yosys/passes/techmap/abc9_ops.cc

1360 lines
44 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/celltypes.h"
#include "kernel/timinginfo.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
int map_autoidx;
inline std::string remap_name(RTLIL::IdString abc9_name)
{
return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
}
void check(RTLIL::Design *design)
{
dict<IdString,IdString> box_lookup;
for (auto m : design->modules()) {
if (m->name.begins_with("$paramod"))
continue;
auto flop = m->get_bool_attribute(ID(abc9_flop));
auto it = m->attributes.find(ID(abc9_box_id));
if (!flop) {
if (it == m->attributes.end())
continue;
auto id = it->second.as_int();
auto r = box_lookup.insert(std::make_pair(stringf("$__boxid%d", id), m->name));
if (!r.second)
log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n",
log_id(m), id, log_id(r.first->second));
}
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : m->ports) {
auto w = m->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one (* abc9_carry *) input port.\n", log_id(m));
carry_in = port_name;
}
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one (* abc9_carry *) output port.\n", log_id(m));
carry_out = port_name;
}
}
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an (* abc9_carry *) input port but no output port.\n", log_id(m));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an (* abc9_carry *) output port but no input port.\n", log_id(m));
if (flop) {
int num_outputs = 0;
for (auto port_name : m->ports) {
auto wire = m->wire(port_name);
if (wire->port_output) num_outputs++;
}
if (num_outputs != 1)
log_error("Module '%s' with (* abc9_flop *) has %d outputs (expect 1).\n", log_id(m), num_outputs);
}
}
}
void mark_scc(RTLIL::Module *module)
{
// For every unique SCC found, (arbitrarily) find the first
// cell in the component, and convert all wires driven by
// its output ports into a new PO, and drive its previous
// sinks with a new PI
pool<RTLIL::Const> ids_seen;
for (auto cell : module->cells()) {
auto it = cell->attributes.find(ID(abc9_scc_id));
if (it == cell->attributes.end())
continue;
auto id = it->second;
auto r = ids_seen.insert(id);
cell->attributes.erase(it);
if (!r.second)
continue;
for (auto &c : cell->connections_) {
if (c.second.is_fully_const()) continue;
if (cell->output(c.first)) {
SigBit b = c.second.as_bit();
Wire *w = b.wire;
w->set_bool_attribute(ID::keep);
w->attributes[ID(abc9_scc_id)] = id.as_int();
}
}
}
module->fixup_ports();
}
void prep_dff(RTLIL::Module *module)
{
auto design = module->design;
log_assert(design);
SigMap assign_map(module);
typedef SigSpec clkdomain_t;
dict<clkdomain_t, int> clk_to_mergeability;
for (auto cell : module->cells()) {
if (cell->type != "$__ABC9_FF_")
continue;
Wire *abc9_clock_wire = module->wire(stringf("%s.clock", cell->name.c_str()));
if (abc9_clock_wire == NULL)
log_error("'%s.clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
SigSpec abc9_clock = assign_map(abc9_clock_wire);
clkdomain_t key(abc9_clock);
auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1));
auto r2 = cell->attributes.insert(ID(abc9_mergeability));;
log_assert(r2.second);
r2.first->second = r.first->second;
}
RTLIL::Module *holes_module = design->module(stringf("%s$holes", module->name.c_str()));
if (holes_module) {
SigMap sigmap(holes_module);
dict<SigSpec, SigSpec> replace;
for (auto cell : holes_module->cells().to_vector()) {
if (!cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_",
"$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_"))
continue;
SigBit D = cell->getPort("\\D");
SigBit Q = cell->getPort("\\Q");
// Emulate async control embedded inside $_DFF_* cell with mux in front of D
if (cell->type.in("$_DFF_NN0_", "$_DFF_PN0_"))
D = holes_module->MuxGate(NEW_ID, State::S0, D, cell->getPort("\\R"));
else if (cell->type.in("$_DFF_NN1_", "$_DFF_PN1_"))
D = holes_module->MuxGate(NEW_ID, State::S1, D, cell->getPort("\\R"));
else if (cell->type.in("$_DFF_NP0_", "$_DFF_PP0_"))
D = holes_module->MuxGate(NEW_ID, D, State::S0, cell->getPort("\\R"));
else if (cell->type.in("$_DFF_NP1_", "$_DFF_PP1_"))
D = holes_module->MuxGate(NEW_ID, D, State::S1, cell->getPort("\\R"));
// Remove the $_DFF_* cell from what needs to be a combinatorial box
holes_module->remove(cell);
Wire *port;
if (GetSize(Q.wire) == 1)
port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str()));
else
port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset));
log_assert(port);
// Prepare to replace "assign <port> = $_DFF_*.Q;" with "assign <port> = $_DFF_*.D;"
// in order to extract just the combinatorial control logic that feeds the box
// (i.e. clock enable, synchronous reset, etc.)
