yosys/techlibs/gowin/cells_sim.v

869 lines
24 KiB
Verilog

(* abc9_lut=1 *)
module LUT1(output F, input I0);
parameter [1:0] INIT = 0;
specify
(I0 => F) = (555, 902);
endspecify
assign F = I0 ? INIT[1] : INIT[0];
endmodule
(* abc9_lut=1 *)
module LUT2(output F, input I0, I1);
parameter [3:0] INIT = 0;
specify
(I0 => F) = (867, 1184);
(I1 => F) = (555, 902);
endspecify
wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0];
assign F = I0 ? s1[1] : s1[0];
endmodule
(* abc9_lut=1 *)
module LUT3(output F, input I0, I1, I2);
parameter [7:0] INIT = 0;
specify
(I0 => F) = (1054, 1486);
(I1 => F) = (867, 1184);
(I2 => F) = (555, 902);
endspecify
wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign F = I0 ? s1[1] : s1[0];
endmodule
(* abc9_lut=1 *)
module LUT4(output F, input I0, I1, I2, I3);
parameter [15:0] INIT = 0;
specify
(I0 => F) = (1054, 1486);
(I1 => F) = (1053, 1583);
(I2 => F) = (867, 1184);
(I3 => F) = (555, 902);
endspecify
wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0];
wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign F = I0 ? s1[1] : s1[0];
endmodule
(* abc9_lut=2 *)
module __APICULA_LUT5(output F, input I0, I1, I2, I3, M0);
specify
(I0 => F) = (1187, 1638);
(I1 => F) = (1184, 1638);
(I2 => F) = (995, 1371);
(I3 => F) = (808, 1116);
(M0 => F) = (486, 680);
endspecify
endmodule
(* abc9_lut=4 *)
module __APICULA_LUT6(output F, input I0, I1, I2, I3, M0, M1);
specify
(I0 => F) = (1187 + 136, 1638 + 255);
(I1 => F) = (1184 + 136, 1638 + 255);
(I2 => F) = (995 + 136, 1371 + 255);
(I3 => F) = (808 + 136, 1116 + 255);
(M0 => F) = (486 + 136, 680 + 255);
(M1 => F) = (478, 723);
endspecify
endmodule
(* abc9_lut=8 *)
module __APICULA_LUT7(output F, input I0, I1, I2, I3, M0, M1, M2);
specify
(I0 => F) = (1187 + 136 + 136, 1638 + 255 + 255);
(I1 => F) = (1184 + 136 + 136, 1638 + 255 + 255);
(I2 => F) = (995 + 136 + 136, 1371 + 255 + 255);
(I3 => F) = (808 + 136 + 136, 1116 + 255 + 255);
(M0 => F) = (486 + 136 + 136, 680 + 255 + 255);
(M1 => F) = (478 + 136, 723 + 255);
(M2 => F) = (478, 723);
endspecify
endmodule
(* abc9_lut=16 *)
module __APICULA_LUT8(output F, input I0, I1, I2, I3, M0, M1, M2, M3);
specify
(I0 => F) = (1187 + 136 + 136 + 136, 1638 + 255 + 255 + 255);
(I1 => F) = (1184 + 136 + 136 + 136, 1638 + 255 + 255 + 255);
(I2 => F) = (995 + 136 + 136 + 136, 1371 + 255 + 255 + 255);
(I3 => F) = (808 + 136 + 136 + 136, 1116 + 255 + 255 + 255);
(M0 => F) = (486 + 136 + 136 + 136, 680 + 255 + 255 + 255);
(M1 => F) = (478 + 136 + 136, 723 + 255 + 255);
(M2 => F) = (478 + 136, 723 + 255);
(M3 => F) = (478, 723);
endspecify
endmodule
module MUX2 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
specify
(I0 => O) = (141, 160);
(I1 => O) = (141, 160);
(S0 => O) = (486, 680);
endspecify
assign O = S0 ? I1 : I0;
endmodule
module MUX2_LUT5 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
specify
(I0 => O) = (141, 160);
(I1 => O) = (141, 160);
(S0 => O) = (486, 680);
endspecify
MUX2 mux2_lut5 (O, I0, I1, S0);
endmodule
module MUX2_LUT6 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
specify
(I0 => O) = (136, 255);
(I1 => O) = (136, 255);
(S0 => O) = (478, 723);
endspecify
MUX2 mux2_lut6 (O, I0, I1, S0);
