yosys/tests/xsthammer/cy_cells.v

570 lines
16 KiB
Verilog

// Based on the simulation models from /opt/altera/13.0/quartus/eda/sim_lib/cycloneiii_atoms.v
module cycloneiii_lcell_comb (dataa, datab, datac, datad, cin, combout, cout);
input dataa, datab, datac, datad, cin;
output combout, cout;
parameter lut_mask = 16'hFFFF;
parameter sum_lutc_input = "datac";
parameter dont_touch = "off";
parameter lpm_type = "cycloneiii_lcell_comb";
reg cout_tmp, combout_tmp;
reg [1:0] isum_lutc_input;
// 4-input LUT function
function lut4;
input [15:0] mask;
input dataa, datab, datac, datad;
begin
lut4 = datad ? ( datac ? ( datab ? ( dataa ? mask[15] : mask[14])
: ( dataa ? mask[13] : mask[12]))
: ( datab ? ( dataa ? mask[11] : mask[10])
: ( dataa ? mask[ 9] : mask[ 8])))
: ( datac ? ( datab ? ( dataa ? mask[ 7] : mask[ 6])
: ( dataa ? mask[ 5] : mask[ 4]))
: ( datab ? ( dataa ? mask[ 3] : mask[ 2])
: ( dataa ? mask[ 1] : mask[ 0])));
end
endfunction
initial
if (sum_lutc_input == "datac")
isum_lutc_input = 0;
else if (sum_lutc_input == "cin")
isum_lutc_input = 1;
else
isum_lutc_input = 2;
always @* begin
if (isum_lutc_input == 0) // datac
combout_tmp = lut4(lut_mask, dataa, datab, datac, datad);
else if (isum_lutc_input == 1) // cin
combout_tmp = lut4(lut_mask, dataa, datab, cin, datad);
cout_tmp = lut4(lut_mask, dataa, datab, cin, 'b0);
end
assign combout = combout_tmp;
assign cout = cout_tmp;
endmodule
// ----------------------------------------------------------------------
module cycloneiii_io_ibuf (i, ibar, o);
parameter differential_mode = "false";
parameter bus_hold = "false";
parameter simulate_z_as = "Z";
parameter lpm_type = "cycloneiii_io_ibuf";
input i, ibar;
output o;
assign o = i;
endmodule
// ----------------------------------------------------------------------
module cycloneiii_io_obuf (i, oe, seriesterminationcontrol, devoe, o, obar);
parameter open_drain_output = "false";
parameter bus_hold = "false";
parameter lpm_type = "cycloneiii_io_obuf";
input i, oe, devoe;
input [15:0] seriesterminationcontrol;
output o, obar;
assign o = i;
assign obar = ~i;
endmodule
// ----------------------------------------------------------------------
module cycloneiii_mac_data_reg (clk,
data,
ena,
aclr,
dataout
);
parameter data_width = 18;
// INPUT PORTS
input clk;
input [17 : 0] data;
input ena;
input aclr;
// OUTPUT PORTS
output [17:0] dataout;
// INTERNAL VARIABLES AND NETS
reg clk_last_value;
reg [17:0] dataout_tmp;
wire [17:0] dataout_wire;
// INTERNAL VARIABLES
wire [17:0] data_ipd;
wire enable;
wire no_clr;
reg d_viol;
reg ena_viol;
wire clk_ipd;
wire ena_ipd;
wire aclr_ipd;
// BUFFER INPUTS
buf (clk_ipd, clk);
buf (ena_ipd, ena);
buf (aclr_ipd, aclr);
buf (data_ipd[0], data[0]);
buf (data_ipd[1], data[1]);
buf (data_ipd[2], data[2]);
buf (data_ipd[3], data[3]);
buf (data_ipd[4], data[4]);
buf (data_ipd[5], data[5]);
buf (data_ipd[6], data[6]);
buf (data_ipd[7], data[7]);
buf (data_ipd[8], data[8]);
buf (data_ipd[9], data[9]);
buf (data_ipd[10], data[10]);
buf (data_ipd[11], data[11]);
buf (data_ipd[12], data[12]);
buf (data_ipd[13], data[13]);
buf (data_ipd[14], data[14]);
buf (data_ipd[15], data[15]);
buf (data_ipd[16], data[16]);