replace.insert(std::make_pair(Q,D));
// Since `flatten` above would have created wires named "<cell>.Q",
// extract the pre-techmap cell name
auto pos = Q.wire->name.str().rfind(".");
log_assert(pos != std::string::npos);
IdString driver = Q.wire->name.substr(0, pos);
// And drive the signal that was previously driven by "DFF.Q" (typically
// used to implement clock-enable functionality) with the "<cell>.$abc9_currQ"
// wire (which itself is driven an by input port) we inserted above
Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str()));
log_assert(currQ);
holes_module->connect(Q, currQ);
}
for (auto &conn : holes_module->connections_)
conn.second = replace.at(sigmap(conn.second), conn.second);
}
}
void prep_xaiger(RTLIL::Module *module, bool dff)
{
auto design = module->design;
log_assert(design);
SigMap sigmap(module);
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<IdString, std::vector<IdString>> box_ports;
for (auto cell : module->cells()) {
if (cell->type == "$__ABC9_FF_")
continue;
if (cell->has_keep_attr())
continue;
auto inst_module = module->design->module(cell->type);
bool abc9_flop = inst_module && inst_module->get_bool_attribute("\\abc9_flop");
if (abc9_flop && !dff)
continue;
if ((inst_module && inst_module->get_bool_attribute("\\abc9_box")) || abc9_flop) {
auto r = box_ports.insert(cell->type);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : inst_module->ports) {
auto w = inst_module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
log_assert(w->port_input != w->port_output);
if (w->port_input)
carry_in = port_name;
else if (w->port_output)
carry_out = port_name;
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
}
else if (!yosys_celltypes.cell_known(cell->type))
continue;
// TODO: Speed up toposort -- we care about box ordering only
for (auto conn : cell->connections()) {
if (cell->input(conn.first))
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
if (cell->output(conn.first) && !abc9_flop)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
}
toposort.node(cell->name);
}
if (box_ports.empty())
return;
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
if (ys_debug(1))
toposort.analyze_loops = true;
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
if (ys_debug(1)) {
unsigned i = 0;
for (auto &it : toposort.loops) {
log(" loop %d\n", i++);
for (auto cell_name : it) {
auto cell = module->cell(cell_name);
log_assert(cell);
log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
}
}
}
log_assert(no_loops);
RTLIL::Module *holes_module = design->addModule(stringf("%s$holes", module->name.c_str()));
log_assert(holes_module);
holes_module->set_bool_attribute("\\abc9_holes");
dict<IdString, Cell*> cell_cache;
int port_id = 1, box_count = 0;
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
log_assert(cell);
RTLIL::Module* box_module = design->module(cell->type);
if (!box_module || (!box_module->get_bool_attribute("\\abc9_box") && !box_module->get_bool_attribute("\\abc9_flop")))
continue;
cell->attributes["\\abc9_box_seq"] = box_count++;
IdString derived_type = box_module->derive(design, cell->parameters);
box_module = design->module(derived_type);
auto r = cell_cache.insert(derived_type);
auto &holes_cell = r.first->second;
if (r.second) {
if (box_module->has_processes())
Pass::call_on_module(design, box_module, "proc");
if (box_module->get_bool_attribute("\\whitebox")) {
holes_cell = holes_module->addCell(cell->name, derived_type);
if (box_module->has_processes())
Pass::call_on_module(design, box_module, "proc");
int box_inputs = 0;
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
log_assert(!w->port_input || !w->port_output);
auto &conn = holes_cell->connections_[port_name];
if (w->port_input) {
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
conn.append(holes_wire);
}
}
else if (w->port_output)
conn = holes_module->addWire(stringf("%s.%s", derived_type.c_str(), log_id(port_name)), GetSize(w));
}
// For flops only, create an extra 1-bit input that drives a new wire
// called "<cell>.abc9_ff.Q" that is used below
if (box_module->get_bool_attribute("\\abc9_flop")) {
box_inputs++;
Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
Wire *Q = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
holes_module->connect(Q, holes_wire);
}
}
else // box_module is a blackbox
log_assert(holes_cell == nullptr);
}
for (auto port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
if (!w->port_output)
continue;
Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w));
holes_wire->port_output = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
if (holes_cell) // whitebox
holes_module->connect(holes_wire, holes_cell->getPort(port_name));
else // blackbox
holes_module->connect(holes_wire, Const(State::S0, GetSize(w)));
