check_expected();
return;
}
if (cell->type == ID($print)) {
param(ID(FORMAT));
param_bool(ID::TRG_ENABLE);
param(ID::TRG_POLARITY);
param(ID::PRIORITY);
port(ID::EN, 1);
port(ID::TRG, param(ID::TRG_WIDTH));
port(ID::ARGS, param(ID::ARGS_WIDTH));
check_expected();
return;
}
if (cell->type == ID($check)) {
std::string flavor = param_string(ID(FLAVOR));
if (!(flavor == "assert" || flavor == "assume" || flavor == "live" || flavor == "fair" || flavor == "cover"))
error(__LINE__);
param(ID(FORMAT));
param_bool(ID::TRG_ENABLE);
param(ID::TRG_POLARITY);
param(ID::PRIORITY);
port(ID::A, 1);
port(ID::EN, 1);
port(ID::TRG, param(ID::TRG_WIDTH));
port(ID::ARGS, param(ID::ARGS_WIDTH));
check_expected();
return;
}
if (cell->type == ID($scopeinfo)) {
param(ID::TYPE);
check_expected();
std::string scope_type = cell->getParam(ID::TYPE).decode_string();
if (scope_type != "module" && scope_type != "struct")
error(__LINE__);
return;
}
if (cell->type == ID($_BUF_)) { port(ID::A,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_NOT_)) { port(ID::A,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_AND_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_NAND_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_OR_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_NOR_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_XOR_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_XNOR_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_ANDNOT_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_ORNOT_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_MUX_)) { port(ID::A,1); port(ID::B,1); port(ID::S,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_NMUX_)) { port(ID::A,1); port(ID::B,1); port(ID::S,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_AOI3_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_OAI3_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_AOI4_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_OAI4_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_TBUF_)) { port(ID::A,1); port(ID::Y,1); port(ID::E,1); check_expected(); return; }
if (cell->type == ID($_MUX4_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::S,1); port(ID::T,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_MUX8_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::E,1); port(ID::F,1); port(ID::G,1); port(ID::H,1); port(ID::S,1); port(ID::T,1); port(ID::U,1); port(ID::Y,1); check_expected(); return; }
if (cell->type == ID($_MUX16_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::E,1); port(ID::F,1); port(ID::G,1); port(ID::H,1); port(ID::I,1); port(ID::J,1); port(ID::K,1); port(ID::L,1); port(ID::M,1); port(ID::N,1); port(ID::O,1); port(ID::P,1); port(ID::S,1); port(ID::T,1); port(ID::U,1); port(ID::V,1); port(ID::Y,1); check_expected(); return; }
if (cell->type.in(ID($_SR_NN_), ID($_SR_NP_), ID($_SR_PN_), ID($_SR_PP_)))
{ port(ID::S,1); port(ID::R,1); port(ID::Q,1); check_expected(); return; }
if (cell->type == ID($_FF_)) { port(ID::D,1); port(ID::Q,1); check_expected(); return; }
if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_)))
{ port(ID::D,1); port(ID::Q,1); port(ID::C,1); check_expected(); return; }
if (cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
{ port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::E,1); check_expected(); return; }
if (cell->type.in(
ID($_DFF_NN0_), ID($_DFF_NN1_), ID($_DFF_NP0_), ID($_DFF_NP1_),
ID($_DFF_PN0_), ID($_DFF_PN1_), ID($_DFF_PP0_), ID($_DFF_PP1_)))
{ port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::R,1); check_expected(); return; }
if (cell->type.in(
ID($_DFFE_NN0N_), ID($_DFFE_NN0P_), ID($_DFFE_NN1N_), ID($_DFFE_NN1P_),
ID($_DFFE_NP0N_), ID($_DFFE_NP0P_), ID($_DFFE_NP1N_), ID($_DFFE_NP1P_),
ID($_DFFE_PN0N_), ID($_DFFE_PN0P_), ID($_DFFE_PN1N_), ID($_DFFE_PN1P_),
ID($_DFFE_PP0N_), ID($_DFFE_PP0P_), ID($_DFFE_PP1N_), ID($_DFFE_PP1P_)))
{ port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::R,1); port(ID::E,1); check_expected(); return; }
if (cell->type.in(
ID($_ALDFF_NN_), ID($_ALDFF_NP_), ID($_ALDFF_PN_), ID($_ALDFF_PP_)))
{ port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::L,1); port(ID::AD,1); check_expected(); return; }
if (cell->type.in(
ID($_ALDFFE_NNN_), ID($_ALDFFE_NNP_), ID($_ALDFFE_NPN_), ID($_ALDFFE_NPP_),
ID($_ALDFFE_PNN_), ID($_ALDFFE_PNP_), ID($_ALDFFE_PPN_), ID($_ALDFFE_PPP_)))
{ port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::L,1); port(ID::AD,1); port(ID::E,1); check_expected(); return; }
if (cell->type.in(
ID($_DFFSR_NNN_), ID($_DFFSR_NNP_), ID($_DFFSR_NPN_), ID($_DFFSR_NPP_),
ID($_DFFSR_PNN_), ID($_DFFSR_PNP_), ID($_DFFSR_PPN_), ID($_DFFSR_PPP_)))
{ port(ID::C,1); port(ID::S,1); port(ID::R,1); port(ID::D,1); port(ID::Q,1); check_expected(); return; }
if (cell->type.in(
ID($_DFFSRE_NNNN_), ID($_DFFSRE_NNNP_), ID($_DFFSRE_NNPN_), ID($_DFFSRE_NNPP_),
ID($_DFFSRE_NPNN_), ID($_DFFSRE_NPNP_), ID($_DFFSRE_NPPN_), ID($_DFFSRE_NPPP_),
ID($_DFFSRE_PNNN_), ID($_DFFSRE_PNNP_), ID($_DFFSRE_PNPN_), ID($_DFFSRE_PNPP_),
ID($_DFFSRE_PPNN_), ID($_DFFSRE_PPNP_), ID($_DFFSRE_PPPN_), ID($_DFFSRE_PPPP_)))
{ port(ID::C,1); port(ID::S,1); port(ID::R,1); port(ID::D,1); port(ID::E,1); port(ID::Q,1); check_expected(); return; }
if (cell->type.in(
ID($_SDFF_NN0_), ID($_SDFF_NN1_), ID($_SDFF_NP0_), ID($_SDFF_NP1_),
ID($_SDFF_PN0_), ID($_SDFF_PN1_), ID($_SDFF_PP0_), ID($_SDFF_PP1_)))
{ port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::R,1); check_expected(); return; }
if (cell->type.in(
ID($_SDFFE_NN0N_), ID($_SDFFE_NN0P_), ID($_SDFFE_NN1N_), ID($_SDFFE_NN1P_),
ID($_SDFFE_NP0N_), ID($_SDFFE_NP0P_), ID($_SDFFE_NP1N_), ID($_SDFFE_NP1P_),
ID($_SDFFE_PN0N_), ID($_SDFFE_PN0P_), ID($_SDFFE_PN1N_), ID($_SDFFE_PN1P_),
ID($_SDFFE_PP0N_), ID($_SDFFE_PP0P_), ID($_SDFFE_PP1N_), ID($_SDFFE_PP1P_),
ID($_SDFFCE_NN0N_), ID($_SDFFCE_NN0P_), ID($_SDFFCE_NN1N_), ID($_SDFFCE_NN1P_),
ID($_SDFFCE_NP0N_), ID($_SDFFCE_NP0P_), ID($_SDFFCE_NP1N_), ID($_SDFFCE_NP1P_),
ID($_SDFFCE_PN0N_), ID($_SDFFCE_PN0P_), ID($_SDFFCE_PN1N_), ID($_SDFFCE_PN1P_),
ID($_SDFFCE_PP0N_), ID($_SDFFCE_PP0P_), ID($_SDFFCE_PP1N_), ID($_SDFFCE_PP1P_)))
{ port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::R,1); port(ID::E,1); check_expected(); return; }
if (cell->type.in(ID($_DLATCH_N_), ID($_DLATCH_P_)))
{ port(ID::E,1); port(ID::D,1); port(ID::Q,1); check_expected(); return; }
if (cell->type.in(
ID($_DLATCH_NN0_), ID($_DLATCH_NN1_), ID($_DLATCH_NP0_), ID($_DLATCH_NP1_),
ID($_DLATCH_PN0_), ID($_DLATCH_PN1_), ID($_DLATCH_PP0_), ID($_DLATCH_PP1_)))
{ port(ID::E,1); port(ID::R,1); port(ID::D,1); port(ID::Q,1); check_expected(); return; }
if (cell->type.in(
ID($_DLATCHSR_NNN_), ID($_DLATCHSR_NNP_), ID($_DLATCHSR_NPN_), ID($_DLATCHSR_NPP_),
ID($_DLATCHSR_PNN_), ID($_DLATCHSR_PNP_), ID($_DLATCHSR_PPN_), ID($_DLATCHSR_PPP_)))
{ port(ID::E,1); port(ID::S,1); port(ID::R,1); port(ID::D,1); port(ID::Q,1); check_expected(); return; }
if (cell->type.in(ID($set_tag))) {
param(ID::WIDTH);
param(ID::TAG);
port(ID::A, param(ID::WIDTH));
port(ID::SET, param(ID::WIDTH));
port(ID::CLR, param(ID::WIDTH));
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($get_tag),ID($original_tag))) {
param(ID::WIDTH);
param(ID::TAG);
port(ID::A, param(ID::WIDTH));
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($overwrite_tag))) {
param(ID::WIDTH);
param(ID::TAG);
port(ID::A, param(ID::WIDTH));
port(ID::SET, param(ID::WIDTH));
port(ID::CLR, param(ID::WIDTH));
check_expected();
return;
}
if (cell->type.in(ID($future_ff))) {
param(ID::WIDTH);
port(ID::A, param(ID::WIDTH));
port(ID::Y, param(ID::WIDTH));
check_expected();
return;
}
/*
* Checklist for adding internal cell types
* ========================================
* Things to do right away:
* - Add to kernel/celltypes.h (incl. eval() handling for non-mem cells)
* - Add to InternalCellChecker::check() in kernel/rtlil.cc
* - Add to techlibs/common/simlib.v
* - Add to techlibs/common/techmap.v
*
* Things to do after finalizing the cell interface:
* - Add support to kernel/satgen.h for the new cell type
* - Add to docs/source/CHAPTER_CellLib.rst (or just add a fixme to the bottom)
* - Maybe add support to the Verilog backend for dumping such cells as expression
*
*/
error(__LINE__);
}
};
}
#endif
void RTLIL::Module::sort()
{
wires_.sort(sort_by_id_str());
cells_.sort(sort_by_id_str());
parameter_default_values.sort(sort_by_id_str());
memories.sort(sort_by_id_str());
processes.sort(sort_by_id_str());
for (auto &it : cells_)
it.second->sort();
for (auto &it : wires_)
it.second->attributes.sort(sort_by_id_str());
for (auto &it : memories)
it.second->attributes.sort(sort_by_id_str());
}
void RTLIL::Module::check()
{
#ifndef NDEBUG
std::vector<bool> ports_declared;
for (auto &it : wires_) {
log_assert(this == it.second->module);
log_assert(it.first == it.second->name);
log_assert(!it.first.empty());
log_assert(it.second->width >= 0);
log_assert(it.second->port_id >= 0);
for (auto &it2 : it.second->attributes)
log_assert(!it2.first.empty());
if (it.second->port_id) {
log_assert(GetSize(ports) >= it.second->port_id);
log_assert(ports.at(it.second->port_id-1) == it.first);
log_assert(it.second->port_input || it.second->port_output);
if (GetSize(ports_declared) < it.second->port_id)
ports_declared.resize(it.second->port_id);
log_assert(ports_declared[it.second->port_id-1] == false);
ports_declared[it.second->port_id-1] = true;
} else
log_assert(!it.second->port_input && !it.second->port_output);
}
for (auto port_declared : ports_declared)
log_assert(port_declared == true);
log_assert(GetSize(ports) == GetSize(ports_declared));
for (auto &it : memories) {
log_assert(it.first == it.second->name);
log_assert(!it.first.empty());
log_assert(it.second->width >= 0);
log_assert(it.second->size >= 0);
for (auto &it2 : it.second->attributes)
log_assert(!it2.first.empty());
}
pool<IdString> packed_memids;
for (auto &it : cells_) {
log_assert(this == it.second->module);
log_assert(it.first == it.second->name);
log_assert(!it.first.empty());
log_assert(!it.second->type.empty());
for (auto &it2 : it.second->connections()) {
log_assert(!it2.first.empty());
it2.second.check(this);
}
for (auto &it2 : it.second->attributes)
log_assert(!it2.first.empty());
for (auto &it2 : it.second->parameters)
log_assert(!it2.first.empty());
InternalCellChecker checker(this, it.second);
checker.check();
if (it.second->has_memid()) {
log_assert(memories.count(it.second->parameters.at(ID::MEMID).decode_string()));
} else if (it.second->is_mem_cell()) {
IdString memid = it.second->parameters.at(ID::MEMID).decode_string();
log_assert(!memories.count(memid));
log_assert(!packed_memids.count(memid));
packed_memids.insert(memid);
}
}
for (auto &it : processes) {
log_assert(it.first == it.second->name);
log_assert(!it.first.empty());
log_assert(it.second->root_case.compare.empty());
std::vector<CaseRule*> all_cases = {&it.second->root_case};
for (size_t i = 0; i < all_cases.size(); i++) {
for (auto &switch_it : all_cases[i]->switches) {
for (auto &case_it : switch_it->cases) {
for (auto &compare_it : case_it->compare) {
log_assert(switch_it->signal.size() == compare_it.size());
}
all_cases.push_back(case_it);
}
}
}
for (auto &sync_it : it.second->syncs) {
switch (sync_it->type) {
case SyncType::ST0:
case SyncType::ST1:
case SyncType::STp:
case SyncType::STn:
case SyncType::STe:
log_assert(!sync_it->signal.empty());
break;
case SyncType::STa:
case SyncType::STg:
case SyncType::STi:
log_assert(sync_it->signal.empty());
break;
}
}
}
for (auto &it : connections_) {
