yosys/passes/opt/opt_reduce.cc

667 lines
18 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/celltypes.h"
#include <stdlib.h>
#include <stdio.h>
#include <set>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct OptReduceWorker
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap assign_map;
int total_count;
bool did_something;
void opt_reduce(pool<RTLIL::Cell*> &cells, SigSet<RTLIL::Cell*> &drivers, RTLIL::Cell *cell)
{
if (cells.count(cell) == 0)
return;
cells.erase(cell);
RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A));
sig_a.sort_and_unify();
pool<RTLIL::SigBit> new_sig_a_bits;
for (auto &bit : sig_a)
{
if (bit == RTLIL::State::S0) {
if (cell->type == ID($reduce_and)) {
new_sig_a_bits.clear();
new_sig_a_bits.insert(RTLIL::State::S0);
break;
}
continue;
}
if (bit == RTLIL::State::S1) {
if (cell->type == ID($reduce_or)) {
new_sig_a_bits.clear();
new_sig_a_bits.insert(RTLIL::State::S1);
break;
}
continue;
}
if (bit.wire == NULL) {
new_sig_a_bits.insert(bit);
continue;
}
bool imported_children = false;
for (auto child_cell : drivers.find(bit)) {
if (child_cell->type == cell->type) {
opt_reduce(cells, drivers, child_cell);
if (child_cell->getPort(ID::Y)[0] == bit) {
pool<RTLIL::SigBit> child_sig_a_bits = assign_map(child_cell->getPort(ID::A)).to_sigbit_pool();
new_sig_a_bits.insert(child_sig_a_bits.begin(), child_sig_a_bits.end());
} else
new_sig_a_bits.insert(RTLIL::State::S0);
imported_children = true;
}
}
if (!imported_children)
new_sig_a_bits.insert(bit);
}
RTLIL::SigSpec new_sig_a(new_sig_a_bits);
new_sig_a.sort_and_unify();
if (new_sig_a != sig_a || sig_a.size() != cell->getPort(ID::A).size()) {
log(" New input vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_a));
did_something = true;
total_count++;
}
cell->setPort(ID::A, new_sig_a);
cell->parameters[ID::A_WIDTH] = RTLIL::Const(new_sig_a.size());
return;
}
void opt_pmux(RTLIL::Cell *cell)
{
RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A));
RTLIL::SigSpec sig_b = assign_map(cell->getPort(ID::B));
RTLIL::SigSpec sig_s = assign_map(cell->getPort(ID::S));
RTLIL::SigSpec new_sig_b, new_sig_s;
pool<RTLIL::SigSpec> handled_sig;
handled_sig.insert(sig_a);
for (int i = 0; i < sig_s.size(); i++)
{
RTLIL::SigSpec this_b = sig_b.extract(i*sig_a.size(), sig_a.size());
if (handled_sig.count(this_b) > 0)
continue;
RTLIL::SigSpec this_s = sig_s.extract(i, 1);
for (int j = i+1; j < sig_s.size(); j++) {
RTLIL::SigSpec that_b = sig_b.extract(j*sig_a.size(), sig_a.size());
if (this_b == that_b)
this_s.append(sig_s.extract(j, 1));
}
if (this_s.size() > 1)
{
RTLIL::Cell *reduce_or_cell = module->addCell(NEW_ID, ID($reduce_or));
reduce_or_cell->setPort(ID::A, this_s);
reduce_or_cell->parameters[ID::A_SIGNED] = RTLIL::Const(0);
reduce_or_cell->parameters[ID::A_WIDTH] = RTLIL::Const(this_s.size());
reduce_or_cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1);
RTLIL::Wire *reduce_or_wire = module->addWire(NEW_ID);
this_s = RTLIL::SigSpec(reduce_or_wire);
reduce_or_cell->setPort(ID::Y, this_s);
}
new_sig_b.append(this_b);
new_sig_s.append(this_s);
handled_sig.insert(this_b);
}
if (new_sig_s.size() == 0)
{
module->connect(cell->getPort(ID::Y), cell->getPort(ID::A));
assign_map.add(cell->getPort(ID::Y), cell->getPort(ID::A));
module->remove(cell);