}
}
}
void prep_delays(RTLIL::Design *design, bool dff_mode)
{
// Derive all Yosys blackbox modules that are not combinatorial abc9 boxes
// (e.g. DSPs, RAMs, etc.) nor abc9 flops and collect all such instantiations
pool<Module*> flops;
std::vector<Cell*> cells;
for (auto module : design->selected_modules()) {
if (module->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(module));
continue;
}
for (auto cell : module->cells()) {
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_), ID($__ABC9_DELAY)))
continue;
RTLIL::Module* inst_module = module->design->module(cell->type);
if (!inst_module)
continue;
if (!inst_module->get_blackbox_attribute())
continue;
if (inst_module->attributes.count(ID(abc9_box)))
continue;
IdString blackboxes_type = inst_module->derive(design, cell->parameters);
inst_module = design->module(blackboxes_type);
log_assert(inst_module);
if (dff_mode && inst_module->get_bool_attribute(ID(abc9_flop))) {
flops.insert(inst_module);
continue; // do not add $__ABC9_DELAY boxes to flops
// as delays will be captured in the flop box
}
cells.emplace_back(cell);
}
}
const TimingInfo timing(design);
// Transform all $specify3 and $specrule to abc9_{arrival,required} attributes
// TODO: Deprecate
pool<Wire*> ports;
std::stringstream ss;
for (auto module : design->modules()) {
auto it = timing.data.find(module->name);
if (it == timing.data.end())
continue;
const auto &t = it->second;
if (t.arrival.empty() && t.required.empty())
continue;
const auto &arrival = t.arrival;
const auto &required = t.required;
ports.clear();
for (const auto &i : arrival)
ports.insert(i.first.wire);
for (auto wire : ports) {
log_assert(wire->port_output);
ss.str("");
if (GetSize(wire) == 1)
wire->attributes[ID(abc9_arrival)] = arrival.at(SigBit(wire,0));
else {
bool first = true;
for (auto b : SigSpec(wire)) {
if (first)
first = false;
else
ss << " ";
ss << arrival.at(b, 0);
}
wire->attributes[ID(abc9_arrival)] = ss.str();
}
}
ports.clear();
for (const auto &i : required)
ports.insert(i.first.wire);
for (auto wire : ports) {
log_assert(wire->port_input);
ss.str("");
if (GetSize(wire) == 1)
wire->attributes[ID(abc9_required)] = required.at(SigBit(wire,0));
else {
bool first = true;
for (auto b : SigSpec(wire)) {
if (first)
first = false;
else
ss << " ";
ss << required.at(b, 0);
}
wire->attributes[ID(abc9_required)] = ss.str();
}
}
}
// Insert $__ABC9_DELAY cells on all cells that instantiate blackboxes
// with (* abc9_required *) attributes
dict<IdString,dict<IdString,std::vector<int>>> requireds_cache;
for (auto cell : cells) {
auto module = cell->module;
RTLIL::Module* inst_module = module->design->module(cell->type);
log_assert(inst_module);
IdString derived_type = inst_module->derive(design, cell->parameters);
inst_module = design->module(derived_type);
log_assert(inst_module);
auto &cell_requireds = requireds_cache[derived_type];
for (auto &conn : cell->connections_) {
auto port_wire = inst_module->wire(conn.first);
if (!port_wire->port_input)
continue;
auto r = cell_requireds.insert(conn.first);
auto &requireds = r.first->second;
if (r.second) {
auto it = port_wire->attributes.find("\\abc9_required");
if (it == port_wire->attributes.end())
continue;
if (it->second.flags == 0) {
int delay = it->second.as_int();
requireds.emplace_back(delay);
}
else
for (const auto &tok : split_tokens(it->second.decode_string())) {
int delay = atoi(tok.c_str());
requireds.push_back(delay);
}
}
if (requireds.empty())
continue;
SigSpec O = module->addWire(NEW_ID, GetSize(conn.second));
auto it = requireds.begin();
for (int i = 0; i < GetSize(conn.second); ++i) {
#ifndef NDEBUG
if (ys_debug(1)) {
static std::set<std::pair<IdString,IdString>> seen;
if (seen.emplace(derived_type, conn.first).second) log("%s.%s abc9_required = '%s'\n", log_id(cell->type), log_id(conn.first),
port_wire->attributes.at("\\abc9_required").decode_string().c_str());
}
#endif
auto box = module->addCell(NEW_ID, ID($__ABC9_DELAY));
box->setPort(ID(I), conn.second[i]);
box->setPort(ID(O), O[i]);
box->setParam(ID(DELAY), *it);
if (requireds.size() > 1)
it++;
conn.second[i] = O[i];
}
}
}
}
void prep_lut(RTLIL::Design *design, int maxlut)
{
std::vector<std::tuple<int, IdString, int, std::vector<int>>> table;
for (auto module : design->modules()) {
auto it = module->attributes.find(ID(abc9_lut));
if (it == module->attributes.end())
continue;
SigBit o;
std::vector<int> specify;
for (auto cell : module->cells()) {
if (cell->type != ID($specify2))
continue;
log_assert(cell->getParam(ID(SRC_WIDTH)) == 1);
log_assert(cell->getParam(ID(DST_WIDTH)) == 1);
SigBit s = cell->getPort(ID(SRC));
SigBit d = cell->getPort(ID(DST));
log_assert(s.wire->port_input);
log_assert(d.wire->port_output);
if (o == SigBit())
o = d;
else
