yosys/frontends/aiger/aigerparse.cc

838 lines
30 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* Copyright (C) 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] The AIGER And-Inverter Graph (AIG) Format Version 20071012
// Armin Biere. The AIGER And-Inverter Graph (AIG) Format Version 20071012. Technical Report 07/1, October 2011, FMV Reports Series, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria.
// http://fmv.jku.at/papers/Biere-FMV-TR-07-1.pdf
#ifdef _WIN32
#include <libgen.h>
#include <stdlib.h>
#endif
#include <array>
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "aigerparse.h"
YOSYS_NAMESPACE_BEGIN
//#define log_debug log
#define log_debug(...) ;
AigerReader::AigerReader(RTLIL::Design *design, std::istream &f, RTLIL::IdString module_name, RTLIL::IdString clk_name, std::string map_filename, bool wideports)
: design(design), f(f), clk_name(clk_name), map_filename(map_filename), wideports(wideports)
{
module = new RTLIL::Module;
module->name = module_name;
if (design->module(module->name))
log_error("Duplicate definition of module %s!\n", log_id(module->name));
}
void AigerReader::parse_aiger()
{
std::string header;
f >> header;
if (header != "aag" && header != "aig")
log_error("Unsupported AIGER file!\n");
// Parse rest of header
if (!(f >> M >> I >> L >> O >> A))
log_error("Invalid AIGER header\n");
// Optional values
B = C = J = F = 0;
for (auto &i : std::array<std::reference_wrapper<unsigned>,4>{B, C, J, F}) {
if (f.peek() != ' ') break;
if (!(f >> i))
log_error("Invalid AIGER header\n");
}
std::string line;
std::getline(f, line); // Ignore up to start of next line, as standard
// says anything that follows could be used for
// optional sections
log_debug("M=%u I=%u L=%u O=%u A=%u B=%u C=%u J=%u F=%u\n", M, I, L, O, A, B, C, J, F);
line_count = 1;
if (header == "aag")
parse_aiger_ascii();
else if (header == "aig")
parse_aiger_binary();
else
log_abort();
// Parse footer (symbol table, comments, etc.)
unsigned l1;
std::string s;
for (int c = f.peek(); c != EOF; c = f.peek(), ++line_count) {
if (c == 'i' || c == 'l' || c == 'o') {
f.ignore(1);
if (!(f >> l1 >> s))
log_error("Line %u cannot be interpreted as a symbol entry!\n", line_count);
if ((c == 'i' && l1 > inputs.size()) || (c == 'l' && l1 > latches.size()) || (c == 'o' && l1 > outputs.size()))
log_error("Line %u has invalid symbol position!\n", line_count);
RTLIL::Wire* wire;
if (c == 'i') wire = inputs[l1];
else if (c == 'l') wire = latches[l1];
else if (c == 'o') wire = outputs[l1];
else log_abort();
module->rename(wire, stringf("\\%s", s.c_str()));
}
else if (c == 'b' || c == 'j' || c == 'f') {
// TODO
}
else if (c == 'c') {
f.ignore(1);
if (f.peek() == '\n')
break;
// Else constraint (TODO)
}
else
log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
std::getline(f, line); // Ignore up to start of next line
}
dict<RTLIL::IdString, int> wideports_cache;
if (!map_filename.empty()) {
std::ifstream mf(map_filename);
std::string type, symbol;
int variable, index;
while (mf >> type >> variable >> index >> symbol) {
RTLIL::IdString escaped_symbol = RTLIL::escape_id(symbol);
if (type == "input") {
log_assert(static_cast<unsigned>(variable) < inputs.size());
RTLIL::Wire* wire = inputs[variable];
log_assert(wire);
log_assert(wire->port_input);
if (index == 0)
module->rename(wire, RTLIL::escape_id(symbol));
else if (index > 0) {
module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", symbol.c_str(), index)));
if (wideports)
wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index);
}
}
else if (type == "output") {
log_assert(static_cast<unsigned>(variable) < outputs.size());
RTLIL::Wire* wire = outputs[variable];
log_assert(wire);
// Ignore direct output -> input connections
if (!wire->port_output)
continue;
log_assert(wire->port_output);
if (index == 0)
module->rename(wire, RTLIL::escape_id(symbol));
else if (index > 0) {
module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", symbol.c_str(), index)));
if (wideports)
wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index);
}
}
else
log_error("Symbol type '%s' not recognised.\n", type.c_str());
}
}
for (auto &wp : wideports_cache) {
auto name = wp.first;
int width = wp.second + 1;
RTLIL::Wire *wire = module->wire(name);
if (wire) {
RTLIL::Cell* driver = module->cell(stringf("%s$lut", wire->name.c_str()));
module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", name.c_str(), 0)));
if (driver)
module->rename(driver, stringf("%s$lut", wire->name.c_str()));
}
// Do not make ports with a mix of input/output into
// wide ports
bool port_input = false, port_output = false;
for (int i = 0; i < width; i++) {
RTLIL::IdString other_name = name.str() + stringf("[%d]", i);
RTLIL::Wire *other_wire = module->wire(other_name);
if (other_wire) {
port_input = port_input || other_wire->port_input;
port_output = port_output || other_wire->port_output;
}
}
if ((port_input && port_output) || (!port_input && !port_output))
continue;
wire = module->addWire(name, width);
wire->port_input = port_input;
wire->port_output = port_output;
for (int i = 0; i < width; i++) {
RTLIL::IdString other_name = name.str() + stringf("[%d]", i);
RTLIL::Wire *other_wire = module->wire(other_name);
if (other_wire) {
other_wire->port_input = false;
other_wire->port_output = false;
if (wire->port_input)
module->connect(other_wire, SigSpec(wire, i));
else
module->connect(SigSpec(wire, i), other_wire);
}
}
}
module->fixup_ports();
design->add(module);
Pass::call(design, "clean");
}
static uint32_t parse_xaiger_literal(std::istream &f)
{
uint32_t l;
f.read(reinterpret_cast<char*>(&l), sizeof(l));
if (f.gcount() != sizeof(l))
log_error("Offset %ld: unable to read literal!\n", static_cast<int64_t>(f.tellg()));
// TODO: Don't assume we're on little endian
#ifdef _WIN32
return _byteswap_ulong(l);
#else
return __builtin_bswap32(l);
#endif
}
static RTLIL::Wire* createWireIfNotExists(RTLIL::Module *module, unsigned literal)
{
const unsigned variable = literal >> 1;
const bool invert = literal & 1;
RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix?
RTLIL::Wire *wire = module->wire(wire_name);
if (wire) return wire;
log_debug("Creating %s\n", wire_name.c_str());
wire = module->addWire(wire_name);
wire->port_input = wire->port_output = false;
if (!invert) return wire;
RTLIL::IdString wire_inv_name(stringf("\\__%d__", variable));
RTLIL::Wire *wire_inv = module->wire(wire_inv_name);
if (wire_inv) {
if (module->cell(wire_inv_name)) return wire;
}
else {
log_debug("Creating %s\n", wire_inv_name.c_str());
wire_inv = module->addWire(wire_inv_name);
wire_inv->port_input = wire_inv->port_output = false;
}
log_debug("Creating %s = ~%s\n", wire_name.c_str(), wire_inv_name.c_str());
module->addNotGate(stringf("\\__%d__$not", variable), wire_inv, wire); // FIXME: is "$not" the right suffix?
return wire;
}
static std::pair<RTLIL::IdString, int> wideports_split(std::string name)
{
int pos = -1;
if (name.empty() || name.back() != ']')
goto failed;
for (int i = 0; i+1 < GetSize(name); i++) {
if (name[i] == '[')
pos = i;
else if (name[i] < '0' || name[i] > '9')
pos = -1;
else if (i == pos+1 && name[i] == '0' && name[i+1] != ']')
pos = -1;
}
if (pos >= 0)
return std::pair<RTLIL::IdString, int>(RTLIL::escape_id(name.substr(0, pos)), atoi(name.c_str() + pos+1));
failed:
return std::pair<RTLIL::IdString, int>(name, 0);
}
void AigerReader::parse_xaiger()
{
std::string header;
f >> header;
if (header != "aag" && header != "aig")
log_error("Unsupported AIGER file!\n");
// Parse rest of header
if (!(f >> M >> I >> L >> O >> A))
log_error("Invalid AIGER header\n");
// Optional values
B = C = J = F = 0;
std::string line;
std::getline(f, line); // Ignore up to start of next line, as standard
// says anything that follows could be used for
// optional sections
log_debug("M=%u I=%u L=%u O=%u A=%u\n", M, I, L, O, A);
line_count = 1;
if (header == "aag")
parse_aiger_ascii();
else if (header == "aig")
parse_aiger_binary();
else
log_abort();
// Parse footer (symbol table, comments, etc.)