did_something = true;
total_count++;
return;
}
if (new_sig_s.size() != sig_s.size() || (new_sig_s.size() == 1 && cell->type == ID($pmux))) {
log(" New ctrl vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_s));
did_something = true;
total_count++;
cell->setPort(ID::B, new_sig_b);
cell->setPort(ID::S, new_sig_s);
if (new_sig_s.size() > 1) {
cell->parameters[ID::S_WIDTH] = RTLIL::Const(new_sig_s.size());
} else {
cell->type = ID($mux);
cell->parameters.erase(ID::S_WIDTH);
}
}
}
void opt_bmux(RTLIL::Cell *cell)
{
RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A));
RTLIL::SigSpec sig_s = assign_map(cell->getPort(ID::S));
int width = cell->getParam(ID::WIDTH).as_int();
RTLIL::SigSpec new_sig_a, new_sig_s;
dict<RTLIL::SigBit, int> handled_bits;
// 0 and up: index of new_sig_s bit
// -1: const 0
// -2: const 1
std::vector<int> swizzle;
for (int i = 0; i < sig_s.size(); i++)
{
SigBit bit = sig_s[i];
if (bit == State::S0) {
swizzle.push_back(-1);
} else if (bit == State::S1) {
swizzle.push_back(-2);
} else {
auto it = handled_bits.find(bit);
if (it == handled_bits.end()) {
int new_idx = GetSize(new_sig_s);
new_sig_s.append(bit);
handled_bits[bit] = new_idx;
swizzle.push_back(new_idx);
} else {
swizzle.push_back(it->second);
}
}
}
for (int i = 0; i < (1 << GetSize(new_sig_s)); i++) {
int idx = 0;
for (int j = 0; j < GetSize(sig_s); j++) {
if (swizzle[j] == -1) {
// const 0.
} else if (swizzle[j] == -2) {
// const 1.
idx |= 1 << j;
} else {
if (i & 1 << swizzle[j])
idx |= 1 << j;
}
}
new_sig_a.append(sig_a.extract(idx * width, width));
}
if (new_sig_s.size() == 0)
{
module->connect(cell->getPort(ID::Y), new_sig_a);
assign_map.add(cell->getPort(ID::Y), new_sig_a);
module->remove(cell);
did_something = true;
total_count++;
return;
}
if (new_sig_s.size() == 1)
{
cell->type = ID($mux);
cell->setPort(ID::A, new_sig_a.extract(0, width));
cell->setPort(ID::B, new_sig_a.extract(width, width));
cell->setPort(ID::S, new_sig_s);
cell->parameters.erase(ID::S_WIDTH);
did_something = true;
total_count++;
return;
}
if (new_sig_s.size() != sig_s.size()) {
log(" New ctrl vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_s));
did_something = true;
total_count++;
cell->setPort(ID::A, new_sig_a);
cell->setPort(ID::S, new_sig_s);
cell->parameters[ID::S_WIDTH] = RTLIL::Const(new_sig_s.size());
}
}
void opt_demux(RTLIL::Cell *cell)
{
RTLIL::SigSpec sig_y = assign_map(cell->getPort(ID::Y));
RTLIL::SigSpec sig_s = assign_map(cell->getPort(ID::S));
int width = cell->getParam(ID::WIDTH).as_int();
RTLIL::SigSpec new_sig_y, new_sig_s;
dict<RTLIL::SigBit, int> handled_bits;
// 0 and up: index of new_sig_s bit
// -1: const 0
// -2: const 1
std::vector<int> swizzle;
for (int i = 0; i < sig_s.size(); i++)
{
SigBit bit = sig_s[i];
if (bit == State::S0) {
swizzle.push_back(-1);
} else if (bit == State::S1) {
swizzle.push_back(-2);
} else {
auto it = handled_bits.find(bit);
if (it == handled_bits.end()) {
int new_idx = GetSize(new_sig_s);
new_sig_s.append(bit);
handled_bits[bit] = new_idx;
swizzle.push_back(new_idx);
} else {
swizzle.push_back(it->second);
}
}
}
pool<int> nonzero_idx;
for (int i = 0; i < (1 << GetSize(new_sig_s)); i++) {
int idx = 0;
for (int j = 0; j < GetSize(sig_s); j++) {
if (swizzle[j] == -1) {
// const 0.