log_assert(o == d);
// TODO: Don't assume that each specify entry with the destination 'o'
// describes a unique LUT input
int rise_max = cell->getParam(ID(T_RISE_MAX)).as_int();
int fall_max = cell->getParam(ID(T_FALL_MAX)).as_int();
int max = std::max(rise_max,fall_max);
if (max < 0)
log_error("Module '%s' contains specify cell '%s' with T_{RISE,FALL}_MAX < 0.\n", log_id(module), log_id(cell));
specify.push_back(max);
}
if (maxlut && GetSize(specify) > maxlut)
continue;
// ABC requires non-decreasing LUT input delays
std::sort(specify.begin(), specify.end());
table.emplace_back(GetSize(specify), module->name, it->second.as_int(), std::move(specify));
}
// ABC requires ascending size
std::sort(table.begin(), table.end());
std::stringstream ss;
const auto &first = table.front();
// If the first entry does not start from a 1-input LUT,
// (as ABC requires) crop the first entry to do so
for (int i = 1; i < std::get<0>(first); i++) {
ss << "# $__ABC9_LUT" << i << std::endl;
ss << i << " " << std::get<2>(first);
for (int j = 0; j < i; j++)
ss << " " << std::get<3>(first)[j];
ss << std::endl;
}
for (const auto &i : table) {
ss << "# " << log_id(std::get<1>(i)) << std::endl;
ss << std::get<0>(i) << " " << std::get<2>(i);
for (const auto &j : std::get<3>(i))
ss << " " << j;
ss << std::endl;
}
design->scratchpad_set_string("abc9_ops.lut_library", ss.str());
}
void write_lut(RTLIL::Module *module, const std::string &dst) {
std::ofstream ofs(dst);
log_assert(ofs.is_open());
ofs << module->design->scratchpad_get_string("abc9_ops.lut_library");
ofs.close();
}
void prep_box(RTLIL::Design *design, bool dff_mode)
{
std::stringstream ss;
int abc9_box_id = 1;
dict<IdString,std::vector<IdString>> box_ports;
for (auto module : design->modules()) {
auto abc9_flop = module->get_bool_attribute(ID(abc9_flop));
if (abc9_flop) {
if (dff_mode) {
log_dump(module->name);
int num_inputs = 0, num_outputs = 0;
for (auto port_name : module->ports) {
auto wire = module->wire(port_name);
log_assert(GetSize(wire) == 1);
if (wire->port_input) num_inputs++;
if (wire->port_output) num_outputs++;
}
log_assert(num_outputs == 1);
auto r = module->attributes.insert(ID(abc9_box_id));
if (r.second)
r.first->second = abc9_box_id++;
ss << log_id(module) << " " << r.first->second.as_int();
ss << " " << (module->get_bool_attribute(ID::whitebox) ? "1" : "0");
ss << " " << num_inputs+1 << " " << num_outputs << std::endl;
ss << "#";
bool first = true;
for (auto port_name : module->ports) {
auto wire = module->wire(port_name);
if (!wire->port_input)
continue;
if (first)
first = false;
else
ss << " ";
ss << log_id(wire);
}
ss << " abc9_ff.Q" << std::endl;
first = true;
for (auto port_name : module->ports) {
auto wire = module->wire(port_name);
if (!wire->port_input)
continue;
if (first)
first = false;
else
ss << " ";
auto it = wire->attributes.find("\\abc9_required");
if (it == wire->attributes.end())
ss << 0;
else {
log_assert(it->second.flags == 0);
ss << it->second.as_int();
#ifndef NDEBUG
if (ys_debug(1)) {
static std::set<std::pair<IdString,IdString>> seen;
if (seen.emplace(module->name, port_name).second) log("%s.%s abc9_required = %d\n", log_id(module),
log_id(port_name), it->second.as_int());
}
#endif
}
}
// Last input is 'abc9_ff.Q'
ss << " 0" << std::endl << std::endl;
continue;
}
}
else {
if (!module->attributes.erase(ID(abc9_box)))
continue;
}
log_assert(!module->attributes.count(ID(abc9_box_id)));
dict<std::pair<SigBit,SigBit>, std::string> table;
std::vector<SigBit> inputs;
std::vector<SigBit> outputs;
auto r = box_ports.insert(module->name);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : module->ports) {
auto w = module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
log_assert(w->port_input != w->port_output);
if (w->port_input)
carry_in = port_name;
else if (w->port_output)
carry_out = port_name;
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
for (auto port_name : r.first->second) {
auto wire = module->wire(port_name);
if (wire->port_input)
for (int i = 0; i < GetSize(wire); i++)
inputs.emplace_back(wire, i);
if (wire->port_output)
for (int i = 0; i < GetSize(wire); i++)
outputs.emplace_back(wire, i);
}
for (auto cell : module->cells()) {
if (cell->type != ID($specify2))
continue;
auto src = cell->getPort(ID(SRC));
auto dst = cell->getPort(ID(DST));
for (const auto &c : src.chunks())
if (!c.wire->port_input)
log_error("Module '%s' contains specify cell '%s' where SRC '%s' is not a module input.\n", log_id(module), log_id(cell), log_signal(src));
for (const auto &c : dst.chunks())
if (!c.wire->port_output)
log_error("Module '%s' contains specify cell '%s' where DST '%s' is not a module output.\n", log_id(module), log_id(cell), log_signal(dst));
int rise_max = cell->getParam(ID(T_RISE_MAX)).as_int();
