yosys/passes/opt/opt_rmdff.cc

712 lines
21 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/log.h"
#include "kernel/register.h"
#include "kernel/rtlil.h"
#include "kernel/satgen.h"
#include "kernel/sigtools.h"
#include <stdio.h>
#include <stdlib.h>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
SigMap assign_map, dff_init_map;
SigSet<RTLIL::Cell*> mux_drivers;
dict<SigBit, RTLIL::Cell*> bit2driver;
dict<SigBit, pool<SigBit>> init_attributes;
bool keepdc;
bool sat;
void remove_init_attr(SigSpec sig)
{
for (auto bit : assign_map(sig))
if (init_attributes.count(bit))
for (auto wbit : init_attributes.at(bit))
wbit.wire->attributes.at(ID::init)[wbit.offset] = State::Sx;
}
bool handle_dffsr(RTLIL::Module *mod, RTLIL::Cell *cell)
{
SigSpec sig_set, sig_clr;
State pol_set, pol_clr;
if (cell->hasPort(ID::S))
sig_set = cell->getPort(ID::S);
if (cell->hasPort(ID::R))
sig_clr = cell->getPort(ID::R);
if (cell->hasPort(ID::SET))
sig_set = cell->getPort(ID::SET);
if (cell->hasPort(ID::CLR))
sig_clr = cell->getPort(ID::CLR);
log_assert(GetSize(sig_set) == GetSize(sig_clr));
if (cell->type.begins_with("$_DFFSR_")) {
pol_set = cell->type[9] == 'P' ? State::S1 : State::S0;
pol_clr = cell->type[10] == 'P' ? State::S1 : State::S0;
} else
if (cell->type.begins_with("$_DLATCHSR_")) {
pol_set = cell->type[12] == 'P' ? State::S1 : State::S0;
pol_clr = cell->type[13] == 'P' ? State::S1 : State::S0;
} else
if (cell->type.in(ID($dffsr), ID($dlatchsr))) {
pol_set = cell->parameters[ID::SET_POLARITY].as_bool() ? State::S1 : State::S0;
pol_clr = cell->parameters[ID::CLR_POLARITY].as_bool() ? State::S1 : State::S0;
} else
log_abort();
State npol_set = pol_set == State::S0 ? State::S1 : State::S0;
State npol_clr = pol_clr == State::S0 ? State::S1 : State::S0;
SigSpec sig_d = cell->getPort(ID::D);
SigSpec sig_q = cell->getPort(ID::Q);
bool did_something = false;
bool proper_sr = false;
bool used_pol_set = false;
bool used_pol_clr = false;
bool hasreset = false;
Const reset_val;
SigSpec sig_reset;
for (int i = 0; i < GetSize(sig_set); i++)
{
SigBit s = sig_set[i], c = sig_clr[i];
if (s != npol_set || c != npol_clr)
hasreset = true;
if (s == pol_set || c == pol_clr)
{
log("Constantly %s Q bit %s for SR cell %s (%s) from module %s.\n",
s == pol_set ? "set" : "cleared", log_signal(sig_q[i]),
log_id(cell), log_id(cell->type), log_id(mod));
remove_init_attr(sig_q[i]);
mod->connect(sig_q[i], s == pol_set ? State::S1 : State::S0);
sig_set.remove(i);
sig_clr.remove(i);
sig_d.remove(i);
sig_q.remove(i--);
did_something = true;
continue;
}
if (sig_reset.empty() && s.wire != nullptr) sig_reset = s;
if (sig_reset.empty() && c.wire != nullptr) sig_reset = c;
if (s.wire != nullptr && s != sig_reset) proper_sr = true;
if (c.wire != nullptr && c != sig_reset) proper_sr = true;
if ((s.wire == nullptr) != (c.wire == nullptr)) {
if (s.wire != nullptr) used_pol_set = true;
if (c.wire != nullptr) used_pol_clr = true;
reset_val.bits.push_back(c.wire == nullptr ? State::S1 : State::S0);
} else
proper_sr = true;
}
if (!hasreset)
proper_sr = false;
if (GetSize(sig_set) == 0)
{