unsigned l1;
std::string s;
bool comment_seen = false;
std::vector<std::pair<RTLIL::Wire*,RTLIL::IdString>> deferred_renames;
deferred_renames.reserve(inputs.size() + latches.size() + outputs.size());
for (int c = f.peek(); c != EOF; c = f.peek()) {
if (comment_seen || c == 'c') {
if (!comment_seen) {
f.ignore(1);
c = f.peek();
comment_seen = true;
}
if (c == '\n')
break;
f.ignore(1);
// XAIGER extensions
if (c == 'm') {
uint32_t dataSize = parse_xaiger_literal(f);
uint32_t lutNum = parse_xaiger_literal(f);
uint32_t lutSize = parse_xaiger_literal(f);
log_debug("m: dataSize=%u lutNum=%u lutSize=%u\n", dataSize, lutNum, lutSize);
ConstEval ce(module);
for (unsigned i = 0; i < lutNum; ++i) {
uint32_t rootNodeID = parse_xaiger_literal(f);
uint32_t cutLeavesM = parse_xaiger_literal(f);
log_debug("rootNodeID=%d cutLeavesM=%d\n", rootNodeID, cutLeavesM);
RTLIL::Wire *output_sig = module->wire(stringf("\\__%d__", rootNodeID));
uint32_t nodeID;
RTLIL::SigSpec input_sig;
for (unsigned j = 0; j < cutLeavesM; ++j) {
nodeID = parse_xaiger_literal(f);
log_debug("\t%u\n", nodeID);
RTLIL::Wire *wire = module->wire(stringf("\\__%d__", nodeID));
log_assert(wire);
input_sig.append(wire);
}
RTLIL::Const lut_mask(RTLIL::State::Sx, 1 << input_sig.size());
for (int j = 0; j < (1 << cutLeavesM); ++j) {
ce.push();
ce.set(input_sig, RTLIL::Const{j, static_cast<int>(cutLeavesM)});
RTLIL::SigSpec o(output_sig);
ce.eval(o);
lut_mask[j] = o.as_const()[0];
ce.pop();
}
RTLIL::Cell *output_cell = module->cell(stringf("\\__%d__$and", rootNodeID));
log_assert(output_cell);
module->remove(output_cell);
module->addLut(stringf("\\__%d__$lut", rootNodeID), input_sig, output_sig, std::move(lut_mask));
}
}
else if (c == 'n') {
parse_xaiger_literal(f);
f >> s;
log_debug("n: '%s'\n", s.c_str());
}
}
else if (c == 'i' || c == 'l' || c == 'o') {
f.ignore(1);
if (!(f >> l1 >> s))
log_error("Line %u cannot be interpreted as a symbol entry!\n", line_count);
if ((c == 'i' && l1 > inputs.size()) || (c == 'l' && l1 > latches.size()) || (c == 'o' && l1 > outputs.size()))
log_error("Line %u has invalid symbol position!\n", line_count);
RTLIL::Wire* wire;
if (c == 'i') wire = inputs[l1];
else if (c == 'l') wire = latches[l1];
else if (c == 'o') wire = outputs[l1];
else log_abort();
deferred_renames.emplace_back(wire, RTLIL::escape_id(s));
std::getline(f, line); // Ignore up to start of next line
++line_count;
}
else
log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
}
dict<RTLIL::IdString, int> wideports_cache;
for (auto i : deferred_renames) {
RTLIL::Wire *wire = i.first;
RTLIL::Cell* driver = module->cell(stringf("%s$lut", wire->name.c_str()));
module->rename(wire, i.second);
if (driver)
module->rename(driver, stringf("%s$lut", wire->name.c_str()));
if (wideports && (wire->port_input || wire->port_output)) {
RTLIL::IdString escaped_symbol;
int index;
std::tie(escaped_symbol,index) = wideports_split(wire->name.str());
if (index > 0)
wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index);
}
}
if (!map_filename.empty()) {
std::ifstream mf(map_filename);
std::string type, symbol;
int variable, index;
while (mf >> type >> variable >> index >> symbol) {
RTLIL::IdString escaped_symbol = RTLIL::escape_id(symbol);
if (type == "input") {
log_assert(static_cast<unsigned>(variable) < inputs.size());