int fall_max = cell->getParam(ID(T_FALL_MAX)).as_int();
int max = std::max(rise_max,fall_max);
if (max < 0)
log_error("Module '%s' contains specify cell '%s' with T_{RISE,FALL}_MAX < 0.\n", log_id(module), log_id(cell));
if (cell->getParam(ID(FULL)).as_bool()) {
for (auto s : src)
for (auto d : dst) {
auto r = table.insert(std::make_pair(s,d));
log_assert(r.second);
r.first->second = std::to_string(max);
}
}
else {
log_assert(GetSize(src) == GetSize(dst));
for (auto i = 0; i < GetSize(src); i++) {
auto r = table.insert(std::make_pair(src[i],dst[i]));
if (!r.second)
log_error("Module '%s' contains multiple specify cells for SRC '%s' and DST '%s'.\n", log_id(module), log_signal(src[i]), log_signal(dst[i]));
log_assert(r.second);
r.first->second = std::to_string(max);
}
}
}
auto r2 = module->attributes.insert(ID(abc9_box_id));
log_assert(r2.second);
ss << log_id(module) << " " << abc9_box_id;
r2.first->second = abc9_box_id++;
ss << " " << (module->get_bool_attribute(ID::whitebox) ? "1" : "0");
ss << " " << GetSize(inputs) << " " << GetSize(outputs) << std::endl;
bool first = true;
ss << "#";
for (const auto &i : inputs) {
if (first)
first = false;
else
ss << " ";
if (GetSize(i.wire) == 1)
ss << log_id(i.wire);
else
ss << log_id(i.wire) << "[" << i.offset << "]";
}
ss << std::endl;
for (const auto &o : outputs) {
first = true;
for (const auto &i : inputs) {
if (first)
first = false;
else
ss << " ";
ss << table.at(std::make_pair(i,o), "-");
}
ss << " # ";
if (GetSize(o.wire) == 1)
ss << log_id(o.wire);
else
ss << log_id(o.wire) << "[" << o.offset << "]";
ss << std::endl;
}
ss << std::endl;
}
// ABC expects at least one box
if (ss.tellp() == 0)
ss << "(dummy) 1 0 0 0";
design->scratchpad_set_string("abc9_ops.box_library", ss.str());
}
void write_box(RTLIL::Module *module, const std::string &dst) {
std::ofstream ofs(dst);
log_assert(ofs.is_open());
ofs << module->design->scratchpad_get_string("abc9_ops.box_library");
ofs.close();
}
void reintegrate(RTLIL::Module *module)
{
auto design = module->design;
log_assert(design);
map_autoidx = autoidx++;
RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str()));
if (mapped_mod == NULL)
log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module));
for (auto w : mapped_mod->wires())
module->addWire(remap_name(w->name), GetSize(w));
dict<IdString,std::vector<IdString>> box_ports;
for (auto m : design->modules()) {
if (!m->attributes.count(ID(abc9_box_id)))
continue;
auto r = box_ports.insert(m->name);
if (!r.second)
continue;
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : m->ports) {
auto w = m->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
log_assert(w->port_input != w->port_output);
if (w->port_input)
carry_in = port_name;
else if (w->port_output)
carry_out = port_name;
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
std::vector<Cell*> boxes;
for (auto cell : module->cells().to_vector()) {
if (cell->has_keep_attr())
continue;
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_)))
module->remove(cell);
else if (cell->attributes.erase("\\abc9_box_seq"))
boxes.emplace_back(cell);
}
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
std::map<IdString, int> cell_stats;
for (auto mapped_cell : mapped_mod->cells())
{
// TODO: Speed up toposort -- we care about NOT ordering only
toposort.node(mapped_cell->name);
if (mapped_cell->type == ID($_NOT_)) {
RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
bit_users[a_bit].insert(mapped_cell->name);
// Ignore inouts for topo ordering
if (y_bit.wire && !(y_bit.wire->port_input && y_bit.wire->port_output))
bit_drivers[y_bit].insert(mapped_cell->name);
if (!a_bit.wire) {
mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
log_assert(wire);
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
}
else {
RTLIL::Cell* driver_lut = nullptr;
// ABC can return NOT gates that drive POs
if (!a_bit.wire->port_input) {
// If it's not a NOT gate that that comes from a PI directly,
// find the driver LUT and clone that to guarantee that we won't
// increase the max logic depth
// (TODO: Optimise by not cloning unless will increase depth)
RTLIL::IdString driver_name;
if (GetSize(a_bit.wire) == 1)
driver_name = stringf("$lut%s", a_bit.wire->name.c_str());
else
driver_name = stringf("$lut%s[%d]", a_bit.wire->name.c_str(), a_bit.offset);
driver_lut = mapped_mod->cell(driver_name);
}
if (!driver_lut) {
// If a driver couldn't be found (could be from PI or box CI)
// then implement using a LUT
RTLIL::Cell *cell = module->addLut(remap_name(stringf("$lut%s", mapped_cell->name.c_str())),
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
RTLIL::Const::from_string("01"));
bit2sinks[cell->getPort(ID::A)].push_back(cell);
cell_stats[ID($lut)]++;
}
else