log_assert(it.first.size() == it.second.size());
log_assert(!it.first.has_const());
it.first.check(this);
it.second.check(this);
}
for (auto &it : attributes)
log_assert(!it.first.empty());
#endif
}
void RTLIL::Module::optimize()
{
}
void RTLIL::Module::cloneInto(RTLIL::Module *new_mod) const
{
log_assert(new_mod->refcount_wires_ == 0);
log_assert(new_mod->refcount_cells_ == 0);
new_mod->avail_parameters = avail_parameters;
new_mod->parameter_default_values = parameter_default_values;
for (auto &conn : connections_)
new_mod->connect(conn);
for (auto &attr : attributes)
new_mod->attributes[attr.first] = attr.second;
for (auto &it : wires_)
new_mod->addWire(it.first, it.second);
for (auto &it : memories)
new_mod->addMemory(it.first, it.second);
for (auto &it : cells_)
new_mod->addCell(it.first, it.second);
for (auto &it : processes)
new_mod->addProcess(it.first, it.second);
struct RewriteSigSpecWorker
{
RTLIL::Module *mod;
void operator()(RTLIL::SigSpec &sig)
{
sig.pack();
for (auto &c : sig.chunks_)
if (c.wire != NULL)
c.wire = mod->wires_.at(c.wire->name);
}
};
RewriteSigSpecWorker rewriteSigSpecWorker;
rewriteSigSpecWorker.mod = new_mod;
new_mod->rewrite_sigspecs(rewriteSigSpecWorker);
new_mod->fixup_ports();
}
RTLIL::Module *RTLIL::Module::clone() const
{
RTLIL::Module *new_mod = new RTLIL::Module;
new_mod->name = name;
cloneInto(new_mod);
return new_mod;
}
bool RTLIL::Module::has_memories() const
{
return !memories.empty();
}
bool RTLIL::Module::has_processes() const
{
return !processes.empty();
}
bool RTLIL::Module::has_memories_warn() const
{
if (!memories.empty())
log_warning("Ignoring module %s because it contains memories (run 'memory' command first).\n", log_id(this));
return !memories.empty();
}
bool RTLIL::Module::has_processes_warn() const
{
if (!processes.empty())
log_warning("Ignoring module %s because it contains processes (run 'proc' command first).\n", log_id(this));
return !processes.empty();
}
std::vector<RTLIL::Wire*> RTLIL::Module::selected_wires() const
{
std::vector<RTLIL::Wire*> result;
result.reserve(wires_.size());
for (auto &it : wires_)
if (design->selected(this, it.second))
result.push_back(it.second);
return result;
}
std::vector<RTLIL::Cell*> RTLIL::Module::selected_cells() const
{
std::vector<RTLIL::Cell*> result;
result.reserve(cells_.size());
for (auto &it : cells_)
if (design->selected(this, it.second))
result.push_back(it.second);
return result;
}
void RTLIL::Module::add(RTLIL::Wire *wire)
{
log_assert(!wire->name.empty());
log_assert(count_id(wire->name) == 0);
log_assert(refcount_wires_ == 0);
wires_[wire->name] = wire;
wire->module = this;
}
void RTLIL::Module::add(RTLIL::Cell *cell)
{
log_assert(!cell->name.empty());
log_assert(count_id(cell->name) == 0);
log_assert(refcount_cells_ == 0);
cells_[cell->name] = cell;
cell->module = this;
}
void RTLIL::Module::add(RTLIL::Process *process)
{
log_assert(!process->name.empty());
log_assert(count_id(process->name) == 0);
processes[process->name] = process;
process->module = this;
}
void RTLIL::Module::add(RTLIL::Binding *binding)
{
log_assert(binding != nullptr);
bindings_.push_back(binding);
}
void RTLIL::Module::remove(const pool<RTLIL::Wire*> &wires)
{
log_assert(refcount_wires_ == 0);
struct DeleteWireWorker
{
RTLIL::Module *module;
const pool<RTLIL::Wire*> *wires_p;
void operator()(RTLIL::SigSpec &sig) {
sig.pack();
for (auto &c : sig.chunks_)
if (c.wire != NULL && wires_p->count(c.wire)) {
c.wire = module->addWire(stringf("$delete_wire$%d", autoidx++), c.width);
c.offset = 0;
}
}
void operator()(RTLIL::SigSpec &lhs, RTLIL::SigSpec &rhs) {
// If a deleted wire occurs on the lhs or rhs we just remove that part
// of the assignment
lhs.remove2(*wires_p, &rhs);
rhs.remove2(*wires_p, &lhs);
}
};
DeleteWireWorker delete_wire_worker;
delete_wire_worker.module = this;
delete_wire_worker.wires_p = &wires;
rewrite_sigspecs2(delete_wire_worker);
for (auto &it : wires) {
log_assert(wires_.count(it->name) != 0);
wires_.erase(it->name);
delete it;
}
}
void RTLIL::Module::remove(RTLIL::Cell *cell)
{
while (!cell->connections_.empty())
cell->unsetPort(cell->connections_.begin()->first);
log_assert(cells_.count(cell->name) != 0);
log_assert(refcount_cells_ == 0);
cells_.erase(cell->name);
delete cell;
}
void RTLIL::Module::remove(RTLIL::Process *process)
{
log_assert(processes.count(process->name) != 0);
processes.erase(process->name);
delete process;
}
void RTLIL::Module::rename(RTLIL::Wire *wire, RTLIL::IdString new_name)
{
log_assert(wires_[wire->name] == wire);
log_assert(refcount_wires_ == 0);
wires_.erase(wire->name);
wire->name = new_name;
add(wire);
}
void RTLIL::Module::rename(RTLIL::Cell *cell, RTLIL::IdString new_name)
{
log_assert(cells_[cell->name] == cell);
log_assert(refcount_wires_ == 0);
cells_.erase(cell->name);
cell->name = new_name;
add(cell);
}
void RTLIL::Module::rename(RTLIL::IdString old_name, RTLIL::IdString new_name)
{
log_assert(count_id(old_name) != 0);
if (wires_.count(old_name))
rename(wires_.at(old_name), new_name);
else if (cells_.count(old_name))
rename(cells_.at(old_name), new_name);
else
log_abort();
}
void RTLIL::Module::swap_names(RTLIL::Wire *w1, RTLIL::Wire *w2)
{
log_assert(wires_[w1->name] == w1);
log_assert(wires_[w2->name] == w2);
log_assert(refcount_wires_ == 0);
wires_.erase(w1->name);
wires_.erase(w2->name);
std::swap(w1->name, w2->name);
wires_[w1->name] = w1;
wires_[w2->name] = w2;
}
void RTLIL::Module::swap_names(RTLIL::Cell *c1, RTLIL::Cell *c2)
{
log_assert(cells_[c1->name] == c1);
log_assert(cells_[c2->name] == c2);
log_assert(refcount_cells_ == 0);
cells_.erase(c1->name);
cells_.erase(c2->name);
std::swap(c1->name, c2->name);
cells_[c1->name] = c1;
cells_[c2->name] = c2;
}
RTLIL::IdString RTLIL::Module::uniquify(RTLIL::IdString name)
{
int index = 0;
return uniquify(name, index);
}
RTLIL::IdString RTLIL::Module::uniquify(RTLIL::IdString name, int &index)
{
if (index == 0) {
if (count_id(name) == 0)
return name;
index++;
}
while (1) {
RTLIL::IdString new_name = stringf("%s_%d", name.c_str(), index);
if (count_id(new_name) == 0)
return new_name;
index++;
}
}
static bool fixup_ports_compare(const RTLIL::Wire *a, const RTLIL::Wire *b)
{
if (a->port_id && !b->port_id)
return true;
if (!a->port_id && b->port_id)
return false;
if (a->port_id == b->port_id)
return a->name < b->name;
return a->port_id < b->port_id;
}
void RTLIL::Module::connect(const RTLIL::SigSig &conn)
{
for (auto mon : monitors)
mon->notify_connect(this, conn);
if (design)
for (auto mon : design->monitors)
mon->notify_connect(this, conn);
// ignore all attempts to assign constants to other constants
if (conn.first.has_const()) {
RTLIL::SigSig new_conn;
for (int i = 0; i < GetSize(conn.first); i++)
if (conn.first[i].wire) {
new_conn.first.append(conn.first[i]);
new_conn.second.append(conn.second[i]);
}
if (GetSize(new_conn.first))
connect(new_conn);
return;
}
if (yosys_xtrace) {
log("#X# Connect (SigSig) in %s: %s = %s (%d bits)\n", log_id(this), log_signal(conn.first), log_signal(conn.second), GetSize(conn.first));
log_backtrace("-X- ", yosys_xtrace-1);
}
log_assert(GetSize(conn.first) == GetSize(conn.second));
connections_.push_back(conn);
}
void RTLIL::Module::connect(const RTLIL::SigSpec &lhs, const RTLIL::SigSpec &rhs)
{
connect(RTLIL::SigSig(lhs, rhs));
}
void RTLIL::Module::new_connections(const std::vector<RTLIL::SigSig> &new_conn)
{
for (auto mon : monitors)
mon->notify_connect(this, new_conn);
if (design)
for (auto mon : design->monitors)
mon->notify_connect(this, new_conn);
if (yosys_xtrace) {
log("#X# New connections vector in %s:\n", log_id(this));
for (auto &conn: new_conn)
log("#X# %s = %s (%d bits)\n", log_signal(conn.first), log_signal(conn.second), GetSize(conn.first));
log_backtrace("-X- ", yosys_xtrace-1);
}
connections_ = new_conn;
}
const std::vector<RTLIL::SigSig> &RTLIL::Module::connections() const
{
return connections_;
}
void RTLIL::Module::fixup_ports()
{
std::vector<RTLIL::Wire*> all_ports;
for (auto &w : wires_)
if (w.second->port_input || w.second->port_output)
all_ports.push_back(w.second);
else
w.second->port_id = 0;
std::sort(all_ports.begin(), all_ports.end(), fixup_ports_compare);
ports.clear();
for (size_t i = 0; i < all_ports.size(); i++) {
ports.push_back(all_ports[i]->name);
all_ports[i]->port_id = i+1;
}
}
RTLIL::Wire *RTLIL::Module::addWire(RTLIL::IdString name, int width)
{
RTLIL::Wire *wire = new RTLIL::Wire;
wire->name = name;
wire->width = width;
add(wire);
return wire;
}
RTLIL::Wire *RTLIL::Module::addWire(RTLIL::IdString name, const RTLIL::Wire *other)
{
RTLIL::Wire *wire = addWire(name);
wire->width = other->width;
wire->start_offset = other->start_offset;
wire->port_id = other->port_id;
wire->port_input = other->port_input;
wire->port_output = other->port_output;
wire->upto = other->upto;
wire->is_signed = other->is_signed;
wire->attributes = other->attributes;
return wire;
}
RTLIL::Cell *RTLIL::Module::addCell(RTLIL::IdString name, RTLIL::IdString type)
{
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = name;
cell->type = type;
add(cell);
return cell;
}
RTLIL::Cell *RTLIL::Module::addCell(RTLIL::IdString name, const RTLIL::Cell *other)
{
RTLIL::Cell *cell = addCell(name, other->type);
cell->connections_ = other->connections_;
cell->parameters = other->parameters;
cell->attributes = other->attributes;
return cell;
}
RTLIL::Memory *RTLIL::Module::addMemory(RTLIL::IdString name, const RTLIL::Memory *other)
{
RTLIL::Memory *mem = new RTLIL::Memory;
mem->name = name;
mem->width = other->width;
mem->start_offset = other->start_offset;
mem->size = other->size;
mem->attributes = other->attributes;
memories[mem->name] = mem;
return mem;
}
RTLIL::Process *RTLIL::Module::addProcess(RTLIL::IdString name)
{
RTLIL::Process *proc = new RTLIL::Process;
proc->name = name;
add(proc);
return proc;
}
RTLIL::Process *RTLIL::Module::addProcess(RTLIL::IdString name, const RTLIL::Process *other)
{
RTLIL::Process *proc = other->clone();
proc->name = name;
add(proc);
return proc;
}
#define DEF_METHOD(_func, _y_size, _type) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_y, bool is_signed, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->parameters[ID::A_SIGNED] = is_signed; \
cell->parameters[ID::A_WIDTH] = sig_a.size(); \
cell->parameters[ID::Y_WIDTH] = sig_y.size(); \
cell->setPort(ID::A, sig_a); \
cell->setPort(ID::Y, sig_y); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, bool is_signed, const std::string &src) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \
add ## _func(name, sig_a, sig_y, is_signed, src); \
return sig_y; \
}
DEF_METHOD(Not, sig_a.size(), ID($not))
DEF_METHOD(Pos, sig_a.size(), ID($pos))
DEF_METHOD(Neg, sig_a.size(), ID($neg))
DEF_METHOD(ReduceAnd, 1, ID($reduce_and))
DEF_METHOD(ReduceOr, 1, ID($reduce_or))
DEF_METHOD(ReduceXor, 1, ID($reduce_xor))
DEF_METHOD(ReduceXnor, 1, ID($reduce_xnor))
DEF_METHOD(ReduceBool, 1, ID($reduce_bool))
DEF_METHOD(LogicNot, 1, ID($logic_not))
#undef DEF_METHOD
#define DEF_METHOD(_func, _y_size, _type) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_y, bool /* is_signed */, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->parameters[ID::WIDTH] = sig_a.size(); \
cell->setPort(ID::A, sig_a); \
cell->setPort(ID::Y, sig_y); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, bool is_signed, const std::string &src) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \
add ## _func(name, sig_a, sig_y, is_signed, src); \
return sig_y; \
}
DEF_METHOD(Buf, sig_a.size(), ID($buf))
#undef DEF_METHOD