} else if (swizzle[j] == -2) {
// const 1.
idx |= 1 << j;
} else {
if (i & 1 << swizzle[j])
idx |= 1 << j;
}
}
log_assert(!nonzero_idx.count(idx));
nonzero_idx.insert(idx);
new_sig_y.append(sig_y.extract(idx * width, width));
}
if (new_sig_s.size() == sig_s.size() && sig_s.size() > 0)
return;
log(" New ctrl vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_s));
did_something = true;
total_count++;
for (int i = 0; i < (1 << GetSize(sig_s)); i++) {
if (!nonzero_idx.count(i)) {
SigSpec slice = sig_y.extract(i * width, width);
module->connect(slice, Const(State::S0, width));
assign_map.add(slice, Const(State::S0, width));
}
}
if (new_sig_s.size() == 0)
{
module->connect(new_sig_y, cell->getPort(ID::A));
assign_map.add(new_sig_y, cell->getPort(ID::A));
module->remove(cell);
}
else
{
cell->setPort(ID::S, new_sig_s);
cell->setPort(ID::Y, new_sig_y);
cell->parameters[ID::S_WIDTH] = RTLIL::Const(new_sig_s.size());
}
}
bool opt_mux_bits(RTLIL::Cell *cell)
{
SigSpec sig_a = assign_map(cell->getPort(ID::A));
SigSpec sig_b;
SigSpec sig_y = assign_map(cell->getPort(ID::Y));
int width = GetSize(sig_y);
if (cell->type != ID($bmux))
sig_b = assign_map(cell->getPort(ID::B));
RTLIL::SigSig old_sig_conn;
dict<SigSpec, SigBit> consolidated_in_tuples;
std::vector<int> swizzle;
for (int i = 0; i < width; i++)
{
SigSpec in_tuple;
bool all_tuple_bits_same = true;
in_tuple.append(sig_a[i]);
for (int j = i; j < GetSize(sig_a); j += width) {
in_tuple.append(sig_a[j]);
if (sig_a[j] != in_tuple[0])
all_tuple_bits_same = false;
}
for (int j = i; j < GetSize(sig_b); j += width) {
in_tuple.append(sig_b[j]);
if (sig_b[j] != in_tuple[0])
all_tuple_bits_same = false;
}
if (all_tuple_bits_same)
{
old_sig_conn.first.append(sig_y[i]);
old_sig_conn.second.append(sig_a[i]);
continue;
}
auto it = consolidated_in_tuples.find(in_tuple);
if (it == consolidated_in_tuples.end())
{
consolidated_in_tuples[in_tuple] = sig_y[i];
swizzle.push_back(i);
}
else
{
old_sig_conn.first.append(sig_y[i]);
old_sig_conn.second.append(it->second);
}
}
if (GetSize(swizzle) != width)
{
log(" Consolidated identical input bits for %s cell %s:\n", cell->type.c_str(), cell->name.c_str());
if (cell->type != ID($bmux)) {
log(" Old ports: A=%s, B=%s, Y=%s\n", log_signal(cell->getPort(ID::A)),
log_signal(cell->getPort(ID::B)), log_signal(cell->getPort(ID::Y)));
} else {
log(" Old ports: A=%s, Y=%s\n", log_signal(cell->getPort(ID::A)),
log_signal(cell->getPort(ID::Y)));
}
if (swizzle.empty()) {
module->remove(cell);
} else {
SigSpec new_sig_a;
for (int i = 0; i < GetSize(sig_a); i += width)
for (int j: swizzle)
new_sig_a.append(sig_a[i+j]);
cell->setPort(ID::A, new_sig_a);
if (cell->type != ID($bmux)) {
SigSpec new_sig_b;
for (int i = 0; i < GetSize(sig_b); i += width)
for (int j: swizzle)
new_sig_b.append(sig_b[i+j]);
cell->setPort(ID::B, new_sig_b);
}
SigSpec new_sig_y;
for (int j: swizzle)
new_sig_y.append(sig_y[j]);
cell->setPort(ID::Y, new_sig_y);
cell->parameters[ID::WIDTH] = RTLIL::Const(GetSize(swizzle));
if (cell->type != ID($bmux)) {