endmodule
module MUX2_LUT7 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
specify
(I0 => O) = (136, 255);
(I1 => O) = (136, 255);
(S0 => O) = (478, 723);
endspecify
MUX2 mux2_lut7 (O, I0, I1, S0);
endmodule
module MUX2_LUT8 (O, I0, I1, S0);
input I0,I1;
input S0;
output O;
specify
(I0 => O) = (136, 255);
(I1 => O) = (136, 255);
(S0 => O) = (478, 723);
endspecify
MUX2 mux2_lut8 (O, I0, I1, S0);
endmodule
(* abc9_flop, lib_whitebox *)
module DFF (output reg Q, input CLK, D);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
(posedge CLK => (Q : D)) = (480, 660);
$setup(D, posedge CLK, 576);
endspecify
always @(posedge CLK)
Q <= D;
endmodule
(* abc9_flop, lib_whitebox *)
module DFFE (output reg Q, input D, CLK, CE);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
if (CE) (posedge CLK => (Q : D)) = (480, 660);
$setup(D, posedge CLK &&& CE, 576);
$setup(CE, posedge CLK, 63);
endspecify
always @(posedge CLK) begin
if (CE)
Q <= D;
end
endmodule // DFFE (positive clock edge; clock enable)
(* abc9_box, lib_whitebox *)
module DFFS (output reg Q, input D, CLK, SET);
parameter [0:0] INIT = 1'b1;
initial Q = INIT;
specify
(posedge CLK => (Q : D)) = (480, 660);
$setup(D, posedge CLK, 576);
$setup(SET, posedge CLK, 63);
endspecify
always @(posedge CLK) begin
if (SET)
Q <= 1'b1;
else
Q <= D;
end
endmodule // DFFS (positive clock edge; synchronous set)
(* abc9_box, lib_whitebox *)
module DFFSE (output reg Q, input D, CLK, CE, SET);
parameter [0:0] INIT = 1'b1;
initial Q = INIT;
specify
if (CE) (posedge CLK => (Q : D)) = (480, 660);
$setup(D, posedge CLK &&& CE, 576);
$setup(CE, posedge CLK, 63);
$setup(SET, posedge CLK, 63);
endspecify
always @(posedge CLK) begin
if (SET)
Q <= 1'b1;
else if (CE)
Q <= D;
end
endmodule // DFFSE (positive clock edge; synchronous set takes precedence over clock enable)
(* abc9_flop, lib_whitebox *)
module DFFR (output reg Q, input D, CLK, RESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
(posedge CLK => (Q : D)) = (480, 660);
$setup(D, posedge CLK, 576);
$setup(RESET, posedge CLK, 63);
endspecify
always @(posedge CLK) begin
if (RESET)
Q <= 1'b0;
else
Q <= D;
end
endmodule // DFFR (positive clock edge; synchronous reset)
(* abc9_flop, lib_whitebox *)
module DFFRE (output reg Q, input D, CLK, CE, RESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
if (CE) (posedge CLK => (Q : D)) = (480, 660);
$setup(D, posedge CLK &&& CE, 576);
$setup(CE, posedge CLK, 63);
$setup(RESET, posedge CLK, 63);
endspecify
always @(posedge CLK) begin
if (RESET)
Q <= 1'b0;
else if (CE)
Q <= D;
end
endmodule // DFFRE (positive clock edge; synchronous reset takes precedence over clock enable)
(* abc9_box, lib_whitebox *)
module DFFP (output reg Q, input D, CLK, PRESET);
parameter [0:0] INIT = 1'b1;
initial Q = INIT;
specify
(posedge CLK => (Q : D)) = (480, 660);
(posedge PRESET => (Q : 1'b1)) = (1800, 2679);
$setup(D, posedge CLK, 576);
endspecify
always @(posedge CLK or posedge PRESET) begin
if(PRESET)
Q <= 1'b1;
else
Q <= D;
end
endmodule // DFFP (positive clock edge; asynchronous preset)
(* abc9_box, lib_whitebox *)
module DFFPE (output reg Q, input D, CLK, CE, PRESET);
parameter [0:0] INIT = 1'b1;