#define DEF_METHOD(_func, _y_size, _type) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, bool is_signed, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->parameters[ID::A_SIGNED] = is_signed; \
cell->parameters[ID::B_SIGNED] = is_signed; \
cell->parameters[ID::A_WIDTH] = sig_a.size(); \
cell->parameters[ID::B_WIDTH] = sig_b.size(); \
cell->parameters[ID::Y_WIDTH] = sig_y.size(); \
cell->setPort(ID::A, sig_a); \
cell->setPort(ID::B, sig_b); \
cell->setPort(ID::Y, sig_y); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, bool is_signed, const std::string &src) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \
add ## _func(name, sig_a, sig_b, sig_y, is_signed, src); \
return sig_y; \
}
DEF_METHOD(And, max(sig_a.size(), sig_b.size()), ID($and))
DEF_METHOD(Or, max(sig_a.size(), sig_b.size()), ID($or))
DEF_METHOD(Xor, max(sig_a.size(), sig_b.size()), ID($xor))
DEF_METHOD(Xnor, max(sig_a.size(), sig_b.size()), ID($xnor))
DEF_METHOD(Shift, sig_a.size(), ID($shift))
DEF_METHOD(Lt, 1, ID($lt))
DEF_METHOD(Le, 1, ID($le))
DEF_METHOD(Eq, 1, ID($eq))
DEF_METHOD(Ne, 1, ID($ne))
DEF_METHOD(Eqx, 1, ID($eqx))
DEF_METHOD(Nex, 1, ID($nex))
DEF_METHOD(Ge, 1, ID($ge))
DEF_METHOD(Gt, 1, ID($gt))
DEF_METHOD(Add, max(sig_a.size(), sig_b.size()), ID($add))
DEF_METHOD(Sub, max(sig_a.size(), sig_b.size()), ID($sub))
DEF_METHOD(Mul, max(sig_a.size(), sig_b.size()), ID($mul))
DEF_METHOD(Div, max(sig_a.size(), sig_b.size()), ID($div))
DEF_METHOD(Mod, max(sig_a.size(), sig_b.size()), ID($mod))
DEF_METHOD(DivFloor, max(sig_a.size(), sig_b.size()), ID($divfloor))
DEF_METHOD(ModFloor, max(sig_a.size(), sig_b.size()), ID($modfloor))
DEF_METHOD(LogicAnd, 1, ID($logic_and))
DEF_METHOD(LogicOr, 1, ID($logic_or))
#undef DEF_METHOD
#define DEF_METHOD(_func, _y_size, _type) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, bool is_signed, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->parameters[ID::A_SIGNED] = is_signed; \
cell->parameters[ID::B_SIGNED] = false; \
cell->parameters[ID::A_WIDTH] = sig_a.size(); \
cell->parameters[ID::B_WIDTH] = sig_b.size(); \
cell->parameters[ID::Y_WIDTH] = sig_y.size(); \
cell->setPort(ID::A, sig_a); \
cell->setPort(ID::B, sig_b); \
cell->setPort(ID::Y, sig_y); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, bool is_signed, const std::string &src) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \
add ## _func(name, sig_a, sig_b, sig_y, is_signed, src); \
return sig_y; \
}
DEF_METHOD(Shl, sig_a.size(), ID($shl))
DEF_METHOD(Shr, sig_a.size(), ID($shr))
DEF_METHOD(Sshl, sig_a.size(), ID($sshl))
DEF_METHOD(Sshr, sig_a.size(), ID($sshr))
#undef DEF_METHOD
#define DEF_METHOD(_func, _y_size, _type) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, bool is_signed, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->parameters[ID::A_SIGNED] = false; \
cell->parameters[ID::B_SIGNED] = is_signed; \
cell->parameters[ID::A_WIDTH] = sig_a.size(); \
cell->parameters[ID::B_WIDTH] = sig_b.size(); \
cell->parameters[ID::Y_WIDTH] = sig_y.size(); \
cell->setPort(ID::A, sig_a); \
cell->setPort(ID::B, sig_b); \
cell->setPort(ID::Y, sig_y); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, bool is_signed, const std::string &src) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \
add ## _func(name, sig_a, sig_b, sig_y, is_signed, src); \
return sig_y; \
}
DEF_METHOD(Shiftx, sig_a.size(), ID($shiftx))
#undef DEF_METHOD
#define DEF_METHOD(_func, _type, _pmux) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_y, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->parameters[ID::WIDTH] = sig_a.size(); \
if (_pmux) cell->parameters[ID::S_WIDTH] = sig_s.size(); \
cell->setPort(ID::A, sig_a); \
cell->setPort(ID::B, sig_b); \
cell->setPort(ID::S, sig_s); \
cell->setPort(ID::Y, sig_y); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_s, const std::string &src) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, sig_a.size()); \
add ## _func(name, sig_a, sig_b, sig_s, sig_y, src); \
return sig_y; \
}
DEF_METHOD(Mux, ID($mux), 0)
DEF_METHOD(Bwmux, ID($bwmux), 0)
DEF_METHOD(Pmux, ID($pmux), 1)
#undef DEF_METHOD
#define DEF_METHOD(_func, _type, _demux) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_y, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->parameters[ID::WIDTH] = _demux ? sig_a.size() : sig_y.size(); \
cell->parameters[ID::S_WIDTH] = sig_s.size(); \
cell->setPort(ID::A, sig_a); \
cell->setPort(ID::S, sig_s); \
cell->setPort(ID::Y, sig_y); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const std::string &src) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, _demux ? sig_a.size() << sig_s.size() : sig_a.size() >> sig_s.size()); \
add ## _func(name, sig_a, sig_s, sig_y, src); \
return sig_y; \
}
DEF_METHOD(Bmux, ID($bmux), 0)
DEF_METHOD(Demux, ID($demux), 1)
#undef DEF_METHOD
#define DEF_METHOD(_func, _type) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->parameters[ID::WIDTH] = sig_a.size(); \
cell->setPort(ID::A, sig_a); \
cell->setPort(ID::B, sig_b); \
cell->setPort(ID::Y, sig_y); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const std::string &src) { \
RTLIL::SigSpec sig_y = addWire(NEW_ID, sig_a.size()); \
add ## _func(name, sig_a, sig_s, sig_y, src); \
return sig_y; \
}
DEF_METHOD(Bweqx, ID($bweqx))
#undef DEF_METHOD
#define DEF_METHOD_2(_func, _type, _P1, _P2) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->setPort("\\" #_P1, sig1); \
cell->setPort("\\" #_P2, sig2); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const std::string &src) { \
RTLIL::SigBit sig2 = addWire(NEW_ID); \
add ## _func(name, sig1, sig2, src); \
return sig2; \
}
#define DEF_METHOD_3(_func, _type, _P1, _P2, _P3) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->setPort("\\" #_P1, sig1); \
cell->setPort("\\" #_P2, sig2); \
cell->setPort("\\" #_P3, sig3); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const std::string &src) { \
RTLIL::SigBit sig3 = addWire(NEW_ID); \
add ## _func(name, sig1, sig2, sig3, src); \
return sig3; \
}
#define DEF_METHOD_4(_func, _type, _P1, _P2, _P3, _P4) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const RTLIL::SigBit &sig4, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->setPort("\\" #_P1, sig1); \
cell->setPort("\\" #_P2, sig2); \
cell->setPort("\\" #_P3, sig3); \
cell->setPort("\\" #_P4, sig4); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const std::string &src) { \
RTLIL::SigBit sig4 = addWire(NEW_ID); \
add ## _func(name, sig1, sig2, sig3, sig4, src); \
return sig4; \
}
#define DEF_METHOD_5(_func, _type, _P1, _P2, _P3, _P4, _P5) \
RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const RTLIL::SigBit &sig4, const RTLIL::SigBit &sig5, const std::string &src) { \
RTLIL::Cell *cell = addCell(name, _type); \
cell->setPort("\\" #_P1, sig1); \
cell->setPort("\\" #_P2, sig2); \
cell->setPort("\\" #_P3, sig3); \
cell->setPort("\\" #_P4, sig4); \
cell->setPort("\\" #_P5, sig5); \
cell->set_src_attribute(src); \
return cell; \
} \
RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const RTLIL::SigBit &sig4, const std::string &src) { \
RTLIL::SigBit sig5 = addWire(NEW_ID); \
add ## _func(name, sig1, sig2, sig3, sig4, sig5, src); \
return sig5; \
}
DEF_METHOD_2(BufGate, ID($_BUF_), A, Y)
DEF_METHOD_2(NotGate, ID($_NOT_), A, Y)
DEF_METHOD_3(AndGate, ID($_AND_), A, B, Y)
DEF_METHOD_3(NandGate, ID($_NAND_), A, B, Y)
DEF_METHOD_3(OrGate, ID($_OR_), A, B, Y)
DEF_METHOD_3(NorGate, ID($_NOR_), A, B, Y)
DEF_METHOD_3(XorGate, ID($_XOR_), A, B, Y)
DEF_METHOD_3(XnorGate, ID($_XNOR_), A, B, Y)
DEF_METHOD_3(AndnotGate, ID($_ANDNOT_), A, B, Y)
DEF_METHOD_3(OrnotGate, ID($_ORNOT_), A, B, Y)
DEF_METHOD_4(MuxGate, ID($_MUX_), A, B, S, Y)
DEF_METHOD_4(NmuxGate, ID($_NMUX_), A, B, S, Y)
DEF_METHOD_4(Aoi3Gate, ID($_AOI3_), A, B, C, Y)
DEF_METHOD_4(Oai3Gate, ID($_OAI3_), A, B, C, Y)
DEF_METHOD_5(Aoi4Gate, ID($_AOI4_), A, B, C, D, Y)
DEF_METHOD_5(Oai4Gate, ID($_OAI4_), A, B, C, D, Y)
#undef DEF_METHOD_2
#undef DEF_METHOD_3
#undef DEF_METHOD_4
#undef DEF_METHOD_5
RTLIL::Cell* RTLIL::Module::addPow(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, bool a_signed, bool b_signed, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($pow));
cell->parameters[ID::A_SIGNED] = a_signed;
cell->parameters[ID::B_SIGNED] = b_signed;
cell->parameters[ID::A_WIDTH] = sig_a.size();
cell->parameters[ID::B_WIDTH] = sig_b.size();
cell->parameters[ID::Y_WIDTH] = sig_y.size();
cell->setPort(ID::A, sig_a);
cell->setPort(ID::B, sig_b);
cell->setPort(ID::Y, sig_y);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addFa(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_c, const RTLIL::SigSpec &sig_x, const RTLIL::SigSpec &sig_y, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($fa));
cell->parameters[ID::WIDTH] = sig_a.size();
cell->setPort(ID::A, sig_a);
cell->setPort(ID::B, sig_b);
cell->setPort(ID::C, sig_c);
cell->setPort(ID::X, sig_x);
cell->setPort(ID::Y, sig_y);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSlice(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_y, RTLIL::Const offset, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($slice));
cell->parameters[ID::A_WIDTH] = sig_a.size();
cell->parameters[ID::Y_WIDTH] = sig_y.size();
cell->parameters[ID::OFFSET] = offset;
cell->setPort(ID::A, sig_a);
cell->setPort(ID::Y, sig_y);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addConcat(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($concat));
cell->parameters[ID::A_WIDTH] = sig_a.size();
cell->parameters[ID::B_WIDTH] = sig_b.size();
cell->setPort(ID::A, sig_a);
cell->setPort(ID::B, sig_b);
cell->setPort(ID::Y, sig_y);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addLut(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_y, RTLIL::Const lut, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($lut));
cell->parameters[ID::LUT] = lut;
cell->parameters[ID::WIDTH] = sig_a.size();
cell->setPort(ID::A, sig_a);
cell->setPort(ID::Y, sig_y);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addTribuf(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_y, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($tribuf));
cell->parameters[ID::WIDTH] = sig_a.size();
cell->setPort(ID::A, sig_a);
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::Y, sig_y);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAssert(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($assert));
cell->setPort(ID::A, sig_a);
cell->setPort(ID::EN, sig_en);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAssume(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($assume));
cell->setPort(ID::A, sig_a);
cell->setPort(ID::EN, sig_en);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addLive(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($live));
cell->setPort(ID::A, sig_a);
cell->setPort(ID::EN, sig_en);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addFair(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($fair));
cell->setPort(ID::A, sig_a);
cell->setPort(ID::EN, sig_en);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addCover(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($cover));
cell->setPort(ID::A, sig_a);
cell->setPort(ID::EN, sig_en);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addEquiv(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($equiv));
cell->setPort(ID::A, sig_a);
cell->setPort(ID::B, sig_b);
cell->setPort(ID::Y, sig_y);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSr(RTLIL::IdString name, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr, const RTLIL::SigSpec &sig_q, bool set_polarity, bool clr_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($sr));