not2drivers[mapped_cell] = driver_lut;
}
continue;
}
if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) {
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = mapped_cell->parameters;
cell->attributes = mapped_cell->attributes;
for (auto &mapped_conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig;
for (auto c : mapped_conn.second.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
cell->setPort(mapped_conn.first, newsig);
if (cell->input(mapped_conn.first)) {
for (auto i : newsig)
bit2sinks[i].push_back(cell);
for (auto i : mapped_conn.second)
bit_users[i].insert(mapped_cell->name);
}
if (cell->output(mapped_conn.first))
for (auto i : mapped_conn.second)
// Ignore inouts for topo ordering
if (i.wire && !(i.wire->port_input && i.wire->port_output))
bit_drivers[i].insert(mapped_cell->name);
}
}
else {
RTLIL::Cell *existing_cell = module->cell(mapped_cell->name);
if (!existing_cell)
log_error("Cannot find existing box cell with name '%s' in original design.\n", log_id(mapped_cell));
if (existing_cell->type == ID($__ABC9_DELAY)) {
SigBit I = mapped_cell->getPort(ID(i));
SigBit O = mapped_cell->getPort(ID(o));
if (I.wire)
I.wire = module->wires_.at(remap_name(I.wire->name));
log_assert(O.wire);
O.wire = module->wires_.at(remap_name(O.wire->name));
module->connect(O, I);
continue;
}
RTLIL::Module* box_module = design->module(existing_cell->type);
IdString derived_type = box_module->derive(design, existing_cell->parameters);
RTLIL::Module* derived_module = design->module(derived_type);
log_assert(derived_module);
log_assert(mapped_cell->type == stringf("$__boxid%d", derived_module->attributes.at("\\abc9_box_id").as_int()));
mapped_cell->type = existing_cell->type;
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = existing_cell->parameters;
cell->attributes = existing_cell->attributes;
module->swap_names(cell, existing_cell);
auto jt = mapped_cell->connections_.find("\\i");
log_assert(jt != mapped_cell->connections_.end());
SigSpec inputs = std::move(jt->second);
mapped_cell->connections_.erase(jt);
jt = mapped_cell->connections_.find("\\o");
log_assert(jt != mapped_cell->connections_.end());
SigSpec outputs = std::move(jt->second);
mapped_cell->connections_.erase(jt);
auto abc9_flop = box_module->attributes.count("\\abc9_flop");
if (!abc9_flop) {
for (const auto &i : inputs)
bit_users[i].insert(mapped_cell->name);
for (const auto &i : outputs)
// Ignore inouts for topo ordering
if (i.wire && !(i.wire->port_input && i.wire->port_output))
bit_drivers[i].insert(mapped_cell->name);
}
int input_count = 0, output_count = 0;
for (const auto &port_name : box_ports.at(derived_type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
SigSpec sig;
if (w->port_input) {
sig = inputs.extract(input_count, GetSize(w));
input_count += GetSize(w);
}
if (w->port_output) {
sig = outputs.extract(output_count, GetSize(w));
output_count += GetSize(w);
}
SigSpec newsig;
for (auto c : sig.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
cell->setPort(port_name, newsig);
if (w->port_input && !abc9_flop)
for (const auto &i : newsig)
bit2sinks[i].push_back(cell);
}
}
cell_stats[mapped_cell->type]++;
}
for (auto cell : boxes)
module->remove(cell);
// Copy connections (and rename) from mapped_mod to module
for (auto conn : mapped_mod->connections()) {
if (!conn.first.is_fully_const()) {
auto chunks = conn.first.chunks();
for (auto &c : chunks)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.first = std::move(chunks);
}
if (!conn.second.is_fully_const()) {
auto chunks = conn.second.chunks();
for (auto &c : chunks)
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.second = std::move(chunks);
}
module->connect(conn);
}
for (auto &it : cell_stats)
log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
int in_wires = 0, out_wires = 0;
// Stitch in mapped_mod's inputs/outputs into module
for (auto port : mapped_mod->ports) {
RTLIL::Wire *mapped_wire = mapped_mod->wire(port);
RTLIL::Wire *wire = module->wire(port);
log_assert(wire);
if (wire->attributes.erase(ID(abc9_scc_id))) {
auto r YS_ATTRIBUTE(unused) = wire->attributes.erase(ID::keep);
log_assert(r);
}
RTLIL::Wire *remap_wire = module->wire(remap_name(port));
RTLIL::SigSpec signal(wire, 0, GetSize(remap_wire));
log_assert(GetSize(signal) >= GetSize(remap_wire));
RTLIL::SigSig conn;
if (mapped_wire->port_output) {
conn.first = signal;
conn.second = remap_wire;
out_wires++;
module->connect(conn);
}
else if (mapped_wire->port_input) {
conn.first = remap_wire;
conn.second = signal;
in_wires++;
module->connect(conn);
}
}
// ABC9 will return $_NOT_ gates in its mapping (since they are
// treated as being "free"), in particular driving primary
// outputs (real primary outputs, or cells treated as blackboxes)
// or driving box inputs.