RTLIL::Wire* wire = inputs[variable];
log_assert(wire);
log_assert(wire->port_input);
if (index == 0)
module->rename(wire, escaped_symbol);
else if (index > 0) {
module->rename(wire, stringf("%s[%d]", escaped_symbol.c_str(), index));
if (wideports)
wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index);
}
}
else if (type == "output") {
log_assert(static_cast<unsigned>(variable) < outputs.size());
RTLIL::Wire* wire = outputs[variable];
log_assert(wire);
log_assert(wire->port_output);
RTLIL::Cell* driver = module->cell(stringf("%s$lut", wire->name.c_str()));
if (index == 0)
module->rename(wire, escaped_symbol);
else if (index > 0) {
module->rename(wire, stringf("%s[%d]", escaped_symbol.c_str(), index));
if (wideports)
wideports_cache[escaped_symbol] = std::max(wideports_cache[escaped_symbol], index);
}
if (driver)
module->rename(driver, stringf("%s$lut", wire->name.c_str()));
}
else
log_error("Symbol type '%s' not recognised.\n", type.c_str());
}
}
for (auto &wp : wideports_cache) {
auto name = wp.first;
int width = wp.second + 1;
RTLIL::Wire *wire = module->wire(name);
if (wire) {
RTLIL::Cell* driver = module->cell(stringf("%s$lut", wire->name.c_str()));
module->rename(wire, RTLIL::escape_id(stringf("%s[%d]", name.c_str(), 0)));
if (driver)
module->rename(driver, stringf("%s$lut", wire->name.c_str()));
}
// Do not make ports with a mix of input/output into
// wide ports
bool port_input = false, port_output = false;
for (int i = 0; i < width; i++) {
RTLIL::IdString other_name = name.str() + stringf("[%d]", i);
RTLIL::Wire *other_wire = module->wire(other_name);
if (other_wire) {
port_input = port_input || other_wire->port_input;
port_output = port_output || other_wire->port_output;
}
}
if ((port_input && port_output) || (!port_input && !port_output))
continue;
wire = module->addWire(name, width);
wire->port_input = port_input;
wire->port_output = port_output;
for (int i = 0; i < width; i++) {
RTLIL::IdString other_name = name.str() + stringf("[%d]", i);
RTLIL::Wire *other_wire = module->wire(other_name);
if (other_wire) {
other_wire->port_input = false;
other_wire->port_output = false;
if (wire->port_input)
module->connect(other_wire, SigSpec(wire, i));
else
module->connect(SigSpec(wire, i), other_wire);
}
}
}
module->fixup_ports();
design->add(module);
Pass::call(design, "clean");
}
void AigerReader::parse_aiger_ascii()
{
std::string line;
std::stringstream ss;
unsigned l1, l2, l3;
// Parse inputs
for (unsigned i = 0; i < I; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an input!\n", line_count);
log_debug("%d is an input\n", l1);
log_assert(!(l1 & 1)); // TODO: Inputs can't be inverted?
RTLIL::Wire *wire = createWireIfNotExists(module, l1);
wire->port_input = true;
inputs.push_back(wire);
}
// Parse latches
RTLIL::Wire *clk_wire = nullptr;
if (L > 0) {
log_assert(clk_name != "");
clk_wire = module->wire(clk_name);
log_assert(!clk_wire);
log_debug("Creating %s\n", clk_name.c_str());
clk_wire = module->addWire(clk_name);
clk_wire->port_input = true;
clk_wire->port_output = false;
}
for (unsigned i = 0; i < L; ++i, ++line_count) {
if (!(f >> l1 >> l2))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
log_debug("%d %d is a latch\n", l1, l2);
log_assert(!(l1 & 1)); // TODO: Latch outputs can't be inverted?