cell->parameters[ID::SET_POLARITY] = set_polarity;
cell->parameters[ID::CLR_POLARITY] = clr_polarity;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::SET, sig_set);
cell->setPort(ID::CLR, sig_clr);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addFf(RTLIL::IdString name, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($ff));
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDff(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($dff));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffe(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool en_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($dffe));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::EN_POLARITY] = en_polarity;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffsr(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr,
RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($dffsr));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::SET_POLARITY] = set_polarity;
cell->parameters[ID::CLR_POLARITY] = clr_polarity;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::SET, sig_set);
cell->setPort(ID::CLR, sig_clr);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffsre(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr,
RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($dffsre));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::EN_POLARITY] = en_polarity;
cell->parameters[ID::SET_POLARITY] = set_polarity;
cell->parameters[ID::CLR_POLARITY] = clr_polarity;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::SET, sig_set);
cell->setPort(ID::CLR, sig_clr);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAdff(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
RTLIL::Const arst_value, bool clk_polarity, bool arst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($adff));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::ARST_POLARITY] = arst_polarity;
cell->parameters[ID::ARST_VALUE] = arst_value;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::ARST, sig_arst);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAdffe(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
RTLIL::Const arst_value, bool clk_polarity, bool en_polarity, bool arst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($adffe));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::EN_POLARITY] = en_polarity;
cell->parameters[ID::ARST_POLARITY] = arst_polarity;
cell->parameters[ID::ARST_VALUE] = arst_value;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::ARST, sig_arst);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAldff(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_aload, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
const RTLIL::SigSpec &sig_ad, bool clk_polarity, bool aload_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($aldff));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::ALOAD_POLARITY] = aload_polarity;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::ALOAD, sig_aload);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::AD, sig_ad);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAldffe(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_aload, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
const RTLIL::SigSpec &sig_ad, bool clk_polarity, bool en_polarity, bool aload_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($aldffe));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::EN_POLARITY] = en_polarity;
cell->parameters[ID::ALOAD_POLARITY] = aload_polarity;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::ALOAD, sig_aload);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::AD, sig_ad);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSdff(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
RTLIL::Const srst_value, bool clk_polarity, bool srst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($sdff));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::SRST_POLARITY] = srst_polarity;
cell->parameters[ID::SRST_VALUE] = srst_value;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::SRST, sig_srst);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSdffe(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
RTLIL::Const srst_value, bool clk_polarity, bool en_polarity, bool srst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($sdffe));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::EN_POLARITY] = en_polarity;
cell->parameters[ID::SRST_POLARITY] = srst_polarity;
cell->parameters[ID::SRST_VALUE] = srst_value;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::SRST, sig_srst);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSdffce(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
RTLIL::Const srst_value, bool clk_polarity, bool en_polarity, bool srst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($sdffce));
cell->parameters[ID::CLK_POLARITY] = clk_polarity;
cell->parameters[ID::EN_POLARITY] = en_polarity;
cell->parameters[ID::SRST_POLARITY] = srst_polarity;
cell->parameters[ID::SRST_VALUE] = srst_value;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::CLK, sig_clk);
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::SRST, sig_srst);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDlatch(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool en_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($dlatch));
cell->parameters[ID::EN_POLARITY] = en_polarity;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAdlatch(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
RTLIL::Const arst_value, bool en_polarity, bool arst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($adlatch));
cell->parameters[ID::EN_POLARITY] = en_polarity;
cell->parameters[ID::ARST_POLARITY] = arst_polarity;
cell->parameters[ID::ARST_VALUE] = arst_value;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::ARST, sig_arst);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDlatchsr(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr,
RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($dlatchsr));
cell->parameters[ID::EN_POLARITY] = en_polarity;
cell->parameters[ID::SET_POLARITY] = set_polarity;
cell->parameters[ID::CLR_POLARITY] = clr_polarity;
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::EN, sig_en);
cell->setPort(ID::SET, sig_set);
cell->setPort(ID::CLR, sig_clr);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSrGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr,
const RTLIL::SigSpec &sig_q, bool set_polarity, bool clr_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_SR_%c%c_", set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N'));
cell->setPort(ID::S, sig_set);
cell->setPort(ID::R, sig_clr);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addFfGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($_FF_));
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_DFF_%c_", clk_polarity ? 'P' : 'N'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffeGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool en_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::E, sig_en);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffsrGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr,
RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_DFFSR_%c%c%c_", clk_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::S, sig_set);
cell->setPort(ID::R, sig_clr);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDffsreGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr,
RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_DFFSRE_%c%c%c%c_", clk_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::S, sig_set);
cell->setPort(ID::R, sig_clr);
cell->setPort(ID::E, sig_en);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAdffGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
bool arst_value, bool clk_polarity, bool arst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_DFF_%c%c%c_", clk_polarity ? 'P' : 'N', arst_polarity ? 'P' : 'N', arst_value ? '1' : '0'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::R, sig_arst);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAdffeGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
bool arst_value, bool clk_polarity, bool en_polarity, bool arst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_DFFE_%c%c%c%c_", clk_polarity ? 'P' : 'N', arst_polarity ? 'P' : 'N', arst_value ? '1' : '0', en_polarity ? 'P' : 'N'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::R, sig_arst);
cell->setPort(ID::E, sig_en);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAldffGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_aload, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
const RTLIL::SigSpec &sig_ad, bool clk_polarity, bool aload_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_ALDFF_%c%c_", clk_polarity ? 'P' : 'N', aload_polarity ? 'P' : 'N'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::L, sig_aload);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::AD, sig_ad);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAldffeGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_aload, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
const RTLIL::SigSpec &sig_ad, bool clk_polarity, bool en_polarity, bool aload_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_ALDFFE_%c%c%c_", clk_polarity ? 'P' : 'N', aload_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::L, sig_aload);
cell->setPort(ID::E, sig_en);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::AD, sig_ad);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSdffGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
bool srst_value, bool clk_polarity, bool srst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_SDFF_%c%c%c_", clk_polarity ? 'P' : 'N', srst_polarity ? 'P' : 'N', srst_value ? '1' : '0'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::R, sig_srst);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSdffeGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
bool srst_value, bool clk_polarity, bool en_polarity, bool srst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_SDFFE_%c%c%c%c_", clk_polarity ? 'P' : 'N', srst_polarity ? 'P' : 'N', srst_value ? '1' : '0', en_polarity ? 'P' : 'N'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::R, sig_srst);
cell->setPort(ID::E, sig_en);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addSdffceGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
bool srst_value, bool clk_polarity, bool en_polarity, bool srst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_SDFFCE_%c%c%c%c_", clk_polarity ? 'P' : 'N', srst_polarity ? 'P' : 'N', srst_value ? '1' : '0', en_polarity ? 'P' : 'N'));
cell->setPort(ID::C, sig_clk);
cell->setPort(ID::R, sig_srst);
cell->setPort(ID::E, sig_en);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDlatchGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool en_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_DLATCH_%c_", en_polarity ? 'P' : 'N'));
cell->setPort(ID::E, sig_en);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAdlatchGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q,
bool arst_value, bool en_polarity, bool arst_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_DLATCH_%c%c%c_", en_polarity ? 'P' : 'N', arst_polarity ? 'P' : 'N', arst_value ? '1' : '0'));
cell->setPort(ID::E, sig_en);
