yosys/techlibs/xilinx/cells_map.v

270 lines
13 KiB
Verilog

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// Convert negative-polarity reset to positive-polarity
(* techmap_celltype = "$_DFF_NN0_" *)
module _90_dff_nn0_to_np0 (input D, C, R, output Q); \$_DFF_NP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_PN0_" *)
module _90_dff_pn0_to_pp0 (input D, C, R, output Q); \$_DFF_PP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_NN1_" *)
module _90_dff_nn1_to_np1 (input D, C, R, output Q); \$_DFF_NP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_PN1_" *)
module _90_dff_pn1_to_pp1 (input D, C, R, output Q); \$_DFF_PP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
module \$__SHREG_ (input C, input D, input E, output Q);
parameter DEPTH = 0;
parameter [DEPTH-1:0] INIT = 0;
parameter CLKPOL = 1;
parameter ENPOL = 2;
\$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q));
endmodule
module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
parameter DEPTH = 0;
parameter [DEPTH-1:0] INIT = 0;
parameter CLKPOL = 1;
parameter ENPOL = 2;
// shregmap's INIT parameter shifts out LSB first;
// however Xilinx expects MSB first
function [DEPTH-1:0] brev;
input [DEPTH-1:0] din;
integer i;
begin
for (i = 0; i < DEPTH; i=i+1)
brev[i] = din[DEPTH-1-i];
end
endfunction
localparam [DEPTH-1:0] INIT_R = brev(INIT);
parameter _TECHMAP_CONSTMSK_L_ = 0;
parameter _TECHMAP_CONSTVAL_L_ = 0;
wire CE;
generate
if (ENPOL == 0)
assign CE = ~E;
else if (ENPOL == 1)
assign CE = E;
else
assign CE = 1'b1;
if (DEPTH == 1) begin
if (CLKPOL)
FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
else
FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
end else
if (DEPTH <= 16) begin
SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
end else
if (DEPTH > 17 && DEPTH <= 32) begin
SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
end else
if (DEPTH > 33 && DEPTH <= 64) begin
wire T0, T1, T2;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T2;
else
MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
end else
if (DEPTH > 65 && DEPTH <= 96) begin
wire T0, T1, T2, T3, T4, T5, T6;
SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T4;
else begin
MUXF7 fpga_mux_0 (.O(T5), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T6), .I0(T4), .I1(1'b0 /* unused */), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T5), .I1(T6), .S(L[6]));
end
end else
if (DEPTH > 97 && DEPTH < 128) begin
wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T6;
else begin
MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
end
end
else if (DEPTH == 128) begin
wire T0, T1, T2, T3, T4, T5, T6;
SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T6;
else begin
wire T7, T8;
MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
end
end
else if (DEPTH <= 129 && ~&_TECHMAP_CONSTMSK_L_) begin
// Handle cases where fixed-length depth is
// just 1 over a convenient value
\$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
end
else begin
localparam lower_clog2 = $clog2((DEPTH+1)/2);
localparam lower_depth = 2 ** lower_clog2;
wire T0, T1, T2, T3;
if (&_TECHMAP_CONSTMSK_L_) begin
\$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(lower_depth-1), .E(E), .Q(T0));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T0), .L(DEPTH-lower_depth-1), .E(E), .Q(Q), .SO(T3));
end
else begin
\$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(L[lower_clog2-1:0]), .E(E), .Q(T0), .SO(T1));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L[lower_clog2-1:0]), .E(E), .Q(T2), .SO(T3));
assign Q = L[lower_clog2] ? T2 : T0;
end
if (DEPTH == 2 * lower_depth)
assign SO = T3;
end
endgenerate
endmodule
module \$shiftx (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0;
parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
function integer compute_num_leading_X_in_A;