log(" New ports: A=%s, B=%s, Y=%s\n", log_signal(cell->getPort(ID::A)),
log_signal(cell->getPort(ID::B)), log_signal(cell->getPort(ID::Y)));
} else {
log(" New ports: A=%s, Y=%s\n", log_signal(cell->getPort(ID::A)),
log_signal(cell->getPort(ID::Y)));
}
}
log(" New connections: %s = %s\n", log_signal(old_sig_conn.first), log_signal(old_sig_conn.second));
module->connect(old_sig_conn);
did_something = true;
total_count++;
}
return swizzle.empty();
}
bool opt_demux_bits(RTLIL::Cell *cell) {
SigSpec sig_a = assign_map(cell->getPort(ID::A));
SigSpec sig_y = assign_map(cell->getPort(ID::Y));
int width = GetSize(sig_a);
RTLIL::SigSig old_sig_conn;
dict<SigBit, int> handled_bits;
std::vector<int> swizzle;
for (int i = 0; i < width; i++)
{
if (sig_a[i] == State::S0)
{
for (int j = i; j < GetSize(sig_y); j += width)
{
old_sig_conn.first.append(sig_y[j]);
old_sig_conn.second.append(State::S0);
}
continue;
}
auto it = handled_bits.find(sig_a[i]);
if (it == handled_bits.end())
{
handled_bits[sig_a[i]] = i;
swizzle.push_back(i);
}
else
{
for (int j = 0; j < GetSize(sig_y); j += width)
{
old_sig_conn.first.append(sig_y[i+j]);
old_sig_conn.second.append(sig_y[it->second+j]);
}
}
}
if (GetSize(swizzle) != width)
{
log(" Consolidated identical input bits for %s cell %s:\n", cell->type.c_str(), cell->name.c_str());
log(" Old ports: A=%s, Y=%s\n", log_signal(cell->getPort(ID::A)),
log_signal(cell->getPort(ID::Y)));
if (swizzle.empty()) {
module->remove(cell);
} else {
SigSpec new_sig_a;
for (int j: swizzle)
new_sig_a.append(sig_a[j]);
cell->setPort(ID::A, new_sig_a);
SigSpec new_sig_y;
for (int i = 0; i < GetSize(sig_y); i += width)
for (int j: swizzle)
new_sig_y.append(sig_y[i+j]);
cell->setPort(ID::Y, new_sig_y);
cell->parameters[ID::WIDTH] = RTLIL::Const(GetSize(swizzle));
log(" New ports: A=%s, Y=%s\n", log_signal(cell->getPort(ID::A)),
log_signal(cell->getPort(ID::Y)));
}
log(" New connections: %s = %s\n", log_signal(old_sig_conn.first), log_signal(old_sig_conn.second));
module->connect(old_sig_conn);
did_something = true;
total_count++;
}
return swizzle.empty();
}
OptReduceWorker(RTLIL::Design *design, RTLIL::Module *module, bool do_fine) :
design(design), module(module), assign_map(module)
{
log(" Optimizing cells in module %s.\n", module->name.c_str());
total_count = 0;
did_something = true;
SigPool mem_wren_sigs;
for (auto &cell_it : module->cells_) {
RTLIL::Cell *cell = cell_it.second;
if (cell->type.in(ID($mem), ID($mem_v2)))
mem_wren_sigs.add(assign_map(cell->getPort(ID::WR_EN)));
if (cell->type.in(ID($memwr), ID($memwr_v2)))
mem_wren_sigs.add(assign_map(cell->getPort(ID::EN)));
}
for (auto &cell_it : module->cells_) {
RTLIL::Cell *cell = cell_it.second;
if (cell->type == ID($dff) && mem_wren_sigs.check_any(assign_map(cell->getPort(ID::Q))))
mem_wren_sigs.add(assign_map(cell->getPort(ID::D)));
}
bool keep_expanding_mem_wren_sigs = true;
while (keep_expanding_mem_wren_sigs) {
keep_expanding_mem_wren_sigs = false;
for (auto &cell_it : module->cells_) {
RTLIL::Cell *cell = cell_it.second;