cell->setPort(ID::R, sig_arst);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addDlatchsrGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr,
RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, stringf("$_DLATCHSR_%c%c%c_", en_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N'));
cell->setPort(ID::E, sig_en);
cell->setPort(ID::S, sig_set);
cell->setPort(ID::R, sig_clr);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::Cell* RTLIL::Module::addAnyinit(RTLIL::IdString name, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($anyinit));
cell->parameters[ID::WIDTH] = sig_q.size();
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
cell->set_src_attribute(src);
return cell;
}
RTLIL::SigSpec RTLIL::Module::Anyconst(RTLIL::IdString name, int width, const std::string &src)
{
RTLIL::SigSpec sig = addWire(NEW_ID, width);
Cell *cell = addCell(name, ID($anyconst));
cell->setParam(ID::WIDTH, width);
cell->setPort(ID::Y, sig);
cell->set_src_attribute(src);
return sig;
}
RTLIL::SigSpec RTLIL::Module::Anyseq(RTLIL::IdString name, int width, const std::string &src)
{
RTLIL::SigSpec sig = addWire(NEW_ID, width);
Cell *cell = addCell(name, ID($anyseq));
cell->setParam(ID::WIDTH, width);
cell->setPort(ID::Y, sig);
cell->set_src_attribute(src);
return sig;
}
RTLIL::SigSpec RTLIL::Module::Allconst(RTLIL::IdString name, int width, const std::string &src)
{
RTLIL::SigSpec sig = addWire(NEW_ID, width);
Cell *cell = addCell(name, ID($allconst));
cell->setParam(ID::WIDTH, width);
cell->setPort(ID::Y, sig);
cell->set_src_attribute(src);
return sig;
}
RTLIL::SigSpec RTLIL::Module::Allseq(RTLIL::IdString name, int width, const std::string &src)
{
RTLIL::SigSpec sig = addWire(NEW_ID, width);
Cell *cell = addCell(name, ID($allseq));
cell->setParam(ID::WIDTH, width);
cell->setPort(ID::Y, sig);
cell->set_src_attribute(src);
return sig;
}
RTLIL::SigSpec RTLIL::Module::Initstate(RTLIL::IdString name, const std::string &src)
{
RTLIL::SigSpec sig = addWire(NEW_ID);
Cell *cell = addCell(name, ID($initstate));
cell->setPort(ID::Y, sig);
cell->set_src_attribute(src);
return sig;
}
RTLIL::SigSpec RTLIL::Module::SetTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_c, const std::string &src)
{
RTLIL::SigSpec sig = addWire(NEW_ID, sig_a.size());
Cell *cell = addCell(name, ID($set_tag));
cell->parameters[ID::WIDTH] = sig_a.size();
cell->parameters[ID::TAG] = tag;
cell->setPort(ID::A, sig_a);
cell->setPort(ID::SET, sig_s);
cell->setPort(ID::CLR, sig_c);
cell->setPort(ID::Y, sig);
cell->set_src_attribute(src);
return sig;
}
RTLIL::Cell* RTLIL::Module::addSetTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_c, const RTLIL::SigSpec &sig_y, const std::string &src)
{
Cell *cell = addCell(name, ID($set_tag));
cell->parameters[ID::WIDTH] = sig_a.size();
cell->parameters[ID::TAG] = tag;
cell->setPort(ID::A, sig_a);
cell->setPort(ID::SET, sig_s);
cell->setPort(ID::CLR, sig_c);
cell->setPort(ID::Y, sig_y);
cell->set_src_attribute(src);
return cell;
}
RTLIL::SigSpec RTLIL::Module::GetTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const std::string &src)
{
RTLIL::SigSpec sig = addWire(NEW_ID, sig_a.size());
Cell *cell = addCell(name, ID($get_tag));
cell->parameters[ID::WIDTH] = sig_a.size();
cell->parameters[ID::TAG] = tag;
cell->setPort(ID::A, sig_a);
cell->setPort(ID::Y, sig);
cell->set_src_attribute(src);
return sig;
}
RTLIL::Cell* RTLIL::Module::addOverwriteTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_c, const std::string &src)
{
RTLIL::Cell *cell = addCell(name, ID($overwrite_tag));
cell->parameters[ID::WIDTH] = sig_a.size();
cell->parameters[ID::TAG] = tag;
cell->setPort(ID::A, sig_a);
cell->setPort(ID::SET, sig_s);
cell->setPort(ID::CLR, sig_c);
cell->set_src_attribute(src);
return cell;
}
RTLIL::SigSpec RTLIL::Module::OriginalTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const std::string &src)
{
RTLIL::SigSpec sig = addWire(NEW_ID, sig_a.size());
Cell *cell = addCell(name, ID($original_tag));
cell->parameters[ID::WIDTH] = sig_a.size();
cell->parameters[ID::TAG] = tag;
cell->setPort(ID::A, sig_a);
cell->setPort(ID::Y, sig);
cell->set_src_attribute(src);
return sig;
}
RTLIL::SigSpec RTLIL::Module::FutureFF(RTLIL::IdString name, const RTLIL::SigSpec &sig_e, const std::string &src)
{
RTLIL::SigSpec sig = addWire(NEW_ID, sig_e.size());
Cell *cell = addCell(name, ID($future_ff));
cell->parameters[ID::WIDTH] = sig_e.size();
cell->setPort(ID::A, sig_e);
cell->setPort(ID::Y, sig);
cell->set_src_attribute(src);
return sig;
}
RTLIL::Wire::Wire()
{
static unsigned int hashidx_count = 123456789;
hashidx_count = mkhash_xorshift(hashidx_count);
hashidx_ = hashidx_count;
module = nullptr;
width = 1;
start_offset = 0;
port_id = 0;
port_input = false;
port_output = false;
upto = false;
is_signed = false;
#ifdef WITH_PYTHON
RTLIL::Wire::get_all_wires()->insert(std::pair<unsigned int, RTLIL::Wire*>(hashidx_, this));
#endif
}
RTLIL::Wire::~Wire()
{
#ifdef WITH_PYTHON
RTLIL::Wire::get_all_wires()->erase(hashidx_);
#endif
}
#ifdef WITH_PYTHON
static std::map<unsigned int, RTLIL::Wire*> all_wires;
std::map<unsigned int, RTLIL::Wire*> *RTLIL::Wire::get_all_wires(void)
{
return &all_wires;
}
#endif
RTLIL::Memory::Memory()
{
static unsigned int hashidx_count = 123456789;
hashidx_count = mkhash_xorshift(hashidx_count);
hashidx_ = hashidx_count;
width = 1;
start_offset = 0;
size = 0;
#ifdef WITH_PYTHON
RTLIL::Memory::get_all_memorys()->insert(std::pair<unsigned int, RTLIL::Memory*>(hashidx_, this));
#endif
}
RTLIL::Process::Process() : module(nullptr)
{
static unsigned int hashidx_count = 123456789;
hashidx_count = mkhash_xorshift(hashidx_count);
hashidx_ = hashidx_count;
}
RTLIL::Cell::Cell() : module(nullptr)
{
static unsigned int hashidx_count = 123456789;
hashidx_count = mkhash_xorshift(hashidx_count);
hashidx_ = hashidx_count;
// log("#memtrace# %p\n", this);
memhasher();
#ifdef WITH_PYTHON
RTLIL::Cell::get_all_cells()->insert(std::pair<unsigned int, RTLIL::Cell*>(hashidx_, this));
#endif
}
RTLIL::Cell::~Cell()
{
#ifdef WITH_PYTHON
RTLIL::Cell::get_all_cells()->erase(hashidx_);
#endif
}
#ifdef WITH_PYTHON
static std::map<unsigned int, RTLIL::Cell*> all_cells;
std::map<unsigned int, RTLIL::Cell*> *RTLIL::Cell::get_all_cells(void)
{
return &all_cells;
}
#endif
bool RTLIL::Cell::hasPort(const RTLIL::IdString& portname) const
{
return connections_.count(portname) != 0;
}
void RTLIL::Cell::unsetPort(const RTLIL::IdString& portname)
{
RTLIL::SigSpec signal;
auto conn_it = connections_.find(portname);
if (conn_it != connections_.end())
{
for (auto mon : module->monitors)
mon->notify_connect(this, conn_it->first, conn_it->second, signal);
if (module->design)
for (auto mon : module->design->monitors)
mon->notify_connect(this, conn_it->first, conn_it->second, signal);
if (yosys_xtrace) {
log("#X# Unconnect %s.%s.%s\n", log_id(this->module), log_id(this), log_id(portname));
log_backtrace("-X- ", yosys_xtrace-1);
}
connections_.erase(conn_it);
}
}
void RTLIL::Design::bufNormalize(bool enable)
{
if (!enable)
{
if (!flagBufferedNormalized)
return;
for (auto module : modules()) {
module->bufNormQueue.clear();
for (auto wire : module->wires()) {
wire->driverCell_ = nullptr;
wire->driverPort_ = IdString();
}
}
flagBufferedNormalized = false;
return;
}
if (!flagBufferedNormalized)
{
for (auto module : modules())
{
for (auto cell : module->cells())
for (auto &conn : cell->connections()) {
if (!cell->output(conn.first) || GetSize(conn.second) == 0)
continue;
if (conn.second.is_wire()) {
Wire *wire = conn.second.as_wire();
log_assert(wire->driverCell_ == nullptr);
wire->driverCell_ = cell;
wire->driverPort_ = conn.first;
} else {
pair<RTLIL::Cell*, RTLIL::IdString> key(cell, conn.first);
module->bufNormQueue.insert(key);
}
}
}
flagBufferedNormalized = true;
}
for (auto module : modules())
module->bufNormalize();
}
void RTLIL::Module::bufNormalize()
{
if (!design->flagBufferedNormalized)
return;
while (GetSize(bufNormQueue) || !connections_.empty())
{
pool<pair<RTLIL::Cell*, RTLIL::IdString>> queue;
bufNormQueue.swap(queue);
pool<Wire*> outWires;
for (auto &conn : connections())
for (auto &chunk : conn.first.chunks())
if (chunk.wire) outWires.insert(chunk.wire);
SigMap sigmap(this);
new_connections({});
for (auto &key : queue)
{
Cell *cell = key.first;
const IdString &portname = key.second;
const SigSpec &sig = cell->getPort(portname);
if (GetSize(sig) == 0) continue;
if (sig.is_wire()) {
Wire *wire = sig.as_wire();
if (wire->driverCell_) {
log_error("Conflict between %s %s in module %s\n",
log_id(cell), log_id(wire->driverCell_), log_id(this));
}
log_assert(wire->driverCell_ == nullptr);
wire->driverCell_ = cell;
wire->driverPort_ = portname;
continue;
}
for (auto &chunk : sig.chunks())
if (chunk.wire) outWires.insert(chunk.wire);
Wire *wire = addWire(NEW_ID, GetSize(sig));
sigmap.add(sig, wire);
cell->setPort(portname, wire);
// FIXME: Move init attributes from old 'sig' to new 'wire'
}
for (auto wire : outWires)
{
SigSpec outsig = wire, insig = sigmap(wire);
for (int i = 0; i < GetSize(wire); i++)
if (insig[i] == outsig[i])
insig[i] = State::Sx;
addBuf(NEW_ID, insig, outsig);
}
}
}
void RTLIL::Cell::setPort(const RTLIL::IdString& portname, RTLIL::SigSpec signal)
{
auto r = connections_.insert(portname);
auto conn_it = r.first;
if (!r.second && conn_it->second == signal)
return;
for (auto mon : module->monitors)
mon->notify_connect(this, conn_it->first, conn_it->second, signal);
if (module->design)
for (auto mon : module->design->monitors)
mon->notify_connect(this, conn_it->first, conn_it->second, signal);
if (yosys_xtrace) {
log("#X# Connect %s.%s.%s = %s (%d)\n", log_id(this->module), log_id(this), log_id(portname), log_signal(signal), GetSize(signal));
log_backtrace("-X- ", yosys_xtrace-1);
}
while (module->design && module->design->flagBufferedNormalized && output(portname))
{
pair<RTLIL::Cell*, RTLIL::IdString> key(this, portname);
if (conn_it->second.is_wire()) {
Wire *w = conn_it->second.as_wire();
if (w->driverCell_ == this && w->driverPort_ == portname) {
w->driverCell_ = nullptr;
w->driverPort_ = IdString();
}
}
if (GetSize(signal) == 0) {
module->bufNormQueue.erase(key);
break;
}
if (!signal.is_wire()) {
module->bufNormQueue.insert(key);
break;
}
Wire *w = signal.as_wire();
if (w->driverCell_ != nullptr) {
pair<RTLIL::Cell*, RTLIL::IdString> other_key(w->driverCell_, w->driverPort_);
module->bufNormQueue.insert(other_key);
}
w->driverCell_ = this;
w->driverPort_ = portname;
module->bufNormQueue.erase(key);
break;
}
conn_it->second = std::move(signal);
}
const RTLIL::SigSpec &RTLIL::Cell::getPort(const RTLIL::IdString& portname) const
{
return connections_.at(portname);
}
const dict<RTLIL::IdString, RTLIL::SigSpec> &RTLIL::Cell::connections() const
{
return connections_;
}
bool RTLIL::Cell::known() const
{
if (yosys_celltypes.cell_known(type))
return true;
if (module && module->design && module->design->module(type))
return true;
return false;
}
bool RTLIL::Cell::input(const RTLIL::IdString& portname) const
{
if (yosys_celltypes.cell_known(type))
return yosys_celltypes.cell_input(type, portname);
if (module && module->design) {
RTLIL::Module *m = module->design->module(type);
RTLIL::Wire *w = m ? m->wire(portname) : nullptr;
return w && w->port_input;
}
return false;
}
bool RTLIL::Cell::output(const RTLIL::IdString& portname) const
{
if (yosys_celltypes.cell_known(type))
return yosys_celltypes.cell_output(type, portname);
if (module && module->design) {
RTLIL::Module *m = module->design->module(type);
RTLIL::Wire *w = m ? m->wire(portname) : nullptr;
return w && w->port_output;