integer i, c;
begin
compute_num_leading_X_in_A = 0;
c = 1;
for (i = A_WIDTH-1; i >= 0; i=i-1) begin
if (!_TECHMAP_CONSTMSK_A_[i] || _TECHMAP_CONSTVAL_A_[i] !== 1'bx)
c = 0;
compute_num_leading_X_in_A = compute_num_leading_X_in_A + c;
end
end
endfunction
localparam num_leading_X_in_A = compute_num_leading_X_in_A();
generate
genvar i, j;
// TODO: Check if this opt still necessary
if (B_SIGNED) begin
if (_TECHMAP_CONSTMSK_B_[B_WIDTH-1] && _TECHMAP_CONSTVAL_B_[B_WIDTH-1] == 1'b0)
// Optimisation to remove B_SIGNED if sign bit of B is constant-0
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(0), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B[B_WIDTH-2:0]), .Y(Y));
else
wire _TECHMAP_FAIL_ = 1;
end
// Bit-blast
else if (Y_WIDTH > 1) begin
for (i = 0; i < Y_WIDTH; i++)
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i]));
end
// If the LSB of B is constant zero (and Y_WIDTH is 1) then
// we can optimise by removing every other entry from A
// and popping the constant zero from B
else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin
wire [(A_WIDTH+1)/2-1:0] A_i;
for (i = 0; i < (A_WIDTH+1)/2; i++)
assign A_i[i] = A[i*2];
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y));
end
// Trim off any leading 1'bx -es in A, and resize B accordingly
else if (num_leading_X_in_A > 0) begin
localparam A_WIDTH_new = A_WIDTH - num_leading_X_in_A;
localparam B_WIDTH_new = $clog2(A_WIDTH_new);
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH_new), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B[B_WIDTH_new-1:0]), .Y(Y));
end
else if (B_WIDTH < 3 || A_WIDTH <= 4) begin
wire _TECHMAP_FAIL_ = 1;
end
else if (B_WIDTH == 3) begin
localparam a_width0 = 2 ** 2;
localparam a_widthN = A_WIDTH - a_width0;
wire T0, T1;
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(2), .Y_WIDTH(Y_WIDTH)) fpga_shiftx (.A(A[a_width0-1:0]), .B(B[2-1:0]), .Y(T0));
if (a_widthN > 1)
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_shiftx_last (.A(A[A_WIDTH-1:a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T1));
else
assign T1 = A[A_WIDTH-1];
MUXF7 fpga_mux (.I0(T0), .I1(T1), .S(B[B_WIDTH-1]), .O(Y));
end
else if (B_WIDTH == 4) begin
localparam a_width0 = 2 ** 2;
localparam num_mux8 = A_WIDTH / a_width0;
localparam a_widthN = A_WIDTH - num_mux8*a_width0;
wire [4-1:0] T;
wire T0, T1;
for (i = 0; i < 4; i++)
if (i < num_mux8)
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(2), .Y_WIDTH(Y_WIDTH)) fpga_shiftx (.A(A[i*a_width0+:a_width0]), .B(B[2-1:0]), .Y(T[i]));
else if (i == num_mux8 && a_widthN > 0) begin
if (a_widthN > 1)
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_shiftx_last (.A(A[A_WIDTH-1:i*a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T[i]));
else
assign T[i] = A[A_WIDTH-1];
end
else
assign T[i] = 1'bx;
MUXF7 fpga_mux_0 (.I0(T[0]), .I1(T[1]), .S(B[2]), .O(T0));
MUXF7 fpga_mux_1 (.I0(T[2]), .I1(T[3]), .S(B[2]), .O(T1));
MUXF8 fpga_mux_2 (.I0(T0), .I1(T1), .S(B[3]), .O(Y));
end
else begin
localparam a_width0 = 2 ** 4;
localparam num_mux16 = A_WIDTH / a_width0;
localparam a_widthN = A_WIDTH - num_mux16*a_width0;
wire [(2**(B_WIDTH-4))-1:0] T;
for (i = 0; i < 2 ** (B_WIDTH-4); i++)
if (i < num_mux16)
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(4), .Y_WIDTH(Y_WIDTH)) fpga_shiftx (.A(A[i*a_width0+:a_width0]), .B(B[4-1:0]), .Y(T[i]));
else if (i == num_mux16 && a_widthN > 0) begin
if (a_widthN > 1)
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_shiftx_last (.A(A[A_WIDTH-1:i*a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T[i]));
else
assign T[i] = A[A_WIDTH-1];
end
else
assign T[i] = 1'bx;
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(2**(B_WIDTH-4)), .B_WIDTH(B_WIDTH-4), .Y_WIDTH(Y_WIDTH)) fpga_shiftx (.A(T), .B(B[B_WIDTH-1:4]), .Y(Y));
end
endgenerate
endmodule