log("Removing %s (%s) from module %s.\n", log_id(cell), log_id(cell->type), log_id(mod));
mod->remove(cell);
return true;
}
if (cell->type.in(ID($dffsr), ID($dlatchsr)))
{
cell->setParam(ID::WIDTH, GetSize(sig_d));
cell->setPort(ID::SET, sig_set);
cell->setPort(ID::CLR, sig_clr);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
}
else
{
cell->setPort(ID::S, sig_set);
cell->setPort(ID::R, sig_clr);
cell->setPort(ID::D, sig_d);
cell->setPort(ID::Q, sig_q);
}
if (proper_sr)
return did_something;
if (used_pol_set && used_pol_clr && pol_set != pol_clr)
return did_something;
if (cell->type == ID($dlatchsr))
return did_something;
State unified_pol = used_pol_set ? pol_set : pol_clr;
if (cell->type == ID($dffsr))
{
if (hasreset)
{
log("Converting %s (%s) to %s in module %s.\n", log_id(cell), log_id(cell->type), "$adff", log_id(mod));
cell->type = ID($adff);
cell->setParam(ID::ARST_POLARITY, unified_pol);
cell->setParam(ID::ARST_VALUE, reset_val);
cell->setPort(ID::ARST, sig_reset);
cell->unsetParam(ID::SET_POLARITY);
cell->unsetParam(ID::CLR_POLARITY);
cell->unsetPort(ID::SET);
cell->unsetPort(ID::CLR);
}
else
{
log("Converting %s (%s) to %s in module %s.\n", log_id(cell), log_id(cell->type), "$dff", log_id(mod));
cell->type = ID($dff);
cell->unsetParam(ID::SET_POLARITY);
cell->unsetParam(ID::CLR_POLARITY);
cell->unsetPort(ID::SET);
cell->unsetPort(ID::CLR);
}
return true;
}
if (!hasreset)
{
IdString new_type;
if (cell->type.begins_with("$_DFFSR_"))
new_type = stringf("$_DFF_%c_", cell->type[8]);
else if (cell->type.begins_with("$_DLATCHSR_"))
new_type = stringf("$_DLATCH_%c_", cell->type[11]);
else
log_abort();
log("Converting %s (%s) to %s in module %s.\n", log_id(cell), log_id(cell->type), log_id(new_type), log_id(mod));
cell->type = new_type;
cell->unsetPort(ID::S);
cell->unsetPort(ID::R);
return true;
}
return did_something;
}
bool handle_dlatch(RTLIL::Module *mod, RTLIL::Cell *dlatch)
{
SigSpec sig_e;
State on_state, off_state;
if (dlatch->type == ID($dlatch)) {
sig_e = assign_map(dlatch->getPort(ID::EN));
on_state = dlatch->getParam(ID::EN_POLARITY).as_bool() ? State::S1 : State::S0;
off_state = dlatch->getParam(ID::EN_POLARITY).as_bool() ? State::S0 : State::S1;
} else
if (dlatch->type == ID($_DLATCH_P_)) {
sig_e = assign_map(dlatch->getPort(ID::E));
on_state = State::S1;
off_state = State::S0;
} else
if (dlatch->type == ID($_DLATCH_N_)) {
sig_e = assign_map(dlatch->getPort(ID::E));
on_state = State::S0;
off_state = State::S1;
} else
log_abort();
if (sig_e == off_state)
{
RTLIL::Const val_init;
for (auto bit : dff_init_map(dlatch->getPort(ID::Q)))
val_init.bits.push_back(bit.wire == NULL ? bit.data : State::Sx);
mod->connect(dlatch->getPort(ID::Q), val_init);
goto delete_dlatch;
}
if (sig_e == on_state)
{
mod->connect(dlatch->getPort(ID::Q), dlatch->getPort(ID::D));
goto delete_dlatch;
}
return false;
delete_dlatch:
log("Removing %s (%s) from module %s.\n", log_id(dlatch), log_id(dlatch->type), log_id(mod));
remove_init_attr(dlatch->getPort(ID::Q));
mod->remove(dlatch);
return true;
}
bool handle_dff(RTLIL::Module *mod, RTLIL::Cell *dff)
{