buf (data_ipd[17], data[17]);
assign enable = (!aclr_ipd) && (ena_ipd);
assign no_clr = (!aclr_ipd);
initial
begin
clk_last_value <= 'b0;
dataout_tmp <= 18'b0;
end
always @(clk_ipd or aclr_ipd)
begin
if (d_viol == 1'b1 || ena_viol == 1'b1)
begin
dataout_tmp <= 'bX;
end
else if (aclr_ipd == 1'b1)
begin
dataout_tmp <= 'b0;
end
else
begin
if ((clk_ipd === 1'b1) && (clk_last_value == 1'b0))
if (ena_ipd === 1'b1)
dataout_tmp <= data_ipd;
end
clk_last_value <= clk_ipd;
end // always
assign dataout_wire = dataout_tmp;
and (dataout[0], dataout_wire[0], 1'b1);
and (dataout[1], dataout_wire[1], 1'b1);
and (dataout[2], dataout_wire[2], 1'b1);
and (dataout[3], dataout_wire[3], 1'b1);
and (dataout[4], dataout_wire[4], 1'b1);
and (dataout[5], dataout_wire[5], 1'b1);
and (dataout[6], dataout_wire[6], 1'b1);
and (dataout[7], dataout_wire[7], 1'b1);
and (dataout[8], dataout_wire[8], 1'b1);
and (dataout[9], dataout_wire[9], 1'b1);
and (dataout[10], dataout_wire[10], 1'b1);
and (dataout[11], dataout_wire[11], 1'b1);
and (dataout[12], dataout_wire[12], 1'b1);
and (dataout[13], dataout_wire[13], 1'b1);
and (dataout[14], dataout_wire[14], 1'b1);
and (dataout[15], dataout_wire[15], 1'b1);
and (dataout[16], dataout_wire[16], 1'b1);
and (dataout[17], dataout_wire[17], 1'b1);
endmodule //cycloneiii_mac_data_reg
module cycloneiii_mac_sign_reg (
clk,
d,
ena,
aclr,
q
);
// INPUT PORTS
input clk;
input d;
input ena;
input aclr;
// OUTPUT PORTS
output q;
// INTERNAL VARIABLES
reg clk_last_value;
reg q_tmp;
reg ena_viol;
reg d_viol;
wire enable;
// DEFAULT VALUES THRO' PULLUPs
// tri1 aclr, ena;
wire d_ipd;
wire clk_ipd;
wire ena_ipd;
wire aclr_ipd;
buf (d_ipd, d);
buf (clk_ipd, clk);
buf (ena_ipd, ena);
buf (aclr_ipd, aclr);
assign enable = (!aclr_ipd) && (ena_ipd);
initial
begin
clk_last_value <= 'b0;
q_tmp <= 'b0;
end
always @ (clk_ipd or aclr_ipd)
begin
if (d_viol == 1'b1 || ena_viol == 1'b1)
begin
q_tmp <= 'bX;
end
else
begin
if (aclr_ipd == 1'b1)
q_tmp <= 0;
else if ((clk_ipd == 1'b1) && (clk_last_value == 1'b0))
if (ena_ipd == 1'b1)
q_tmp <= d_ipd;
end
clk_last_value <= clk_ipd;
end
and (q, q_tmp, 'b1);
endmodule // cycloneiii_mac_sign_reg
module cycloneiii_mac_mult_internal
(
dataa,
datab,
signa,
signb,
dataout
);
parameter dataa_width = 18;
parameter datab_width = 18;
parameter dataout_width = dataa_width + datab_width;
// INPUT
input [dataa_width-1:0] dataa;
input [datab_width-1:0] datab;
input signa;
input signb;
// OUTPUT
output [dataout_width-1:0] dataout;
// Internal variables
wire [17:0] dataa_ipd;
wire [17:0] datab_ipd;
wire signa_ipd;
wire signb_ipd;
wire [dataout_width-1:0] dataout_tmp;
wire ia_is_positive;
wire ib_is_positive;
wire [17:0] iabsa; // absolute value (i.e. positive) form of dataa input
wire [17:0] iabsb; // absolute value (i.e. positive) form of datab input
wire [35:0] iabsresult; // absolute value (i.e. positive) form of product (a * b)
reg [17:0] i_ones; // padding with 1's for input negation
// Input buffers
buf (signa_ipd, signa);
buf (signb_ipd, signb);
// buf dataa_buf [dataa_width-1:0] (dataa_ipd[dataa_width-1:0], dataa);
// buf datab_buf [datab_width-1:0] (datab_ipd[datab_width-1:0], datab);