RTLIL::Wire *q_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *d_wire = createWireIfNotExists(module, l2);
module->addDffGate(NEW_ID, clk_wire, d_wire, q_wire);
// Reset logic is optional in AIGER 1.9
if (f.peek() == ' ') {
if (!(f >> l3))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
if (l3 == 0 || l3 == 1)
q_wire->attributes["\\init"] = RTLIL::Const(l3);
else if (l3 == l1) {
//q_wire->attributes["\\init"] = RTLIL::Const(RTLIL::State::Sx);
}
else
log_error("Line %u has invalid reset literal for latch!\n", line_count);
}
else {
// AIGER latches are assumed to be initialized to zero
q_wire->attributes["\\init"] = RTLIL::Const(0);
}
latches.push_back(q_wire);
}
// Parse outputs
for (unsigned i = 0; i < O; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an output!\n", line_count);
RTLIL::Wire *wire;
if (l1 == 0 || l1 == 1) {
wire = module->addWire(NEW_ID);
if (l1 == 0)
module->connect(wire, RTLIL::State::S0);
else if (l1 == 1)
module->connect(wire, RTLIL::State::S1);
else
log_abort();
}
else {
log_debug("%d is an output\n", l1);
const unsigned variable = l1 >> 1;
const bool invert = l1 & 1;
RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "b" the right suffix?
wire = module->wire(wire_name);
if (!wire)
wire = createWireIfNotExists(module, l1);
else {
if ((wire->port_input || wire->port_output)) {
RTLIL::Wire *new_wire = module->addWire(NEW_ID);
module->connect(new_wire, wire);
wire = new_wire;
}
}
}
wire->port_output = true;
outputs.push_back(wire);
}
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse bad state properties
for (unsigned i = 0; i < B; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse invariant constraints
for (unsigned i = 0; i < C; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse justice properties
for (unsigned i = 0; i < J; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse fairness constraints
for (unsigned i = 0; i < F; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// Parse AND
for (unsigned i = 0; i < A; ++i) {
if (!(f >> l1 >> l2 >> l3))
log_error("Line %u cannot be interpreted as an AND!\n", line_count);
log_debug("%d %d %d is an AND\n", l1, l2, l3);
log_assert(!(l1 & 1));
RTLIL::Wire *o_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2);
RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3);
module->addAndGate(o_wire->name.str() + "$and", i1_wire, i2_wire, o_wire);
}
std::getline(f, line); // Ignore up to start of next line
}
static unsigned parse_next_delta_literal(std::istream &f, unsigned ref)
{
unsigned x = 0, i = 0;
unsigned char ch;
while ((ch = f.get()) & 0x80)
x |= (ch & 0x7f) << (7 * i++);
return ref - (x | (ch << (7 * i)));
}
void AigerReader::parse_aiger_binary()
{
unsigned l1, l2, l3;
std::string line;
// Parse inputs
for (unsigned i = 1; i <= I; ++i) {
log_debug("%d is an input\n", i);
RTLIL::Wire *wire = createWireIfNotExists(module, i << 1);
wire->port_input = true;
log_assert(!wire->port_output);
inputs.push_back(wire);
}
// Parse latches
RTLIL::Wire *clk_wire = nullptr;
if (L > 0) {
log_assert(clk_name != "");
clk_wire = module->wire(clk_name);
log_assert(!clk_wire);
log_debug("Creating %s\n", clk_name.c_str());
clk_wire = module->addWire(clk_name);
clk_wire->port_input = true;
clk_wire->port_output = false;
}
l1 = (I+1) * 2;
for (unsigned i = 0; i < L; ++i, ++line_count, l1 += 2) {
if (!(f >> l2))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
log_debug("%d %d is a latch\n", l1, l2);
RTLIL::Wire *q_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *d_wire = createWireIfNotExists(module, l2);
module->addDff(NEW_ID, clk_wire, d_wire, q_wire);
// Reset logic is optional in AIGER 1.9
if (f.peek() == ' ') {
if (!(f >> l3))
log_error("Line %u cannot be interpreted as a latch!\n", line_count);
if (l3 == 0 || l3 == 1)
q_wire->attributes["\\init"] = RTLIL::Const(l3);
else if (l3 == l1) {
//q_wire->attributes["\\init"] = RTLIL::Const(RTLIL::State::Sx);
}
else
log_error("Line %u has invalid reset literal for latch!\n", line_count);
}
else {
// AIGER latches are assumed to be initialized to zero
q_wire->attributes["\\init"] = RTLIL::Const(0);
}
latches.push_back(q_wire);
}
// Parse outputs
for (unsigned i = 0; i < O; ++i, ++line_count) {
if (!(f >> l1))
log_error("Line %u cannot be interpreted as an output!\n", line_count);
RTLIL::Wire *wire;
if (l1 == 0 || l1 == 1) {
wire = module->addWire(NEW_ID);
if (l1 == 0)
module->connect(wire, RTLIL::State::S0);
else if (l1 == 1)
module->connect(wire, RTLIL::State::S1);
else
log_abort();
}
else {
log_debug("%d is an output\n", l1);
const unsigned variable = l1 >> 1;
const bool invert = l1 & 1;
RTLIL::IdString wire_name(stringf("\\__%d%s__", variable, invert ? "b" : "")); // FIXME: is "_inv" the right suffix?