RTLIL::SigSpec sig_d, sig_q, sig_c, sig_r, sig_e;
RTLIL::Const val_cp, val_rp, val_rv, val_ep;
if (dff->type == ID($_FF_)) {
sig_d = dff->getPort(ID::D);
sig_q = dff->getPort(ID::Q);
}
else if (dff->type == ID($_DFF_N_) || dff->type == ID($_DFF_P_)) {
sig_d = dff->getPort(ID::D);
sig_q = dff->getPort(ID::Q);
sig_c = dff->getPort(ID::C);
val_cp = RTLIL::Const(dff->type == ID($_DFF_P_), 1);
}
else if (dff->type.begins_with("$_DFF_") && dff->type.compare(9, 1, "_") == 0 &&
(dff->type[6] == 'N' || dff->type[6] == 'P') &&
(dff->type[7] == 'N' || dff->type[7] == 'P') &&
(dff->type[8] == '0' || dff->type[8] == '1')) {
sig_d = dff->getPort(ID::D);
sig_q = dff->getPort(ID::Q);
sig_c = dff->getPort(ID::C);
sig_r = dff->getPort(ID::R);
val_cp = RTLIL::Const(dff->type[6] == 'P', 1);
val_rp = RTLIL::Const(dff->type[7] == 'P', 1);
val_rv = RTLIL::Const(dff->type[8] == '1', 1);
}
else if (dff->type.begins_with("$_DFFE_") && dff->type.compare(9, 1, "_") == 0 &&
(dff->type[7] == 'N' || dff->type[7] == 'P') &&
(dff->type[8] == 'N' || dff->type[8] == 'P')) {
sig_d = dff->getPort(ID::D);
sig_q = dff->getPort(ID::Q);
sig_c = dff->getPort(ID::C);
sig_e = dff->getPort(ID::E);
val_cp = RTLIL::Const(dff->type[7] == 'P', 1);
val_ep = RTLIL::Const(dff->type[8] == 'P', 1);
}
else if (dff->type == ID($ff)) {
sig_d = dff->getPort(ID::D);
sig_q = dff->getPort(ID::Q);
}
else if (dff->type == ID($dff)) {
sig_d = dff->getPort(ID::D);
sig_q = dff->getPort(ID::Q);
sig_c = dff->getPort(ID::CLK);
val_cp = RTLIL::Const(dff->parameters[ID::CLK_POLARITY].as_bool(), 1);
}
else if (dff->type == ID($dffe)) {
sig_e = dff->getPort(ID::EN);
sig_d = dff->getPort(ID::D);
sig_q = dff->getPort(ID::Q);
sig_c = dff->getPort(ID::CLK);
val_cp = RTLIL::Const(dff->parameters[ID::CLK_POLARITY].as_bool(), 1);
val_ep = RTLIL::Const(dff->parameters[ID::EN_POLARITY].as_bool(), 1);
}
else if (dff->type == ID($adff)) {
sig_d = dff->getPort(ID::D);
sig_q = dff->getPort(ID::Q);
sig_c = dff->getPort(ID::CLK);
sig_r = dff->getPort(ID::ARST);
val_cp = RTLIL::Const(dff->parameters[ID::CLK_POLARITY].as_bool(), 1);
val_rp = RTLIL::Const(dff->parameters[ID::ARST_POLARITY].as_bool(), 1);
val_rv = dff->parameters[ID::ARST_VALUE];
}
else
log_abort();
assign_map.apply(sig_d);
assign_map.apply(sig_q);
assign_map.apply(sig_c);
assign_map.apply(sig_r);
bool has_init = false;
RTLIL::Const val_init;
for (auto bit : dff_init_map(sig_q).to_sigbit_vector()) {
if (bit.wire == NULL || keepdc)
has_init = true;
val_init.bits.push_back(bit.wire == NULL ? bit.data : RTLIL::State::Sx);
}
if (dff->type.in(ID($ff), ID($dff)) && mux_drivers.has(sig_d)) {
std::set<RTLIL::Cell*> muxes;
mux_drivers.find(sig_d, muxes);
for (auto mux : muxes) {
RTLIL::SigSpec sig_a = assign_map(mux->getPort(ID::A));
RTLIL::SigSpec sig_b = assign_map(mux->getPort(ID::B));
if (sig_a == sig_q && sig_b.is_fully_const() && (!has_init || val_init == sig_b.as_const())) {
mod->connect(sig_q, sig_b);
goto delete_dff;
}
if (sig_b == sig_q && sig_a.is_fully_const() && (!has_init || val_init == sig_a.as_const())) {
mod->connect(sig_q, sig_a);
goto delete_dff;
}
}
}