assign dataa_ipd[dataa_width-1:0] = dataa;
assign datab_ipd[datab_width-1:0] = datab;
initial
begin
// 1's padding for 18-bit wide inputs
i_ones = ~0;
end
// get signs of a and b, and get absolute values since Verilog '*' operator
// is an unsigned multiplication
assign ia_is_positive = ~signa_ipd | ~dataa_ipd[dataa_width-1];
assign ib_is_positive = ~signb_ipd | ~datab_ipd[datab_width-1];
assign iabsa = ia_is_positive == 1 ? dataa_ipd[dataa_width-1:0] : -(dataa_ipd | (i_ones << dataa_width));
assign iabsb = ib_is_positive == 1 ? datab_ipd[datab_width-1:0] : -(datab_ipd | (i_ones << datab_width));
// multiply a * b
assign iabsresult = iabsa * iabsb;
assign dataout_tmp = (ia_is_positive ^ ib_is_positive) == 1 ? -iabsresult : iabsresult;
// buf dataout_buf [dataout_width-1:0] (dataout, dataout_tmp);
assign dataout = dataout_tmp;
endmodule
module cycloneiii_mac_mult
(
dataa,
datab,
signa,
signb,
clk,
aclr,
ena,
dataout,
devclrn,
devpor
);
parameter dataa_width = 18;
parameter datab_width = 18;
parameter dataa_clock = "none";
parameter datab_clock = "none";
parameter signa_clock = "none";
parameter signb_clock = "none";
parameter lpm_hint = "true";
parameter lpm_type = "cycloneiii_mac_mult";
// SIMULATION_ONLY_PARAMETERS_BEGIN
parameter dataout_width = dataa_width + datab_width;
// SIMULATION_ONLY_PARAMETERS_END
input [dataa_width-1:0] dataa;
input [datab_width-1:0] datab;
input signa;
input signb;
input clk;
input aclr;
input ena;
input devclrn;
input devpor;
output [dataout_width-1:0] dataout;
// tri1 devclrn;
// tri1 devpor;
wire [dataout_width-1:0] dataout_tmp;
wire [17:0] idataa_reg; // optional register for dataa input
wire [17:0] idatab_reg; // optional register for datab input
wire [17:0] dataa_pad; // padded dataa input
wire [17:0] datab_pad; // padded datab input
wire isigna_reg; // optional register for signa input
wire isignb_reg; // optional register for signb input
wire [17:0] idataa_int; // dataa as seen by the multiplier input
wire [17:0] idatab_int; // datab as seen by the multiplier input
wire isigna_int; // signa as seen by the multiplier input
wire isignb_int; // signb as seen by the multiplier input
wire ia_is_positive;
wire ib_is_positive;
wire [17:0] iabsa; // absolute value (i.e. positive) form of dataa input
wire [17:0] iabsb; // absolute value (i.e. positive) form of datab input
wire [35:0] iabsresult; // absolute value (i.e. positive) form of product (a * b)
wire dataa_use_reg; // equivalent to dataa_clock parameter
wire datab_use_reg; // equivalent to datab_clock parameter
wire signa_use_reg; // equivalent to signa_clock parameter
wire signb_use_reg; // equivalent to signb_clock parameter
reg [17:0] i_ones; // padding with 1's for input negation
wire reg_aclr;
assign reg_aclr = (!devpor) || (!devclrn) || (aclr);
// optional registering parameters
assign dataa_use_reg = (dataa_clock != "none") ? 1'b1 : 1'b0;
assign datab_use_reg = (datab_clock != "none") ? 1'b1 : 1'b0;
assign signa_use_reg = (signa_clock != "none") ? 1'b1 : 1'b0;
assign signb_use_reg = (signb_clock != "none") ? 1'b1 : 1'b0;
assign dataa_pad = ((18-dataa_width) == 0) ? dataa : {{(18-dataa_width){1'b0}},dataa};