initial Q = INIT;
specify
if (CE) (posedge CLK => (Q : D)) = (480, 660);
(posedge PRESET => (Q : 1'b1)) = (1800, 2679);
$setup(D, posedge CLK &&& CE, 576);
$setup(CE, posedge CLK, 63);
endspecify
always @(posedge CLK or posedge PRESET) begin
if(PRESET)
Q <= 1'b1;
else if (CE)
Q <= D;
end
endmodule // DFFPE (positive clock edge; asynchronous preset; clock enable)
(* abc9_box, lib_whitebox *)
module DFFC (output reg Q, input D, CLK, CLEAR);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
(posedge CLK => (Q : D)) = (480, 660);
(posedge CLEAR => (Q : 1'b0)) = (1800, 2679);
$setup(D, posedge CLK, 576);
endspecify
always @(posedge CLK or posedge CLEAR) begin
if(CLEAR)
Q <= 1'b0;
else
Q <= D;
end
endmodule // DFFC (positive clock edge; asynchronous clear)
(* abc9_box, lib_whitebox *)
module DFFCE (output reg Q, input D, CLK, CE, CLEAR);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
if (CE) (posedge CLK => (Q : D)) = (480, 660);
(posedge CLEAR => (Q : 1'b0)) = (1800, 2679);
$setup(D, posedge CLK &&& CE, 576);
$setup(CE, posedge CLK, 63);
endspecify
always @(posedge CLK or posedge CLEAR) begin
if(CLEAR)
Q <= 1'b0;
else if (CE)
Q <= D;
end
endmodule // DFFCE (positive clock edge; asynchronous clear; clock enable)
(* abc9_flop, lib_whitebox *)
module DFFN (output reg Q, input CLK, D);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
(negedge CLK => (Q : D)) = (480, 660);
$setup(D, negedge CLK, 576);
endspecify
always @(negedge CLK)
Q <= D;
endmodule
(* abc9_flop, lib_whitebox *)
module DFFNE (output reg Q, input D, CLK, CE);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
if (CE) (negedge CLK => (Q : D)) = (480, 660);
$setup(D, negedge CLK &&& CE, 576);
$setup(CE, negedge CLK, 63);
endspecify
always @(negedge CLK) begin
if (CE)
Q <= D;
end
endmodule // DFFNE (negative clock edge; clock enable)
(* abc9_box, lib_whitebox *)
module DFFNS (output reg Q, input D, CLK, SET);
parameter [0:0] INIT = 1'b1;
initial Q = INIT;
specify
(negedge CLK => (Q : D)) = (480, 660);
$setup(D, negedge CLK, 576);
$setup(SET, negedge CLK, 63);
endspecify
always @(negedge CLK) begin
if (SET)
Q <= 1'b1;
else
Q <= D;
end
endmodule // DFFNS (negative clock edge; synchronous set)
(* abc9_box, lib_whitebox *)
module DFFNSE (output reg Q, input D, CLK, CE, SET);
parameter [0:0] INIT = 1'b1;
initial Q = INIT;
specify
if (CE) (negedge CLK => (Q : D)) = (480, 660);
$setup(D, negedge CLK &&& CE, 576);
$setup(CE, negedge CLK, 63);
$setup(SET, negedge CLK, 63);
endspecify
always @(negedge CLK) begin
if (SET)
Q <= 1'b1;
else if (CE)
Q <= D;
end
endmodule // DFFNSE (negative clock edge; synchronous set takes precedence over clock enable)
(* abc9_flop, lib_whitebox *)
module DFFNR (output reg Q, input D, CLK, RESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
(negedge CLK => (Q : D)) = (480, 660);
$setup(D, negedge CLK, 576);
$setup(RESET, negedge CLK, 63);
endspecify
always @(negedge CLK) begin
if (RESET)
Q <= 1'b0;
else
Q <= D;
end
endmodule // DFFNR (negative clock edge; synchronous reset)
(* abc9_flop, lib_whitebox *)
module DFFNRE (output reg Q, input D, CLK, CE, RESET);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
if (CE) (negedge CLK => (Q : D)) = (480, 660);