// If clock is driven by a constant and (i) no reset signal
// (ii) Q has no initial value
// (iii) initial value is same as reset value
if (!sig_c.empty() && sig_c.is_fully_const() && (!sig_r.size() || !has_init || val_init == val_rv)) {
if (val_rv.bits.size() == 0)
val_rv = val_init;
// Q is permanently reset value or initial value
mod->connect(sig_q, val_rv);
goto delete_dff;
}
// If D is fully undefined and reset signal present and (i) Q has no initial value
// (ii) initial value is same as reset value
if (sig_d.is_fully_undef() && sig_r.size() && (!has_init || val_init == val_rv)) {
// Q is permanently reset value
mod->connect(sig_q, val_rv);
goto delete_dff;
}
// If D is fully undefined and no reset signal and Q has an initial value
if (sig_d.is_fully_undef() && !sig_r.size() && has_init) {
// Q is permanently initial value
mod->connect(sig_q, val_init);
goto delete_dff;
}
// If D is fully constant and (i) no reset signal
// (ii) reset value is same as constant D
// and (a) has no initial value
// (b) initial value same as constant D
if (sig_d.is_fully_const() && (!sig_r.size() || val_rv == sig_d.as_const()) && (!has_init || val_init == sig_d.as_const())) {
// Q is permanently D
mod->connect(sig_q, sig_d);
goto delete_dff;
}
// If D input is same as Q output and (i) no reset signal
// (ii) no initial signal
// (iii) initial value is same as reset value
if (sig_d == sig_q && (sig_r.empty() || !has_init || val_init == val_rv)) {
// Q is permanently reset value or initial value
if (sig_r.size())
mod->connect(sig_q, val_rv);
else if (has_init)
mod->connect(sig_q, val_init);
goto delete_dff;
}
// If reset signal is present, and is fully constant
if (!sig_r.empty() && sig_r.is_fully_const())
{
// If reset value is permanently active or if reset is undefined
if (sig_r == val_rp || sig_r.is_fully_undef()) {
// Q is permanently reset value
mod->connect(sig_q, val_rv);
goto delete_dff;
}
log("Removing unused reset from %s (%s) from module %s.\n", log_id(dff), log_id(dff->type), log_id(mod));
if (dff->type == ID($adff)) {
dff->type = ID($dff);
dff->unsetPort(ID::ARST);
dff->unsetParam(ID::ARST_POLARITY);
dff->unsetParam(ID::ARST_VALUE);
return true;
}
log_assert(dff->type.begins_with("$_DFF_"));
dff->type = stringf("$_DFF_%c_", + dff->type[6]);
dff->unsetPort(ID::R);
}
// If enable signal is present, and is fully constant
if (!sig_e.empty() && sig_e.is_fully_const())
{
// If enable value is permanently inactive
if (sig_e != val_ep) {
// Q is permanently initial value
mod->connect(sig_q, val_init);
goto delete_dff;
}
log("Removing unused enable from %s (%s) from module %s.\n", log_id(dff), log_id(dff->type), log_id(mod));
if (dff->type == ID($dffe)) {
dff->type = ID($dff);
dff->unsetPort(ID::EN);
dff->unsetParam(ID::EN_POLARITY);
return true;
}
log_assert(dff->type.begins_with("$_DFFE_"));
dff->type = stringf("$_DFF_%c_", + dff->type[7]);
dff->unsetPort(ID::E);
}
if (sat && has_init && (!sig_r.size() || val_init == val_rv))
{
bool removed_sigbits = false;
ezSatPtr ez;
SatGen satgen(ez.get(), &assign_map);
pool<Cell*> sat_cells;
std::function<void(Cell*)> sat_import_cell = [&](Cell *c) {