assign datab_pad = ((18-datab_width) == 0) ? datab : {{(18-datab_width){1'b0}},datab};
initial
begin
// 1's padding for 18-bit wide inputs
i_ones = ~0;
end
// Optional input registers for dataa,b and signa,b
cycloneiii_mac_data_reg dataa_reg (
.clk(clk),
.data(dataa_pad),
.ena(ena),
.aclr(reg_aclr),
.dataout(idataa_reg)
);
defparam dataa_reg.data_width = dataa_width;
cycloneiii_mac_data_reg datab_reg (
.clk(clk),
.data(datab_pad),
.ena(ena),
.aclr(reg_aclr),
.dataout(idatab_reg)
);
defparam datab_reg.data_width = datab_width;
cycloneiii_mac_sign_reg signa_reg (
.clk(clk),
.d(signa),
.ena(ena),
.aclr(reg_aclr),
.q(isigna_reg)
);
cycloneiii_mac_sign_reg signb_reg (
.clk(clk),
.d(signb),
.ena(ena),
.aclr(reg_aclr),
.q(isignb_reg)
);
// mux input sources from direct inputs or optional registers
assign idataa_int = dataa_use_reg == 1'b1 ? idataa_reg : dataa;
assign idatab_int = datab_use_reg == 1'b1 ? idatab_reg : datab;
assign isigna_int = signa_use_reg == 1'b1 ? isigna_reg : signa;
assign isignb_int = signb_use_reg == 1'b1 ? isignb_reg : signb;
cycloneiii_mac_mult_internal mac_multiply (
.dataa(idataa_int[dataa_width-1:0]),
.datab(idatab_int[datab_width-1:0]),
.signa(isigna_int),
.signb(isignb_int),
.dataout(dataout)
);
defparam mac_multiply.dataa_width = dataa_width;
defparam mac_multiply.datab_width = datab_width;
defparam mac_multiply.dataout_width = dataout_width;
endmodule
module cycloneiii_mac_out
(
dataa,
clk,
aclr,
ena,
dataout,
devclrn,
devpor
);
parameter dataa_width = 1;
parameter output_clock = "none";
parameter lpm_hint = "true";
parameter lpm_type = "cycloneiii_mac_out";
// SIMULATION_ONLY_PARAMETERS_BEGIN
parameter dataout_width = dataa_width;
// SIMULATION_ONLY_PARAMETERS_END
input [dataa_width-1:0] dataa;
input clk;
input aclr;
input ena;
input devclrn;
input devpor;
output [dataout_width-1:0] dataout;
// tri1 devclrn;
// tri1 devpor;
wire [dataa_width-1:0] dataa_ipd; // internal dataa
wire clk_ipd; // internal clk
wire aclr_ipd; // internal aclr
wire ena_ipd; // internal ena
// internal variable
wire [dataout_width-1:0] dataout_tmp;
reg [dataa_width-1:0] idataout_reg; // optional register for dataout output
wire use_reg; // equivalent to dataout_clock parameter
wire enable;
wire no_aclr;
// Input buffers
buf (clk_ipd, clk);
buf (aclr_ipd, aclr);
buf (ena_ipd, ena);
// buf dataa_buf [dataa_width-1:0] (dataa_ipd, dataa);
assign dataa_ipd = dataa;
// optional registering parameter
assign use_reg = (output_clock != "none") ? 1 : 0;
assign enable = (!aclr) && (ena) && use_reg;
assign no_aclr = (!aclr) && use_reg;
initial
begin
// initial values for optional register
idataout_reg = 0;
end
// Optional input registers for dataa,b and signa,b
always @* // (posedge clk_ipd or posedge aclr_ipd or negedge devclrn or negedge devpor)
begin
if (devclrn == 0 || devpor == 0 || aclr_ipd == 1)
begin
idataout_reg <= 0;
end
else if (ena_ipd == 1)
begin
idataout_reg <= dataa_ipd;
end
end
// mux input sources from direct inputs or optional registers
assign dataout_tmp = use_reg == 1 ? idataout_reg : dataa_ipd;
// accelerate outputs
// buf dataout_buf [dataout_width-1:0] (dataout, dataout_tmp);
assign dataout = dataout_tmp;
endmodule