wire = module->wire(wire_name);
if (!wire)
wire = createWireIfNotExists(module, l1);
else {
if ((wire->port_input || wire->port_output)) {
RTLIL::Wire *new_wire = module->addWire(NEW_ID);
module->connect(new_wire, wire);
wire = new_wire;
}
}
}
wire->port_output = true;
outputs.push_back(wire);
}
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse bad state properties
for (unsigned i = 0; i < B; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse invariant constraints
for (unsigned i = 0; i < C; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse justice properties
for (unsigned i = 0; i < J; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse fairness constraints
for (unsigned i = 0; i < F; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// Parse AND
l1 = (I+L+1) << 1;
for (unsigned i = 0; i < A; ++i, ++line_count, l1 += 2) {
l2 = parse_next_delta_literal(f, l1);
l3 = parse_next_delta_literal(f, l2);
log_debug("%d %d %d is an AND\n", l1, l2, l3);
log_assert(!(l1 & 1));
RTLIL::Wire *o_wire = createWireIfNotExists(module, l1);
RTLIL::Wire *i1_wire = createWireIfNotExists(module, l2);
RTLIL::Wire *i2_wire = createWireIfNotExists(module, l3);
module->addAndGate(o_wire->name.str() + "$and", i1_wire, i2_wire, o_wire);
}
}
struct AigerFrontend : public Frontend {
AigerFrontend() : Frontend("aiger", "read AIGER file") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" read_aiger [options] [filename]\n");
log("\n");
log("Load module from an AIGER file into the current design.\n");
log("\n");
log(" -module_name <module_name>\n");
log(" Name of module to be created (default: <filename>)\n");
log("\n");
log(" -clk_name <wire_name>\n");
log(" AIGER latches to be transformed into posedge DFFs clocked by wire of");
log(" this name (default: clk)\n");
log("\n");
log(" -map <filename>\n");
log(" read file with port and latch symbols\n");
log("\n");
log(" -wideports\n");
log(" Merge ports that match the pattern 'name[int]' into a single\n");
log(" multi-bit port 'name'.\n");
log("\n");
}
void execute(std::istream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing AIGER frontend.\n");
RTLIL::IdString clk_name = "\\clk";
RTLIL::IdString module_name;
std::string map_filename;
bool wideports = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-module_name" && argidx+1 < args.size()) {
module_name = RTLIL::escape_id(args[++argidx]);
continue;
}
if (arg == "-clk_name" && argidx+1 < args.size()) {
clk_name = RTLIL::escape_id(args[++argidx]);
continue;
}
if (map_filename.empty() && arg == "-map" && argidx+1 < args.size()) {
map_filename = args[++argidx];
continue;
}
if (arg == "-wideports") {
wideports = true;
continue;
}
break;
}
extra_args(f, filename, args, argidx);
if (module_name.empty()) {
#ifdef _WIN32
char fname[_MAX_FNAME];
_splitpath(filename.c_str(), NULL /* drive */, NULL /* dir */, fname, NULL /* ext */)
module_name = fname;
#else
char* bn = strdup(filename.c_str());
module_name = RTLIL::escape_id(bn);
free(bn);
#endif
}
AigerReader reader(design, *f, module_name, clk_name, map_filename, wideports);
reader.parse_aiger();
}
} AigerFrontend;
YOSYS_NAMESPACE_END