if (cell->type == ID($mux) && mem_wren_sigs.check_any(assign_map(cell->getPort(ID::Y)))) {
if (!mem_wren_sigs.check_all(assign_map(cell->getPort(ID::A))) ||
!mem_wren_sigs.check_all(assign_map(cell->getPort(ID::B))))
keep_expanding_mem_wren_sigs = true;
mem_wren_sigs.add(assign_map(cell->getPort(ID::A)));
mem_wren_sigs.add(assign_map(cell->getPort(ID::B)));
}
}
}
while (did_something)
{
did_something = false;
// merge trees of reduce_* cells to one single cell and unify input vectors
// (only handle reduce_and and reduce_or for various reasons)
const IdString type_list[] = { ID($reduce_or), ID($reduce_and) };
for (auto type : type_list)
{
SigSet<RTLIL::Cell*> drivers;
pool<RTLIL::Cell*> cells;
for (auto &cell_it : module->cells_) {
RTLIL::Cell *cell = cell_it.second;
if (cell->type != type || !design->selected(module, cell))
continue;
drivers.insert(assign_map(cell->getPort(ID::Y)), cell);
cells.insert(cell);
}
while (cells.size() > 0) {
RTLIL::Cell *cell = *cells.begin();
opt_reduce(cells, drivers, cell);
}
}
// merge identical inputs on $mux and $pmux cells
for (auto cell : module->selected_cells())
{
if (!cell->type.in(ID($mux), ID($pmux), ID($bmux), ID($demux)))
continue;
// this optimization is to aggressive for most coarse-grain applications.
// but we always want it for multiplexers driving write enable ports.
if (do_fine || mem_wren_sigs.check_any(assign_map(cell->getPort(ID::Y)))) {
if (cell->type == ID($demux)) {
if (opt_demux_bits(cell))
continue;
} else {
if (opt_mux_bits(cell))
continue;
}
}
if (cell->type.in(ID($mux), ID($pmux)))
opt_pmux(cell);
else if (cell->type == ID($bmux))
opt_bmux(cell);
else if (cell->type == ID($demux))
opt_demux(cell);
}
}
module->check();
}
};
struct OptReducePass : public Pass {
OptReducePass() : Pass("opt_reduce", "simplify large MUXes and AND/OR gates") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_reduce [options] [selection]\n");
log("\n");
log("This pass performs two interlinked optimizations:\n");
log("\n");
log("1. it consolidates trees of large AND gates or OR gates and eliminates\n");
log("duplicated inputs.\n");
log("\n");
log("2. it identifies duplicated inputs to MUXes and replaces them with a single\n");
log("input with the original control signals OR'ed together.\n");
log("\n");
log(" -fine\n");
log(" perform fine-grain optimizations\n");
log("\n");
log(" -full\n");
log(" alias for -fine\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool do_fine = false;
log_header(design, "Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-fine") {
do_fine = true;
continue;
}
if (args[argidx] == "-full") {
do_fine = true;
continue;
}
break;
}
extra_args(args, argidx, design);
int total_count = 0;
for (auto module : design->selected_modules())
while (1) {
OptReduceWorker worker(design, module, do_fine);
total_count += worker.total_count;
if (worker.total_count == 0)
break;
}
if (total_count)
design->scratchpad_set_bool("opt.did_something", true);
log("Performed a total of %d changes.\n", total_count);
}
} OptReducePass;
PRIVATE_NAMESPACE_END