// Instead of just mapping those $_NOT_ gates into 2-input $lut-s
// at an area and delay cost, see if it is possible to push
// this $_NOT_ into the driving LUT, or into all sink LUTs.
// When this is not possible, (i.e. this signal drives two primary
// outputs, only one of which is complemented) and when the driver
// is a LUT, then clone the LUT so that it can be inverted without
// increasing depth/delay.
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
log_assert(no_loops);
for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
log_assert(not_cell);
if (not_cell->type != ID($_NOT_))
continue;
auto it = not2drivers.find(not_cell);
if (it == not2drivers.end())
continue;
RTLIL::Cell *driver_lut = it->second;
RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
RTLIL::Const driver_mask;
a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));
auto jt = bit2sinks.find(a_bit);
if (jt == bit2sinks.end())
goto clone_lut;
for (auto sink_cell : jt->second)
if (sink_cell->type != ID($lut))
goto clone_lut;
// Push downstream LUTs past inverter
for (auto sink_cell : jt->second) {
SigSpec A = sink_cell->getPort(ID::A);
RTLIL::Const mask = sink_cell->getParam(ID(LUT));
int index = 0;
for (; index < GetSize(A); index++)
if (A[index] == a_bit)
break;
log_assert(index < GetSize(A));
int i = 0;
while (i < GetSize(mask)) {
for (int j = 0; j < (1 << index); j++)
std::swap(mask[i+j], mask[i+j+(1 << index)]);
i += 1 << (index+1);
}
A[index] = y_bit;
sink_cell->setPort(ID::A, A);
sink_cell->setParam(ID(LUT), mask);
}
// Since we have rewritten all sinks (which we know
// to be only LUTs) to be after the inverter, we can
// go ahead and clone the LUT with the expectation
// that the original driving LUT will become dangling
// and get cleaned away
clone_lut:
driver_mask = driver_lut->getParam(ID(LUT));
for (auto &b : driver_mask.bits) {
if (b == RTLIL::State::S0) b = RTLIL::State::S1;
else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
}
auto cell = module->addLut(NEW_ID,
driver_lut->getPort(ID::A),
y_bit,
driver_mask);
for (auto &bit : cell->connections_.at(ID::A)) {
bit.wire = module->wires_.at(remap_name(bit.wire->name));
bit2sinks[bit].push_back(cell);
}
}
//log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
log("ABC RESULTS: input signals: %8d\n", in_wires);
log("ABC RESULTS: output signals: %8d\n", out_wires);
design->remove(mapped_mod);
}
struct Abc9OpsPass : public Pass {
Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abc9_ops [options] [selection]\n");
log("\n");
log("This pass contains a set of supporting operations for use during ABC technology\n");
log("mapping, and is expected to be called in conjunction with other operations from\n");
log("the `abc9' script pass. Only fully-selected modules are supported.\n");
log("\n");
log(" -check\n");
log(" check that the design is valid, e.g. (* abc9_box_id *) values are unique,\n");
log(" (* abc9_carry *) is only given for one input/output port, etc.\n");
log("\n");
log(" -prep_delays\n");
log(" insert `$__ABC9_DELAY' blackbox cells into the design to account for\n");
log(" certain delays, e.g. (* abc9_required *) values.\n");
log("\n");
log(" -mark_scc\n");
log(" for an arbitrarily chosen cell in each unique SCC of each selected module\n");
log(" (tagged with an (* abc9_scc_id = <int> *) attribute), temporarily mark all\n");
log(" wires driven by this cell's outputs with a (* keep *) attribute in order\n");
log(" to break the SCC. this temporary attribute will be removed on -reintegrate.\n");
log("\n");
log(" -prep_xaiger\n");
log(" prepare the design for XAIGER output. this includes computing the\n");
log(" topological ordering of ABC9 boxes, as well as preparing the\n");
log(" '<module-name>$holes' module that contains the logic behaviour of ABC9\n");