$setup(D, negedge CLK &&& CE, 576);
$setup(CE, negedge CLK, 63);
$setup(RESET, negedge CLK, 63);
endspecify
always @(negedge CLK) begin
if (RESET)
Q <= 1'b0;
else if (CE)
Q <= D;
end
endmodule // DFFNRE (negative clock edge; synchronous reset takes precedence over clock enable)
(* abc9_box, lib_whitebox *)
module DFFNP (output reg Q, input D, CLK, PRESET);
parameter [0:0] INIT = 1'b1;
initial Q = INIT;
specify
(negedge CLK => (Q : D)) = (480, 660);
(posedge PRESET => (Q : 1'b1)) = (1800, 2679);
$setup(D, negedge CLK, 576);
endspecify
always @(negedge CLK or posedge PRESET) begin
if(PRESET)
Q <= 1'b1;
else
Q <= D;
end
endmodule // DFFNP (negative clock edge; asynchronous preset)
(* abc9_box, lib_whitebox *)
module DFFNPE (output reg Q, input D, CLK, CE, PRESET);
parameter [0:0] INIT = 1'b1;
initial Q = INIT;
specify
if (CE) (negedge CLK => (Q : D)) = (480, 660);
(posedge PRESET => (Q : 1'b1)) = (1800, 2679);
$setup(D, negedge CLK &&& CE, 576);
$setup(CE, negedge CLK, 63);
endspecify
always @(negedge CLK or posedge PRESET) begin
if(PRESET)
Q <= 1'b1;
else if (CE)
Q <= D;
end
endmodule // DFFNPE (negative clock edge; asynchronous preset; clock enable)
(* abc9_box, lib_whitebox *)
module DFFNC (output reg Q, input D, CLK, CLEAR);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
(negedge CLK => (Q : D)) = (480, 660);
(posedge CLEAR => (Q : 1'b0)) = (1800, 2679);
$setup(D, negedge CLK, 576);
endspecify
always @(negedge CLK or posedge CLEAR) begin
if(CLEAR)
Q <= 1'b0;
else
Q <= D;
end
endmodule // DFFNC (negative clock edge; asynchronous clear)
(* abc9_box, lib_whitebox *)
module DFFNCE (output reg Q, input D, CLK, CE, CLEAR);
parameter [0:0] INIT = 1'b0;
initial Q = INIT;
specify
if (CE) (negedge CLK => (Q : D)) = (480, 660);
(posedge CLEAR => (Q : 1'b0)) = (1800, 2679);
$setup(D, negedge CLK &&& CE, 576);
$setup(CE, negedge CLK, 63);
endspecify
always @(negedge CLK or posedge CLEAR) begin
if(CLEAR)
Q <= 1'b0;
else if (CE)
Q <= D;
end
endmodule // DFFNCE (negative clock edge; asynchronous clear; clock enable)
// TODO add more DFF sim cells
module VCC(output V);
assign V = 1;
endmodule
module GND(output G);
assign G = 0;
endmodule
(* abc9_box *)
module IBUF(output O, input I);
specify
(I => O) = 0;
endspecify
assign O = I;
endmodule
(* abc9_box *)
module OBUF(output O, input I);
specify
(I => O) = 0;
endspecify
assign O = I;
endmodule
module TBUF (O, I, OEN);
input I, OEN;
output O;
assign O = OEN ? I : 1'bz;
endmodule
module IOBUF (O, IO, I, OEN);
input I,OEN;
output O;
inout IO;
assign IO = OEN ? I : 1'bz;
assign I = IO;
endmodule
module GSR (input GSRI);
wire GSRO = GSRI;
endmodule
(* abc9_box, lib_whitebox *)
module ALU (SUM, COUT, I0, I1, I3, CIN);
input I0;
input I1;
input I3;
(* abc9_carry *) input CIN;
output SUM;
(* abc9_carry *) output COUT;
localparam ADD = 0;
localparam SUB = 1;
localparam ADDSUB = 2;
localparam NE = 3;
localparam GE = 4;
localparam LE = 5;
localparam CUP = 6;
localparam CDN = 7;
localparam CUPCDN = 8;
localparam MULT = 9;
parameter ALU_MODE = 0;
reg S, C;
specify
(I0 => SUM) = (1043, 1432);
(I1 => SUM) = (775, 1049);
(I3 => SUM) = (751, 1010);
(CIN => SUM) = (694, 811);
(I0 => COUT) = (1010, 1380);