}
return false;
}
bool RTLIL::Cell::hasParam(const RTLIL::IdString& paramname) const
{
return parameters.count(paramname) != 0;
}
void RTLIL::Cell::unsetParam(const RTLIL::IdString& paramname)
{
parameters.erase(paramname);
}
void RTLIL::Cell::setParam(const RTLIL::IdString& paramname, RTLIL::Const value)
{
parameters[paramname] = std::move(value);
}
const RTLIL::Const &RTLIL::Cell::getParam(const RTLIL::IdString& paramname) const
{
const auto &it = parameters.find(paramname);
if (it != parameters.end())
return it->second;
if (module && module->design) {
RTLIL::Module *m = module->design->module(type);
if (m)
return m->parameter_default_values.at(paramname);
}
throw std::out_of_range("Cell::getParam()");
}
void RTLIL::Cell::sort()
{
connections_.sort(sort_by_id_str());
parameters.sort(sort_by_id_str());
attributes.sort(sort_by_id_str());
}
void RTLIL::Cell::check()
{
#ifndef NDEBUG
InternalCellChecker checker(NULL, this);
checker.check();
#endif
}
void RTLIL::Cell::fixup_parameters(bool set_a_signed, bool set_b_signed)
{
if (!type.begins_with("$") || type.begins_with("$_") || type.begins_with("$paramod") || type.begins_with("$fmcombine") ||
type.begins_with("$verific$") || type.begins_with("$array:") || type.begins_with("$extern:"))
return;
if (type == ID($buf) || type == ID($mux) || type == ID($pmux) || type == ID($bmux)) {
parameters[ID::WIDTH] = GetSize(connections_[ID::Y]);
if (type != ID($buf) && type != ID($mux))
parameters[ID::S_WIDTH] = GetSize(connections_[ID::S]);
check();
return;
}
if (type == ID($demux)) {
parameters[ID::WIDTH] = GetSize(connections_[ID::A]);
parameters[ID::S_WIDTH] = GetSize(connections_[ID::S]);
check();
return;
}
if (type == ID($lut) || type == ID($sop)) {
parameters[ID::WIDTH] = GetSize(connections_[ID::A]);
return;
}
if (type == ID($fa)) {
parameters[ID::WIDTH] = GetSize(connections_[ID::Y]);
return;
}
if (type == ID($lcu)) {
parameters[ID::WIDTH] = GetSize(connections_[ID::CO]);
return;
}
bool signedness_ab = !type.in(ID($slice), ID($concat), ID($macc));
if (connections_.count(ID::A)) {
if (signedness_ab) {
if (set_a_signed)
parameters[ID::A_SIGNED] = true;
else if (parameters.count(ID::A_SIGNED) == 0)
parameters[ID::A_SIGNED] = false;
}
parameters[ID::A_WIDTH] = GetSize(connections_[ID::A]);
}
if (connections_.count(ID::B)) {
if (signedness_ab) {
if (set_b_signed)
parameters[ID::B_SIGNED] = true;
else if (parameters.count(ID::B_SIGNED) == 0)
parameters[ID::B_SIGNED] = false;
}
parameters[ID::B_WIDTH] = GetSize(connections_[ID::B]);
}
if (connections_.count(ID::Y))
parameters[ID::Y_WIDTH] = GetSize(connections_[ID::Y]);
if (connections_.count(ID::Q))
parameters[ID::WIDTH] = GetSize(connections_[ID::Q]);
check();
}
bool RTLIL::Cell::has_memid() const
{
return type.in(ID($memwr), ID($memwr_v2), ID($memrd), ID($memrd_v2), ID($meminit), ID($meminit_v2));
}
bool RTLIL::Cell::is_mem_cell() const
{
return type.in(ID($mem), ID($mem_v2)) || has_memid();
}
RTLIL::SigChunk::SigChunk(const RTLIL::SigBit &bit)
{
wire = bit.wire;
offset = 0;
if (wire == NULL)
data = {bit.data};
else
offset = bit.offset;
width = 1;
}
RTLIL::SigChunk RTLIL::SigChunk::extract(int offset, int length) const
{
log_assert(offset >= 0);
log_assert(length >= 0);
log_assert(offset + length <= width);
RTLIL::SigChunk ret;
if (wire) {
ret.wire = wire;
ret.offset = this->offset + offset;
ret.width = length;
} else {
for (int i = 0; i < length; i++)
ret.data.push_back(data[offset+i]);
ret.width = length;
}
return ret;
}
RTLIL::SigBit RTLIL::SigChunk::operator[](int offset) const
{
log_assert(offset >= 0);
log_assert(offset <= width);
RTLIL::SigBit ret;
if (wire) {
ret.wire = wire;
ret.offset = this->offset + offset;
} else {
ret.data = data[offset];
}
return ret;
}
bool RTLIL::SigChunk::operator <(const RTLIL::SigChunk &other) const
{
if (wire && other.wire)
if (wire->name != other.wire->name)
return wire->name < other.wire->name;
if (wire != other.wire)
return wire < other.wire;
if (offset != other.offset)
return offset < other.offset;
if (width != other.width)
return width < other.width;
return data < other.data;
}
bool RTLIL::SigChunk::operator ==(const RTLIL::SigChunk &other) const
{
return wire == other.wire && width == other.width && offset == other.offset && data == other.data;
}
bool RTLIL::SigChunk::operator !=(const RTLIL::SigChunk &other) const
{
if (*this == other)
return false;
return true;
}
RTLIL::SigSpec::SigSpec(std::initializer_list<RTLIL::SigSpec> parts)
{
cover("kernel.rtlil.sigspec.init.list");
width_ = 0;
hash_ = 0;
log_assert(parts.size() > 0);
auto ie = parts.begin();
auto it = ie + parts.size() - 1;
while (it >= ie)
append(*it--);
}
RTLIL::SigSpec::SigSpec(const RTLIL::Const &value)
{
cover("kernel.rtlil.sigspec.init.const");
if (GetSize(value) != 0) {
chunks_.emplace_back(value);
width_ = chunks_.back().width;
} else {
width_ = 0;
}
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::Const &&value)
{
cover("kernel.rtlil.sigspec.init.const.move");
if (GetSize(value) != 0) {
chunks_.emplace_back(std::move(value));
width_ = chunks_.back().width;
} else {
width_ = 0;
}
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(const RTLIL::SigChunk &chunk)
{
cover("kernel.rtlil.sigspec.init.chunk");
if (chunk.width != 0) {
chunks_.emplace_back(chunk);
width_ = chunks_.back().width;
} else {
width_ = 0;
}
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::SigChunk &&chunk)
{
cover("kernel.rtlil.sigspec.init.chunk.move");
if (chunk.width != 0) {
chunks_.emplace_back(std::move(chunk));
width_ = chunks_.back().width;
} else {
width_ = 0;
}
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire)
{
cover("kernel.rtlil.sigspec.init.wire");
if (wire->width != 0) {
chunks_.emplace_back(wire);
width_ = chunks_.back().width;
} else {
width_ = 0;
}
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire, int offset, int width)
{
cover("kernel.rtlil.sigspec.init.wire_part");
if (width != 0) {
chunks_.emplace_back(wire, offset, width);
width_ = chunks_.back().width;
} else {
width_ = 0;
}
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(const std::string &str)
{
cover("kernel.rtlil.sigspec.init.str");
if (str.size() != 0) {
chunks_.emplace_back(str);
width_ = chunks_.back().width;
} else {
width_ = 0;
}
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(int val, int width)
{
cover("kernel.rtlil.sigspec.init.int");
if (width != 0)
chunks_.emplace_back(val, width);
width_ = width;
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(RTLIL::State bit, int width)
{
cover("kernel.rtlil.sigspec.init.state");
if (width != 0)
chunks_.emplace_back(bit, width);
width_ = width;
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(const RTLIL::SigBit &bit, int width)
{
cover("kernel.rtlil.sigspec.init.bit");
if (width != 0) {
if (bit.wire == NULL)
chunks_.emplace_back(bit.data, width);
else
for (int i = 0; i < width; i++)
chunks_.push_back(bit);
}
width_ = width;
hash_ = 0;
check();
}
RTLIL::SigSpec::SigSpec(const std::vector<RTLIL::SigChunk> &chunks)
{
cover("kernel.rtlil.sigspec.init.stdvec_chunks");
width_ = 0;
hash_ = 0;
for (const auto &c : chunks)
append(c);
check();
}
RTLIL::SigSpec::SigSpec(const std::vector<RTLIL::SigBit> &bits)
{
cover("kernel.rtlil.sigspec.init.stdvec_bits");
width_ = 0;
hash_ = 0;
for (const auto &bit : bits)
append(bit);
check();
}
RTLIL::SigSpec::SigSpec(const pool<RTLIL::SigBit> &bits)
{
cover("kernel.rtlil.sigspec.init.pool_bits");
width_ = 0;
hash_ = 0;
for (const auto &bit : bits)
append(bit);
check();
}
RTLIL::SigSpec::SigSpec(const std::set<RTLIL::SigBit> &bits)
{
cover("kernel.rtlil.sigspec.init.stdset_bits");
width_ = 0;
hash_ = 0;
for (const auto &bit : bits)
append(bit);
check();
}
RTLIL::SigSpec::SigSpec(bool bit)
{
cover("kernel.rtlil.sigspec.init.bool");
width_ = 0;
hash_ = 0;
append(SigBit(bit));
check();
}
void RTLIL::SigSpec::pack() const
{
RTLIL::SigSpec *that = (RTLIL::SigSpec*)this;
if (that->bits_.empty())
return;
cover("kernel.rtlil.sigspec.convert.pack");
log_assert(that->chunks_.empty());
std::vector<RTLIL::SigBit> old_bits;
old_bits.swap(that->bits_);
RTLIL::SigChunk *last = NULL;
int last_end_offset = 0;
for (auto &bit : old_bits) {
if (last && bit.wire == last->wire) {
if (bit.wire == NULL) {
last->data.push_back(bit.data);
last->width++;
continue;
} else if (last_end_offset == bit.offset) {
last_end_offset++;
last->width++;
continue;
}
}
that->chunks_.push_back(bit);
last = &that->chunks_.back();
last_end_offset = bit.offset + 1;
}
check();
}
void RTLIL::SigSpec::unpack() const
{
RTLIL::SigSpec *that = (RTLIL::SigSpec*)this;
if (that->chunks_.empty())
return;
cover("kernel.rtlil.sigspec.convert.unpack");
log_assert(that->bits_.empty());
that->bits_.reserve(that->width_);
for (auto &c : that->chunks_)
for (int i = 0; i < c.width; i++)
that->bits_.emplace_back(c, i);
that->chunks_.clear();
that->hash_ = 0;
}
void RTLIL::SigSpec::updhash() const
{
RTLIL::SigSpec *that = (RTLIL::SigSpec*)this;
if (that->hash_ != 0)
return;
cover("kernel.rtlil.sigspec.hash");
that->pack();
Hasher h;
for (auto &c : that->chunks_)
if (c.wire == NULL) {
for (auto &v : c.data)
h.acc(v);
} else {
h.acc(c.wire->name.index_);
h.acc(c.offset);
h.acc(c.width);
}
that->hash_ = h.yield();
if (that->hash_ == 0)
that->hash_ = 1;
}
void RTLIL::SigSpec::sort()
{
unpack();
cover("kernel.rtlil.sigspec.sort");
std::sort(bits_.begin(), bits_.end());
}
void RTLIL::SigSpec::sort_and_unify()
{
unpack();
cover("kernel.rtlil.sigspec.sort_and_unify");
// A copy of the bits vector is used to prevent duplicating the logic from
// SigSpec::SigSpec(std::vector<SigBit>). This incurrs an extra copy but
// that isn't showing up as significant in profiles.
std::vector<SigBit> unique_bits = bits_;
std::sort(unique_bits.begin(), unique_bits.end());
auto last = std::unique(unique_bits.begin(), unique_bits.end());
unique_bits.erase(last, unique_bits.end());
*this = unique_bits;
}
void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with)
{
replace(pattern, with, this);
}
void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with, RTLIL::SigSpec *other) const
{
log_assert(other != NULL);
log_assert(width_ == other->width_);
log_assert(pattern.width_ == with.width_);
pattern.unpack();
with.unpack();
unpack();
other->unpack();
dict<RTLIL::SigBit, int> pattern_to_with;
for (int i = 0; i < GetSize(pattern.bits_); i++) {
if (pattern.bits_[i].wire != NULL) {
pattern_to_with.emplace(pattern.bits_[i], i);
}
}
for (int j = 0; j < GetSize(bits_); j++) {
auto it = pattern_to_with.find(bits_[j]);
if (it != pattern_to_with.end()) {
other->bits_[j] = with.bits_[it->second];
}
}
other->check();
}
void RTLIL::SigSpec::replace(const dict<RTLIL::SigBit, RTLIL::SigBit> &rules)
{
replace(rules, this);
}
void RTLIL::SigSpec::replace(const dict<RTLIL::SigBit, RTLIL::SigBit> &rules, RTLIL::SigSpec *other) const
{
cover("kernel.rtlil.sigspec.replace_dict");
log_assert(other != NULL);
log_assert(width_ == other->width_);
if (rules.empty()) return;
unpack();
other->unpack();
for (int i = 0; i < GetSize(bits_); i++) {
auto it = rules.find(bits_[i]);
if (it != rules.end())
other->bits_[i] = it->second;
}
other->check();
}
void RTLIL::SigSpec::replace(const std::map<RTLIL::SigBit, RTLIL::SigBit> &rules)
{
replace(rules, this);
}
void RTLIL::SigSpec::replace(const std::map<RTLIL::SigBit, RTLIL::SigBit> &rules, RTLIL::SigSpec *other) const
{
cover("kernel.rtlil.sigspec.replace_map");
log_assert(other != NULL);
log_assert(width_ == other->width_);
if (rules.empty()) return;
unpack();
other->unpack();