log(" whiteboxes.\n");
log("\n");
log(" -dff\n");
log(" consider flop cells (those instantiating modules marked with (* abc9_flop *))\n");
log(" during -prep_{delays,xaiger,box}.\n");
log("\n");
log(" -prep_dff\n");
log(" compute the clock domain and initial value of each flop in the design.\n");
log(" process the '$holes' module to support clock-enable functionality.\n");
log("\n");
log(" -prep_lut <maxlut>\n");
log(" pre-compute the lut library by analysing all modules marked with\n");
log(" (* abc9_lut=<area> *).\n");
log("\n");
log(" -write_lut <dst>\n");
log(" write the pre-computed lut library to <dst>.\n");
log("\n");
log(" -prep_box\n");
log(" pre-compute the box library by analysing all modules marked with\n");
log(" (* abc9_box *).\n");
log("\n");
log(" -write_box <dst>\n");
log(" write the pre-computed box library to <dst>.\n");
log("\n");
log(" -reintegrate\n");
log(" for each selected module, re-intergrate the module '<module-name>$abc9'\n");
log(" by first recovering ABC9 boxes, and then stitching in the remaining primary\n");
log(" inputs and outputs.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n");
bool check_mode = false;
bool prep_delays_mode = false;
bool mark_scc_mode = false;
bool prep_dff_mode = false;
bool prep_xaiger_mode = false;
bool prep_lut_mode = false;
bool prep_box_mode = false;
bool reintegrate_mode = false;
bool dff_mode = false;
std::string write_lut_dst;
int maxlut = 0;
std::string write_box_dst;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-check") {
check_mode = true;
continue;
}
if (arg == "-mark_scc") {
mark_scc_mode = true;
continue;
}
if (arg == "-prep_dff") {
prep_dff_mode = true;
continue;
}
if (arg == "-prep_xaiger") {
prep_xaiger_mode = true;
continue;
}
if (arg == "-prep_delays") {
prep_delays_mode = true;
continue;
}
if (arg == "-prep_lut" && argidx+1 < args.size()) {
prep_lut_mode = true;
maxlut = atoi(args[++argidx].c_str());
continue;
}
if (arg == "-maxlut" && argidx+1 < args.size()) {
continue;
}
if (arg == "-write_lut" && argidx+1 < args.size()) {
write_lut_dst = args[++argidx];
rewrite_filename(write_lut_dst);
continue;
}
if (arg == "-prep_box") {
prep_box_mode = true;
continue;
}
if (arg == "-write_box" && argidx+1 < args.size()) {
write_box_dst = args[++argidx];
rewrite_filename(write_box_dst);
continue;
}
if (arg == "-reintegrate") {
reintegrate_mode = true;
continue;
}
if (arg == "-dff") {
dff_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!(check_mode || mark_scc_mode || prep_delays_mode || prep_xaiger_mode || prep_dff_mode || prep_lut_mode || prep_box_mode || !write_lut_dst.empty() || !write_box_dst.empty() || reintegrate_mode))
log_cmd_error("At least one of -check, -mark_scc, -prep_{delays,xaiger,dff,lut,box}, -write_{lut,box}, -reintegrate must be specified.\n");
if (dff_mode && !prep_delays_mode && !prep_xaiger_mode && !prep_box_mode)
log_cmd_error("'-dff' option is only relevant for -prep_{delay,xaiger,box}.\n");
if (check_mode)
check(design);
if (prep_delays_mode)
prep_delays(design, dff_mode);
if (prep_lut_mode)
prep_lut(design, maxlut);
if (prep_box_mode)
prep_box(design, dff_mode);
for (auto mod : design->selected_modules()) {
if (mod->get_bool_attribute("\\abc9_holes"))
continue;
if (mod->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(mod));
continue;
}
if (!design->selected_whole_module(mod))
log_error("Can't handle partially selected module %s!\n", log_id(mod));
if (!write_lut_dst.empty())
write_lut(mod, write_lut_dst);
if (!write_box_dst.empty())
write_box(mod, write_box_dst);
if (mark_scc_mode)
mark_scc(mod);
if (prep_dff_mode)
prep_dff(mod);
if (prep_xaiger_mode)
prep_xaiger(mod, dff_mode);
if (reintegrate_mode)
reintegrate(mod);
}
}
} Abc9OpsPass;
PRIVATE_NAMESPACE_END