(I1 => COUT) = (1021, 1505);
(I3 => COUT) = (483, 792);
(CIN => COUT) = (49, 82);
endspecify
assign SUM = S ^ CIN;
assign COUT = S? CIN : C;
always @* begin
case (ALU_MODE)
ADD: begin
S = I0 ^ I1;
C = I0;
end
SUB: begin
S = I0 ^ ~I1;
C = I0;
end
ADDSUB: begin
S = I3? I0 ^ I1 : I0 ^ ~I1;
C = I0;
end
NE: begin
S = I0 ^ ~I1;
C = 1'b1;
end
GE: begin
S = I0 ^ ~I1;
C = I0;
end
LE: begin
S = ~I0 ^ I1;
C = I1;
end
CUP: begin
S = I0;
C = 1'b0;
end
CDN: begin
S = ~I0;
C = 1'b1;
end
CUPCDN: begin
S = I3? I0 : ~I0;
C = I0;
end
MULT: begin
S = I0 & I1;
C = I0 & I1;
end
endcase
end
endmodule
module RAM16S4 (DO, DI, AD, WRE, CLK);
parameter WIDTH = 4;
parameter INIT_0 = 16'h0000;
parameter INIT_1 = 16'h0000;
parameter INIT_2 = 16'h0000;
parameter INIT_3 = 16'h0000;
input [WIDTH-1:0] AD;
input [WIDTH-1:0] DI;
output [WIDTH-1:0] DO;
input CLK;
input WRE;
specify
(AD => DO) = (270, 405);
$setup(DI, posedge CLK, 62);
$setup(WRE, posedge CLK, 62);
$setup(AD, posedge CLK, 62);
(posedge CLK => (DO : {WIDTH{1'bx}})) = (474, 565);
endspecify
reg [15:0] mem0, mem1, mem2, mem3;
initial begin
mem0 = INIT_0;
mem1 = INIT_1;
mem2 = INIT_2;
mem3 = INIT_3;
end
assign DO[0] = mem0[AD];
assign DO[1] = mem1[AD];
assign DO[2] = mem2[AD];
assign DO[3] = mem3[AD];
always @(posedge CLK) begin
if (WRE) begin
mem0[AD] <= DI[0];
mem1[AD] <= DI[1];
mem2[AD] <= DI[2];
mem3[AD] <= DI[3];
end
end
endmodule // RAM16S4
(* blackbox *)
module SDP (DO, DI, BLKSEL, ADA, ADB, WREA, WREB, CLKA, CLKB, CEA, CEB, OCE, RESETA, RESETB);
//1'b0: Bypass mode; 1'b1 Pipeline mode
parameter READ_MODE = 1'b0;
parameter BIT_WIDTH_0 = 32; // 1, 2, 4, 8, 16, 32
parameter BIT_WIDTH_1 = 32; // 1, 2, 4, 8, 16, 32
parameter BLK_SEL = 3'b000;
parameter RESET_MODE = "SYNC";
parameter INIT_RAM_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_08 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_09 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_0F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_10 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_11 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_12 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_13 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_14 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_15 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_16 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_17 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_18 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_19 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_1F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_20 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_21 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_22 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_23 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_24 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_25 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_26 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_27 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_28 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_29 