for (int i = 0; i < GetSize(bits_); i++) {
auto it = rules.find(bits_[i]);
if (it != rules.end())
other->bits_[i] = it->second;
}
other->check();
}
void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern)
{
remove2(pattern, NULL);
}
void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other) const
{
RTLIL::SigSpec tmp = *this;
tmp.remove2(pattern, other);
}
void RTLIL::SigSpec::remove2(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other)
{
if (other)
cover("kernel.rtlil.sigspec.remove_other");
else
cover("kernel.rtlil.sigspec.remove");
unpack();
if (other != NULL) {
log_assert(width_ == other->width_);
other->unpack();
}
for (int i = GetSize(bits_) - 1; i >= 0; i--)
{
if (bits_[i].wire == NULL) continue;
for (auto &pattern_chunk : pattern.chunks())
if (bits_[i].wire == pattern_chunk.wire &&
bits_[i].offset >= pattern_chunk.offset &&
bits_[i].offset < pattern_chunk.offset + pattern_chunk.width) {
bits_.erase(bits_.begin() + i);
width_--;
if (other != NULL) {
other->bits_.erase(other->bits_.begin() + i);
other->width_--;
}
break;
}
}
check();
}
void RTLIL::SigSpec::remove(const pool<RTLIL::SigBit> &pattern)
{
remove2(pattern, NULL);
}
void RTLIL::SigSpec::remove(const pool<RTLIL::SigBit> &pattern, RTLIL::SigSpec *other) const
{
RTLIL::SigSpec tmp = *this;
tmp.remove2(pattern, other);
}
void RTLIL::SigSpec::remove2(const pool<RTLIL::SigBit> &pattern, RTLIL::SigSpec *other)
{
if (other)
cover("kernel.rtlil.sigspec.remove_other");
else
cover("kernel.rtlil.sigspec.remove");
unpack();
if (other != NULL) {
log_assert(width_ == other->width_);
other->unpack();
}
for (int i = GetSize(bits_) - 1; i >= 0; i--) {
if (bits_[i].wire != NULL && pattern.count(bits_[i])) {
bits_.erase(bits_.begin() + i);
width_--;
if (other != NULL) {
other->bits_.erase(other->bits_.begin() + i);
other->width_--;
}
}
}
check();
}
void RTLIL::SigSpec::remove2(const std::set<RTLIL::SigBit> &pattern, RTLIL::SigSpec *other)
{
if (other)
cover("kernel.rtlil.sigspec.remove_other");
else
cover("kernel.rtlil.sigspec.remove");
unpack();
if (other != NULL) {
log_assert(width_ == other->width_);
other->unpack();
}
for (int i = GetSize(bits_) - 1; i >= 0; i--) {
if (bits_[i].wire != NULL && pattern.count(bits_[i])) {
bits_.erase(bits_.begin() + i);
width_--;
if (other != NULL) {
other->bits_.erase(other->bits_.begin() + i);
other->width_--;
}
}
}
check();
}
void RTLIL::SigSpec::remove2(const pool<RTLIL::Wire*> &pattern, RTLIL::SigSpec *other)
{
if (other)
cover("kernel.rtlil.sigspec.remove_other");
else
cover("kernel.rtlil.sigspec.remove");
unpack();
if (other != NULL) {
log_assert(width_ == other->width_);
other->unpack();
}
for (int i = GetSize(bits_) - 1; i >= 0; i--) {
if (bits_[i].wire != NULL && pattern.count(bits_[i].wire)) {
bits_.erase(bits_.begin() + i);
width_--;
if (other != NULL) {
other->bits_.erase(other->bits_.begin() + i);
other->width_--;
}
}
}
check();
}
RTLIL::SigSpec RTLIL::SigSpec::extract(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec *other) const
{
if (other)
cover("kernel.rtlil.sigspec.extract_other");
else
cover("kernel.rtlil.sigspec.extract");
log_assert(other == NULL || width_ == other->width_);
RTLIL::SigSpec ret;
std::vector<RTLIL::SigBit> bits_match = to_sigbit_vector();
for (auto& pattern_chunk : pattern.chunks()) {
if (other) {
std::vector<RTLIL::SigBit> bits_other = other->to_sigbit_vector();
for (int i = 0; i < width_; i++)
if (bits_match[i].wire &&
bits_match[i].wire == pattern_chunk.wire &&
bits_match[i].offset >= pattern_chunk.offset &&
bits_match[i].offset < pattern_chunk.offset + pattern_chunk.width)
ret.append(bits_other[i]);
} else {
for (int i = 0; i < width_; i++)
if (bits_match[i].wire &&
bits_match[i].wire == pattern_chunk.wire &&
bits_match[i].offset >= pattern_chunk.offset &&
bits_match[i].offset < pattern_chunk.offset + pattern_chunk.width)
ret.append(bits_match[i]);
}
}
ret.check();
return ret;
}
RTLIL::SigSpec RTLIL::SigSpec::extract(const pool<RTLIL::SigBit> &pattern, const RTLIL::SigSpec *other) const
{
if (other)
cover("kernel.rtlil.sigspec.extract_other");
else
cover("kernel.rtlil.sigspec.extract");
log_assert(other == NULL || width_ == other->width_);
std::vector<RTLIL::SigBit> bits_match = to_sigbit_vector();
RTLIL::SigSpec ret;
if (other) {
std::vector<RTLIL::SigBit> bits_other = other->to_sigbit_vector();
for (int i = 0; i < width_; i++)
if (bits_match[i].wire && pattern.count(bits_match[i]))
ret.append(bits_other[i]);
} else {
for (int i = 0; i < width_; i++)
if (bits_match[i].wire && pattern.count(bits_match[i]))
ret.append(bits_match[i]);
}
ret.check();
return ret;
}
void RTLIL::SigSpec::replace(int offset, const RTLIL::SigSpec &with)
{
cover("kernel.rtlil.sigspec.replace_pos");
unpack();
with.unpack();
log_assert(offset >= 0);
log_assert(with.width_ >= 0);
log_assert(offset+with.width_ <= width_);
for (int i = 0; i < with.width_; i++)
bits_.at(offset + i) = with.bits_.at(i);
check();
}
void RTLIL::SigSpec::remove_const()
{
if (packed())
{
cover("kernel.rtlil.sigspec.remove_const.packed");
std::vector<RTLIL::SigChunk> new_chunks;
new_chunks.reserve(GetSize(chunks_));
width_ = 0;
for (auto &chunk : chunks_)
if (chunk.wire != NULL) {
if (!new_chunks.empty() &&
new_chunks.back().wire == chunk.wire &&
new_chunks.back().offset + new_chunks.back().width == chunk.offset) {
new_chunks.back().width += chunk.width;
} else {
new_chunks.push_back(chunk);
}
width_ += chunk.width;
}
chunks_.swap(new_chunks);
}
else
{
cover("kernel.rtlil.sigspec.remove_const.unpacked");
std::vector<RTLIL::SigBit> new_bits;
new_bits.reserve(width_);
for (auto &bit : bits_)
if (bit.wire != NULL)
new_bits.push_back(bit);
bits_.swap(new_bits);
width_ = bits_.size();
}
check();
}
void RTLIL::SigSpec::remove(int offset, int length)
{
cover("kernel.rtlil.sigspec.remove_pos");
unpack();
log_assert(offset >= 0);
log_assert(length >= 0);
log_assert(offset + length <= width_);
bits_.erase(bits_.begin() + offset, bits_.begin() + offset + length);
width_ = bits_.size();
check();
}
RTLIL::SigSpec RTLIL::SigSpec::extract(int offset, int length) const
{
log_assert(offset >= 0);
log_assert(length >= 0);
log_assert(offset + length <= width_);
cover("kernel.rtlil.sigspec.extract_pos");
if (packed()) {
SigSpec extracted;
extracted.width_ = length;
auto it = chunks_.begin();
for (; offset; offset -= it->width, it++) {
if (offset < it->width) {
int chunk_length = min(it->width - offset, length);
extracted.chunks_.emplace_back(it->extract(offset, chunk_length));
length -= chunk_length;
it++;
break;
}
}
for (; length; length -= it->width, it++) {
if (length >= it->width) {
extracted.chunks_.emplace_back(*it);
} else {
extracted.chunks_.emplace_back(it->extract(0, length));
break;
}
}
return extracted;
} else {
return std::vector<RTLIL::SigBit>(bits_.begin() + offset, bits_.begin() + offset + length);
}
}
void RTLIL::SigSpec::append(const RTLIL::SigSpec &signal)
{
if (signal.width_ == 0)
return;
if (width_ == 0) {
*this = signal;
return;
}
cover("kernel.rtlil.sigspec.append");
if (packed() != signal.packed()) {
pack();
signal.pack();
}
if (packed())
for (auto &other_c : signal.chunks_)
{
auto &my_last_c = chunks_.back();
if (my_last_c.wire == NULL && other_c.wire == NULL) {
auto &this_data = my_last_c.data;
auto &other_data = other_c.data;
this_data.insert(this_data.end(), other_data.begin(), other_data.end());
my_last_c.width += other_c.width;
} else
if (my_last_c.wire == other_c.wire && my_last_c.offset + my_last_c.width == other_c.offset) {
my_last_c.width += other_c.width;
} else
chunks_.push_back(other_c);
}
else
bits_.insert(bits_.end(), signal.bits_.begin(), signal.bits_.end());
width_ += signal.width_;
check();
}
void RTLIL::SigSpec::append(const RTLIL::SigBit &bit)
{
if (packed())
{
cover("kernel.rtlil.sigspec.append_bit.packed");
if (chunks_.size() == 0)
chunks_.push_back(bit);
else
if (bit.wire == NULL)
if (chunks_.back().wire == NULL) {
chunks_.back().data.push_back(bit.data);
chunks_.back().width++;
} else
chunks_.push_back(bit);
else
if (chunks_.back().wire == bit.wire && chunks_.back().offset + chunks_.back().width == bit.offset)
chunks_.back().width++;
else
chunks_.push_back(bit);
}
else
{
cover("kernel.rtlil.sigspec.append_bit.unpacked");
bits_.push_back(bit);
}
width_++;
check();
}
void RTLIL::SigSpec::extend_u0(int width, bool is_signed)
{
cover("kernel.rtlil.sigspec.extend_u0");
pack();
if (width_ > width)
remove(width, width_ - width);
if (width_ < width) {
RTLIL::SigBit padding = width_ > 0 ? (*this)[width_ - 1] : RTLIL::State::Sx;
if (!is_signed)
padding = RTLIL::State::S0;
while (width_ < width)
append(padding);
}
}
RTLIL::SigSpec RTLIL::SigSpec::repeat(int num) const
{
cover("kernel.rtlil.sigspec.repeat");
RTLIL::SigSpec sig;
for (int i = 0; i < num; i++)
sig.append(*this);
return sig;
}
#ifndef NDEBUG
void RTLIL::SigSpec::check(Module *mod) const
{
if (width_ > 64)
{
cover("kernel.rtlil.sigspec.check.skip");
}
else if (packed())
{
cover("kernel.rtlil.sigspec.check.packed");
int w = 0;
for (size_t i = 0; i < chunks_.size(); i++) {
const RTLIL::SigChunk &chunk = chunks_[i];
log_assert(chunk.width != 0);
if (chunk.wire == NULL) {
if (i > 0)
log_assert(chunks_[i-1].wire != NULL);
log_assert(chunk.offset == 0);
log_assert(chunk.data.size() == (size_t)chunk.width);
} else {
if (i > 0 && chunks_[i-1].wire == chunk.wire)
log_assert(chunk.offset != chunks_[i-1].offset + chunks_[i-1].width);
log_assert(chunk.offset >= 0);
log_assert(chunk.width >= 0);
log_assert(chunk.offset + chunk.width <= chunk.wire->width);
log_assert(chunk.data.size() == 0);
if (mod != nullptr)
log_assert(chunk.wire->module == mod);
}
w += chunk.width;
}
log_assert(w == width_);
log_assert(bits_.empty());
}
else
{
cover("kernel.rtlil.sigspec.check.unpacked");
if (mod != nullptr) {
for (size_t i = 0; i < bits_.size(); i++)
if (bits_[i].wire != nullptr)
log_assert(bits_[i].wire->module == mod);
}
log_assert(width_ == GetSize(bits_));
log_assert(chunks_.empty());
}
}
#endif
bool RTLIL::SigSpec::operator <(const RTLIL::SigSpec &other) const
{
cover("kernel.rtlil.sigspec.comp_lt");
if (this == &other)
return false;
if (width_ != other.width_)
return width_ < other.width_;
pack();
other.pack();
if (chunks_.size() != other.chunks_.size())
return chunks_.size() < other.chunks_.size();
updhash();
other.updhash();
if (hash_ != other.hash_)
return hash_ < other.hash_;
for (size_t i = 0; i < chunks_.size(); i++)
if (chunks_[i] != other.chunks_[i]) {
cover("kernel.rtlil.sigspec.comp_lt.hash_collision");
return chunks_[i] < other.chunks_[i];
}
cover("kernel.rtlil.sigspec.comp_lt.equal");
return false;
}
bool RTLIL::SigSpec::operator ==(const RTLIL::SigSpec &other) const
{
cover("kernel.rtlil.sigspec.comp_eq");
if (this == &other)
return true;
if (width_ != other.width_)
return false;
// Without this, SigSpec() == SigSpec(State::S0, 0) will fail
// since the RHS will contain one SigChunk of width 0 causing
// the size check below to fail
if (width_ == 0)
return true;
pack();
other.pack();
if (chunks_.size() != other.chunks_.size())
return false;
updhash();
other.updhash();
if (hash_ != other.hash_)
return false;
for (size_t i = 0; i < chunks_.size(); i++)
if (chunks_[i] != other.chunks_[i]) {
cover("kernel.rtlil.sigspec.comp_eq.hash_collision");
return false;
}
cover("kernel.rtlil.sigspec.comp_eq.equal");
return true;
}
bool RTLIL::SigSpec::is_wire() const
{
cover("kernel.rtlil.sigspec.is_wire");
pack();
return GetSize(chunks_) == 1 && chunks_[0].wire && chunks_[0].wire->width == width_;
}
bool RTLIL::SigSpec::is_chunk() const
{