if (!sat_cells.insert(c).second)
return;
if (!satgen.importCell(c))
return;
for (auto &conn : c->connections()) {
if (!c->input(conn.first))
continue;
for (auto bit : assign_map(conn.second))
if (bit2driver.count(bit))
sat_import_cell(bit2driver.at(bit));
}
};
// For each register bit, try to prove that it cannot change from the initial value. If so, remove it
for (int position = 0; position < GetSize(sig_d); position += 1) {
RTLIL::SigBit q_sigbit = sig_q[position];
RTLIL::SigBit d_sigbit = sig_d[position];
if ((!q_sigbit.wire) || (!d_sigbit.wire))
continue;
if (!bit2driver.count(d_sigbit))
continue;
sat_import_cell(bit2driver.at(d_sigbit));
RTLIL::State sigbit_init_val = val_init[position];
if (sigbit_init_val != State::S0 && sigbit_init_val != State::S1)
continue;
int init_sat_pi = satgen.importSigSpec(sigbit_init_val).front();
int q_sat_pi = satgen.importSigBit(q_sigbit);
int d_sat_pi = satgen.importSigBit(d_sigbit);
// Try to find out whether the register bit can change under some circumstances
bool counter_example_found = ez->solve(ez->IFF(q_sat_pi, init_sat_pi), ez->NOT(ez->IFF(d_sat_pi, init_sat_pi)));
// If the register bit cannot change, we can replace it with a constant
if (!counter_example_found)
{
log("Setting constant %d-bit at position %d on %s (%s) from module %s.\n", sigbit_init_val ? 1 : 0,
position, log_id(dff), log_id(dff->type), log_id(mod));
SigSpec tmp = dff->getPort(ID::D);
tmp[position] = sigbit_init_val;
dff->setPort(ID::D, tmp);
removed_sigbits = true;
}
}
if (removed_sigbits) {
handle_dff(mod, dff);
return true;
}
}
return false;
delete_dff:
log("Removing %s (%s) from module %s.\n", log_id(dff), log_id(dff->type), log_id(mod));
remove_init_attr(dff->getPort(ID::Q));
mod->remove(dff);
for (auto &entry : bit2driver)
if (entry.second == dff)
bit2driver.erase(entry.first);
return true;
}
struct OptRmdffPass : public Pass {
OptRmdffPass() : Pass("opt_rmdff", "remove DFFs with constant inputs") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_rmdff [-keepdc] [-sat] [selection]\n");
log("\n");
log("This pass identifies flip-flops with constant inputs and replaces them with\n");
log("a constant driver.\n");
log("\n");
log(" -sat\n");
log(" additionally invoke SAT solver to detect and remove flip-flops (with \n");
log(" non-constant inputs) that can also be replaced with a constant driver\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
int total_count = 0, total_initdrv = 0;
log_header(design, "Executing OPT_RMDFF pass (remove dff with constant values).\n");
keepdc = false;
sat = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-keepdc") {
keepdc = true;
continue;
}
if (args[argidx] == "-sat") {
sat = true;
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto module : design->selected_modules()) {
pool<SigBit> driven_bits;
dict<SigBit, State> init_bits;
assign_map.set(module);
dff_init_map.set(module);
mux_drivers.clear();
bit2driver.clear();
init_attributes.clear();
for (auto wire : module->wires())
{
if (wire->attributes.count(ID::init) != 0) {
Const initval = wire->attributes.at(ID::init);