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_2F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_30 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_31 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_32 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_33 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_34 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_35 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_36 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_37 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_38 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_39 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_RAM_3F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
input CLKA, CEA, CLKB, CEB;
input OCE; // clock enable of memory output register
input RESETA, RESETB; // resets output registers, not memory contents
input WREA, WREB; // 1'b0: read enabled; 1'b1: write enabled
input [13:0] ADA, ADB;
input [31:0] DI;
input [2:0] BLKSEL;
output [31:0] DO;
specify
(posedge CLKB => (DO : DI)) = (419, 493);
$setup(RESETA, posedge CLKA, 62);
$setup(RESETB, posedge CLKB, 62);
$setup(OCE, posedge CLKB, 62);
$setup(CEA, posedge CLKA, 62);
$setup(CEB, posedge CLKB, 62);
$setup(OCE, posedge CLKB, 62);
$setup(WREA, posedge CLKA, 62);
$setup(WREB, posedge CLKB, 62);
$setup(DI, posedge CLKA, 62);
$setup(ADA, posedge CLKA, 62);
$setup(ADB, posedge CLKB, 62);
$setup(BLKSEL, posedge CLKA, 62);
endspecify
endmodule
(* blackbox *)
module rPLL (CLKOUT, CLKOUTP, CLKOUTD, CLKOUTD3, LOCK, CLKIN, CLKFB, FBDSEL, IDSEL, ODSEL, DUTYDA, PSDA, FDLY, RESET, RESET_P);
input CLKIN;
input CLKFB;
input RESET;
input RESET_P;
input [5:0] FBDSEL;
input [5:0] IDSEL;
input [5:0] ODSEL;
input [3:0] PSDA,FDLY;
input [3:0] DUTYDA;
output CLKOUT;
output LOCK;
output CLKOUTP;
output CLKOUTD;
output CLKOUTD3;
parameter FCLKIN = "100.0"; // frequency of CLKIN
parameter DYN_IDIV_SEL= "false"; // true:IDSEL, false:IDIV_SEL
parameter IDIV_SEL = 0; // 0:1, 1:2 ... 63:64
parameter DYN_FBDIV_SEL= "false"; // true:FBDSEL, false:FBDIV_SEL
parameter FBDIV_SEL = 0; // 0:1, 1:2 ... 63:64
parameter DYN_ODIV_SEL= "false"; // true:ODSEL, false:ODIV_SEL
parameter ODIV_SEL = 8; // 2/4/8/16/32/48/64/80/96/112/128
parameter PSDA_SEL= "0000";
parameter DYN_DA_EN = "false"; // true:PSDA or DUTYDA or FDA, false: DA_SEL
parameter DUTYDA_SEL= "1000";
parameter CLKOUT_FT_DIR = 1'b1; // CLKOUT fine tuning direction. 1'b1 only
parameter CLKOUTP_FT_DIR = 1'b1; // 1'b1 only
parameter CLKOUT_DLY_STEP = 0; // 0, 1, 2, 4
parameter CLKOUTP_DLY_STEP = 0; // 0, 1, 2
parameter CLKFB_SEL = "internal"; // "internal", "external"
parameter CLKOUT_BYPASS = "false"; // "true", "false"
parameter CLKOUTP_BYPASS = "false"; // "true", "false"
parameter CLKOUTD_BYPASS = "false"; // "true", "false"
parameter DYN_SDIV_SEL = 2; // 2~128, only even numbers
parameter CLKOUTD_SRC = "CLKOUT"; // CLKOUT, CLKOUTP
parameter CLKOUTD3_SRC = "CLKOUT"; // CLKOUT, CLKOUTP
parameter DEVICE = "GW1N-1"; // "GW1N-1", "GW1N-4", "GW1N-9", "GW1NR-4", "GW1NR-9", "GW1N-4B", "GW1NR-4B", "GW1NS-2", "GW1NS-2C", "GW1NZ-1", "GW1NSR-2", "GW1NSR-2C", "GW1N-1S", "GW1NSE-2C", "GW1NRF-4B", "GW1N-9C", "GW1NR-9C", "GW1N-4C", "GW1NR-4C"
endmodule