cover("kernel.rtlil.sigspec.is_chunk");
pack();
return GetSize(chunks_) == 1;
}
bool RTLIL::SigSpec::is_fully_const() const
{
cover("kernel.rtlil.sigspec.is_fully_const");
pack();
for (auto it = chunks_.begin(); it != chunks_.end(); it++)
if (it->width > 0 && it->wire != NULL)
return false;
return true;
}
bool RTLIL::SigSpec::is_fully_zero() const
{
cover("kernel.rtlil.sigspec.is_fully_zero");
pack();
for (auto it = chunks_.begin(); it != chunks_.end(); it++) {
if (it->width > 0 && it->wire != NULL)
return false;
for (size_t i = 0; i < it->data.size(); i++)
if (it->data[i] != RTLIL::State::S0)
return false;
}
return true;
}
bool RTLIL::SigSpec::is_fully_ones() const
{
cover("kernel.rtlil.sigspec.is_fully_ones");
pack();
for (auto it = chunks_.begin(); it != chunks_.end(); it++) {
if (it->width > 0 && it->wire != NULL)
return false;
for (size_t i = 0; i < it->data.size(); i++)
if (it->data[i] != RTLIL::State::S1)
return false;
}
return true;
}
bool RTLIL::SigSpec::is_fully_def() const
{
cover("kernel.rtlil.sigspec.is_fully_def");
pack();
for (auto it = chunks_.begin(); it != chunks_.end(); it++) {
if (it->width > 0 && it->wire != NULL)
return false;
for (size_t i = 0; i < it->data.size(); i++)
if (it->data[i] != RTLIL::State::S0 && it->data[i] != RTLIL::State::S1)
return false;
}
return true;
}
bool RTLIL::SigSpec::is_fully_undef() const
{
cover("kernel.rtlil.sigspec.is_fully_undef");
pack();
for (auto it = chunks_.begin(); it != chunks_.end(); it++) {
if (it->width > 0 && it->wire != NULL)
return false;
for (size_t i = 0; i < it->data.size(); i++)
if (it->data[i] != RTLIL::State::Sx && it->data[i] != RTLIL::State::Sz)
return false;
}
return true;
}
bool RTLIL::SigSpec::has_const() const
{
cover("kernel.rtlil.sigspec.has_const");
pack();
for (auto it = chunks_.begin(); it != chunks_.end(); it++)
if (it->width > 0 && it->wire == NULL)
return true;
return false;
}
bool RTLIL::SigSpec::has_marked_bits() const
{
cover("kernel.rtlil.sigspec.has_marked_bits");
pack();
for (auto it = chunks_.begin(); it != chunks_.end(); it++)
if (it->width > 0 && it->wire == NULL) {
for (size_t i = 0; i < it->data.size(); i++)
if (it->data[i] == RTLIL::State::Sm)
return true;
}
return false;
}
bool RTLIL::SigSpec::is_onehot(int *pos) const
{
cover("kernel.rtlil.sigspec.is_onehot");
pack();
if (!is_fully_const())
return false;
log_assert(GetSize(chunks_) <= 1);
if (width_)
return RTLIL::Const(chunks_[0].data).is_onehot(pos);
return false;
}
bool RTLIL::SigSpec::as_bool() const
{
cover("kernel.rtlil.sigspec.as_bool");
pack();
log_assert(is_fully_const() && GetSize(chunks_) <= 1);
if (width_)
return RTLIL::Const(chunks_[0].data).as_bool();
return false;
}
int RTLIL::SigSpec::as_int(bool is_signed) const
{
cover("kernel.rtlil.sigspec.as_int");
pack();
log_assert(is_fully_const() && GetSize(chunks_) <= 1);
if (width_)
return RTLIL::Const(chunks_[0].data).as_int(is_signed);
return 0;
}
std::string RTLIL::SigSpec::as_string() const
{
cover("kernel.rtlil.sigspec.as_string");
pack();
std::string str;
str.reserve(size());
for (size_t i = chunks_.size(); i > 0; i--) {
const RTLIL::SigChunk &chunk = chunks_[i-1];
if (chunk.wire != NULL)
str.append(chunk.width, '?');
else
str += RTLIL::Const(chunk.data).as_string();
}
return str;
}
RTLIL::Const RTLIL::SigSpec::as_const() const
{
cover("kernel.rtlil.sigspec.as_const");
pack();
log_assert(is_fully_const() && GetSize(chunks_) <= 1);
if (width_)
return chunks_[0].data;
return RTLIL::Const();
}
RTLIL::Wire *RTLIL::SigSpec::as_wire() const
{
cover("kernel.rtlil.sigspec.as_wire");
pack();
log_assert(is_wire());
return chunks_[0].wire;
}
RTLIL::SigChunk RTLIL::SigSpec::as_chunk() const
{
cover("kernel.rtlil.sigspec.as_chunk");
pack();
log_assert(is_chunk());
return chunks_[0];
}
RTLIL::SigBit RTLIL::SigSpec::as_bit() const
{
cover("kernel.rtlil.sigspec.as_bit");
log_assert(width_ == 1);
if (packed())
return RTLIL::SigBit(*chunks_.begin());
else
return bits_[0];
}
bool RTLIL::SigSpec::match(const char* pattern) const
{
cover("kernel.rtlil.sigspec.match");
unpack();
log_assert(int(strlen(pattern)) == GetSize(bits_));
for (auto it = bits_.rbegin(); it != bits_.rend(); it++, pattern++) {
if (*pattern == ' ')
continue;
if (*pattern == '*') {
if (*it != State::Sz && *it != State::Sx)
return false;
continue;
}
if (*pattern == '0') {
if (*it != State::S0)
return false;
} else
if (*pattern == '1') {
if (*it != State::S1)
return false;
} else
log_abort();
}
return true;
}
std::set<RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_set() const
{
cover("kernel.rtlil.sigspec.to_sigbit_set");
pack();
std::set<RTLIL::SigBit> sigbits;
for (auto &c : chunks_)
for (int i = 0; i < c.width; i++)
sigbits.insert(RTLIL::SigBit(c, i));
return sigbits;
}
pool<RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_pool() const
{
cover("kernel.rtlil.sigspec.to_sigbit_pool");
pack();
pool<RTLIL::SigBit> sigbits;
sigbits.reserve(size());
for (auto &c : chunks_)
for (int i = 0; i < c.width; i++)
sigbits.insert(RTLIL::SigBit(c, i));
return sigbits;
}
std::vector<RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_vector() const
{
cover("kernel.rtlil.sigspec.to_sigbit_vector");
unpack();
return bits_;
}
std::map<RTLIL::SigBit, RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_map(const RTLIL::SigSpec &other) const
{
cover("kernel.rtlil.sigspec.to_sigbit_map");
unpack();
other.unpack();
log_assert(width_ == other.width_);
std::map<RTLIL::SigBit, RTLIL::SigBit> new_map;
for (int i = 0; i < width_; i++)
new_map[bits_[i]] = other.bits_[i];
return new_map;
}
dict<RTLIL::SigBit, RTLIL::SigBit> RTLIL::SigSpec::to_sigbit_dict(const RTLIL::SigSpec &other) const
{
cover("kernel.rtlil.sigspec.to_sigbit_dict");
unpack();
other.unpack();
log_assert(width_ == other.width_);
dict<RTLIL::SigBit, RTLIL::SigBit> new_map;
new_map.reserve(size());
for (int i = 0; i < width_; i++)
new_map[bits_[i]] = other.bits_[i];
return new_map;
}
static void sigspec_parse_split(std::vector<std::string> &tokens, const std::string &text, char sep)
{
size_t start = 0, end = 0;
while ((end = text.find(sep, start)) != std::string::npos) {
tokens.push_back(text.substr(start, end - start));
start = end + 1;
}
tokens.push_back(text.substr(start));
}
static int sigspec_parse_get_dummy_line_num()
{
return 0;
}
bool RTLIL::SigSpec::parse(RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str)
{
cover("kernel.rtlil.sigspec.parse");
AST::current_filename = "input";
std::vector<std::string> tokens;
sigspec_parse_split(tokens, str, ',');
sig = RTLIL::SigSpec();
for (int tokidx = int(tokens.size())-1; tokidx >= 0; tokidx--)
{
std::string netname = tokens[tokidx];
std::string indices;
if (netname.size() == 0)
continue;
if (('0' <= netname[0] && netname[0] <= '9') || netname[0] == '\'') {
cover("kernel.rtlil.sigspec.parse.const");
AST::get_line_num = sigspec_parse_get_dummy_line_num;
AST::AstNode *ast = VERILOG_FRONTEND::const2ast(netname);
if (ast == NULL)
return false;
sig.append(RTLIL::Const(ast->bits));
delete ast;
continue;
}
if (module == NULL)
return false;
cover("kernel.rtlil.sigspec.parse.net");
if (netname[0] != '$' && netname[0] != '\\')
netname = "\\" + netname;
if (module->wires_.count(netname) == 0) {
size_t indices_pos = netname.size()-1;
if (indices_pos > 2 && netname[indices_pos] == ']')
{
indices_pos--;
while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
if (indices_pos > 0 && netname[indices_pos] == ':') {
indices_pos--;
while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--;
}
if (indices_pos > 0 && netname[indices_pos] == '[') {
indices = netname.substr(indices_pos);
netname = netname.substr(0, indices_pos);
}
}
}
if (module->wires_.count(netname) == 0)
return false;
RTLIL::Wire *wire = module->wires_.at(netname);
if (!indices.empty()) {
std::vector<std::string> index_tokens;
sigspec_parse_split(index_tokens, indices.substr(1, indices.size()-2), ':');
if (index_tokens.size() == 1) {
cover("kernel.rtlil.sigspec.parse.bit_sel");
int a = atoi(index_tokens.at(0).c_str());
if (a < 0 || a >= wire->width)
return false;
sig.append(RTLIL::SigSpec(wire, a));
} else {
cover("kernel.rtlil.sigspec.parse.part_sel");
int a = atoi(index_tokens.at(0).c_str());
int b = atoi(index_tokens.at(1).c_str());
if (a > b) {
int tmp = a;
a = b, b = tmp;
}
if (a < 0 || a >= wire->width)
return false;
if (b < 0 || b >= wire->width)
return false;
sig.append(RTLIL::SigSpec(wire, a, b-a+1));
}
} else
sig.append(wire);
}
return true;
}
bool RTLIL::SigSpec::parse_sel(RTLIL::SigSpec &sig, RTLIL::Design *design, RTLIL::Module *module, std::string str)
{
if (str.empty() || str[0] != '@')
return parse(sig, module, str);
cover("kernel.rtlil.sigspec.parse.sel");
str = RTLIL::escape_id(str.substr(1));
if (design->selection_vars.count(str) == 0)
return false;
sig = RTLIL::SigSpec();
RTLIL::Selection &sel = design->selection_vars.at(str);
for (auto &it : module->wires_)
if (sel.selected_member(module->name, it.first))
sig.append(it.second);
return true;
}
bool RTLIL::SigSpec::parse_rhs(const RTLIL::SigSpec &lhs, RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str)
{
if (str == "0") {
cover("kernel.rtlil.sigspec.parse.rhs_zeros");
sig = RTLIL::SigSpec(RTLIL::State::S0, lhs.width_);
return true;
}
if (str == "~0") {
cover("kernel.rtlil.sigspec.parse.rhs_ones");
sig = RTLIL::SigSpec(RTLIL::State::S1, lhs.width_);
return true;
}
if (lhs.chunks_.size() == 1) {
char *p = (char*)str.c_str(), *endptr;
long int val = strtol(p, &endptr, 10);
if (endptr && endptr != p && *endptr == 0) {
sig = RTLIL::SigSpec(val, lhs.width_);
cover("kernel.rtlil.sigspec.parse.rhs_dec");
return true;
}
}
return parse(sig, module, str);
}
RTLIL::CaseRule::~CaseRule()
{
for (auto it = switches.begin(); it != switches.end(); it++)
delete *it;
}
bool RTLIL::CaseRule::empty() const
{
return actions.empty() && switches.empty();
}
RTLIL::CaseRule *RTLIL::CaseRule::clone() const
{
RTLIL::CaseRule *new_caserule = new RTLIL::CaseRule;
new_caserule->compare = compare;
new_caserule->actions = actions;
for (auto &it : switches)
new_caserule->switches.push_back(it->clone());
return new_caserule;
}
RTLIL::SwitchRule::~SwitchRule()
{
for (auto it = cases.begin(); it != cases.end(); it++)
delete *it;
}
bool RTLIL::SwitchRule::empty() const
{
return cases.empty();
}
RTLIL::SwitchRule *RTLIL::SwitchRule::clone() const
{
RTLIL::SwitchRule *new_switchrule = new RTLIL::SwitchRule;
new_switchrule->signal = signal;
new_switchrule->attributes = attributes;
for (auto &it : cases)
new_switchrule->cases.push_back(it->clone());
return new_switchrule;
}
RTLIL::SyncRule *RTLIL::SyncRule::clone() const
{
RTLIL::SyncRule *new_syncrule = new RTLIL::SyncRule;
new_syncrule->type = type;
new_syncrule->signal = signal;
new_syncrule->actions = actions;
new_syncrule->mem_write_actions = mem_write_actions;
return new_syncrule;
}
RTLIL::Process::~Process()
{
for (auto it = syncs.begin(); it != syncs.end(); it++)
delete *it;
}
RTLIL::Process *RTLIL::Process::clone() const
{
RTLIL::Process *new_proc = new RTLIL::Process;
new_proc->name = name;
new_proc->attributes = attributes;
RTLIL::CaseRule *rc_ptr = root_case.clone();
new_proc->root_case = *rc_ptr;
rc_ptr->switches.clear();
delete rc_ptr;
for (auto &it : syncs)
new_proc->syncs.push_back(it->clone());
return new_proc;
}
#ifdef WITH_PYTHON
RTLIL::Memory::~Memory()
{
RTLIL::Memory::get_all_memorys()->erase(hashidx_);
}
static std::map<unsigned int, RTLIL::Memory*> all_memorys;
std::map<unsigned int, RTLIL::Memory*> *RTLIL::Memory::get_all_memorys(void)
{
return &all_memorys;
}
#endif
YOSYS_NAMESPACE_END