for (int i = 0; i < GetSize(initval) && i < GetSize(wire); i++)
if (initval[i] == State::S0 || initval[i] == State::S1)
dff_init_map.add(SigBit(wire, i), initval[i]);
for (int i = 0; i < GetSize(wire); i++) {
SigBit wire_bit(wire, i), mapped_bit = assign_map(wire_bit);
if (mapped_bit.wire) {
init_attributes[mapped_bit].insert(wire_bit);
if (i < GetSize(initval))
init_bits[mapped_bit] = initval[i];
}
}
}
if (wire->port_input) {
for (auto bit : assign_map(wire))
driven_bits.insert(bit);
}
}
std::vector<RTLIL::IdString> dff_list;
std::vector<RTLIL::IdString> dffsr_list;
std::vector<RTLIL::IdString> dlatch_list;
for (auto cell : module->cells())
{
for (auto &conn : cell->connections()) {
bool is_output = cell->output(conn.first);
if (is_output || !cell->known())
for (auto bit : assign_map(conn.second)) {
if (is_output)
bit2driver[bit] = cell;
driven_bits.insert(bit);
}
}
if (cell->type.in(ID($mux), ID($pmux))) {
if (cell->getPort(ID::A).size() == cell->getPort(ID::B).size())
mux_drivers.insert(assign_map(cell->getPort(ID::Y)), cell);
continue;
}
if (!design->selected(module, cell))
continue;
if (cell->type.in(ID($_DFFSR_NNN_), ID($_DFFSR_NNP_), ID($_DFFSR_NPN_), ID($_DFFSR_NPP_),
ID($_DFFSR_PNN_), ID($_DFFSR_PNP_), ID($_DFFSR_PPN_), ID($_DFFSR_PPP_), ID($dffsr),
ID($_DLATCHSR_NNN_), ID($_DLATCHSR_NNP_), ID($_DLATCHSR_NPN_), ID($_DLATCHSR_NPP_),
ID($_DLATCHSR_PNN_), ID($_DLATCHSR_PNP_), ID($_DLATCHSR_PPN_), ID($_DLATCHSR_PPP_), ID($dlatchsr)))
dffsr_list.push_back(cell->name);
if (cell->type.in(ID($_FF_), ID($_DFF_N_), ID($_DFF_P_),
ID($_DFF_NN0_), ID($_DFF_NN1_), ID($_DFF_NP0_), ID($_DFF_NP1_),
ID($_DFF_PN0_), ID($_DFF_PN1_), ID($_DFF_PP0_), ID($_DFF_PP1_),
ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_),
ID($ff), ID($dff), ID($dffe), ID($adff)))
dff_list.push_back(cell->name);
if (cell->type.in(ID($dlatch), ID($_DLATCH_P_), ID($_DLATCH_N_)))
dlatch_list.push_back(cell->name);
}
for (auto &id : dffsr_list) {
if (module->cell(id) != nullptr &&
handle_dffsr(module, module->cells_[id]))
total_count++;
}
for (auto &id : dff_list) {
if (module->cell(id) != nullptr &&
handle_dff(module, module->cells_[id]))
total_count++;
}
for (auto &id : dlatch_list) {
if (module->cell(id) != nullptr &&
handle_dlatch(module, module->cells_[id]))
total_count++;
}
SigSpec const_init_sigs;
for (auto bit : init_bits)
if (!driven_bits.count(bit.first))
const_init_sigs.append(bit.first);
const_init_sigs.sort_and_unify();
for (SigSpec sig : const_init_sigs.chunks())
{
Const val;
for (auto bit : sig)
val.bits.push_back(init_bits.at(bit));
log("Promoting init spec %s = %s to constant driver in module %s.\n",
log_signal(sig), log_signal(val), log_id(module));
module->connect(sig, val);
remove_init_attr(sig);
total_initdrv++;
}
}
assign_map.clear();
mux_drivers.clear();
bit2driver.clear();
init_attributes.clear();
if (total_count || total_initdrv)
design->scratchpad_set_bool("opt.did_something", true);
if (total_initdrv)
log("Promoted %d init specs to constant drivers.\n", total_initdrv);
if (total_count)
log("Replaced %d DFF cells.\n", total_count);
}
} OptRmdffPass;
PRIVATE_NAMESPACE_END