mirror of https://github.com/YosysHQ/yosys.git
3405 lines
117 KiB
C++
3405 lines
117 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "kernel/rtlil.h"
|
|
#include "kernel/register.h"
|
|
#include "kernel/sigtools.h"
|
|
#include "kernel/utils.h"
|
|
#include "kernel/celltypes.h"
|
|
#include "kernel/mem.h"
|
|
#include "kernel/log.h"
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
// [[CITE]]
|
|
// Peter Eades; Xuemin Lin; W. F. Smyth, "A Fast Effective Heuristic For The Feedback Arc Set Problem"
|
|
// Information Processing Letters, Vol. 47, pp 319-323, 1993
|
|
// https://pdfs.semanticscholar.org/c7ed/d9acce96ca357876540e19664eb9d976637f.pdf
|
|
|
|
// A topological sort (on a cell/wire graph) is always possible in a fully flattened RTLIL design without
|
|
// processes or logic loops where every wire has a single driver. Logic loops are illegal in RTLIL and wires
|
|
// with multiple drivers can be split by the `splitnets` pass; however, interdependencies between processes
|
|
// or module instances can create strongly connected components without introducing evaluation nondeterminism.
|
|
// We wish to support designs with such benign SCCs (as well as designs with multiple drivers per wire), so
|
|
// we sort the graph in a way that minimizes feedback arcs. If there are no feedback arcs in the sorted graph,
|
|
// then a more efficient evaluation method is possible, since eval() will always immediately converge.
|
|
template<class T>
|
|
struct Scheduler {
|
|
struct Vertex {
|
|
T *data;
|
|
Vertex *prev, *next;
|
|
pool<Vertex*, hash_ptr_ops> preds, succs;
|
|
|
|
Vertex() : data(NULL), prev(this), next(this) {}
|
|
Vertex(T *data) : data(data), prev(NULL), next(NULL) {}
|
|
|
|
bool empty() const
|
|
{
|
|
log_assert(data == NULL);
|
|
if (next == this) {
|
|
log_assert(prev == next);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void link(Vertex *list)
|
|
{
|
|
log_assert(prev == NULL && next == NULL);
|
|
next = list;
|
|
prev = list->prev;
|
|
list->prev->next = this;
|
|
list->prev = this;
|
|
}
|
|
|
|
void unlink()
|
|
{
|
|
log_assert(prev->next == this && next->prev == this);
|
|
prev->next = next;
|
|
next->prev = prev;
|
|
next = prev = NULL;
|
|
}
|
|
|
|
int delta() const
|
|
{
|
|
return succs.size() - preds.size();
|
|
}
|
|
};
|
|
|
|
std::vector<Vertex*> vertices;
|
|
Vertex *sources = new Vertex;
|
|
Vertex *sinks = new Vertex;
|
|
dict<int, Vertex*> bins;
|
|
|
|
~Scheduler()
|
|
{
|
|
delete sources;
|
|
delete sinks;
|
|
for (auto bin : bins)
|
|
delete bin.second;
|
|
for (auto vertex : vertices)
|
|
delete vertex;
|
|
}
|
|
|
|
Vertex *add(T *data)
|
|
{
|
|
Vertex *vertex = new Vertex(data);
|
|
vertices.push_back(vertex);
|
|
return vertex;
|
|
}
|
|
|
|
void relink(Vertex *vertex)
|
|
{
|
|
if (vertex->succs.empty())
|
|
vertex->link(sinks);
|
|
else if (vertex->preds.empty())
|
|
vertex->link(sources);
|
|
else {
|
|
int delta = vertex->delta();
|
|
if (!bins.count(delta))
|
|
bins[delta] = new Vertex;
|
|
vertex->link(bins[delta]);
|
|
}
|
|
}
|
|
|
|
Vertex *remove(Vertex *vertex)
|
|
{
|
|
vertex->unlink();
|
|
for (auto pred : vertex->preds) {
|
|
if (pred == vertex)
|
|
continue;
|
|
log_assert(pred->succs[vertex]);
|
|
pred->unlink();
|
|
pred->succs.erase(vertex);
|
|
relink(pred);
|
|
}
|
|
for (auto succ : vertex->succs) {
|
|
if (succ == vertex)
|
|
continue;
|
|
log_assert(succ->preds[vertex]);
|
|
succ->unlink();
|
|
succ->preds.erase(vertex);
|
|
relink(succ);
|
|
}
|
|
vertex->preds.clear();
|
|
vertex->succs.clear();
|
|
return vertex;
|
|
}
|
|
|
|
std::vector<Vertex*> schedule()
|
|
{
|
|
std::vector<Vertex*> s1, s2r;
|
|
for (auto vertex : vertices)
|
|
relink(vertex);
|
|
bool bins_empty = false;
|
|
while (!(sinks->empty() && sources->empty() && bins_empty)) {
|
|
while (!sinks->empty())
|
|
s2r.push_back(remove(sinks->next));
|
|
while (!sources->empty())
|
|
s1.push_back(remove(sources->next));
|
|
// Choosing u in this implementation isn't O(1), but the paper handwaves which data structure they suggest
|
|
// using to get O(1) relinking *and* find-max-key ("it is clear"... no it isn't), so this code uses a very
|
|
// naive implementation of find-max-key.
|
|
bins_empty = true;
|
|
bins.template sort<std::greater<int>>();
|
|
for (auto bin : bins) {
|
|
if (!bin.second->empty()) {
|
|
bins_empty = false;
|
|
s1.push_back(remove(bin.second->next));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
s1.insert(s1.end(), s2r.rbegin(), s2r.rend());
|
|
return s1;
|
|
}
|
|
};
|
|
|
|
bool is_unary_cell(RTLIL::IdString type)
|
|
{
|
|
return type.in(
|
|
ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
|
|
ID($pos), ID($neg));
|
|
}
|
|
|
|
bool is_binary_cell(RTLIL::IdString type)
|
|
{
|
|
return type.in(
|
|
ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
|
|
ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
|
|
ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
|
|
ID($add), ID($sub), ID($mul), ID($div), ID($mod));
|
|
}
|
|
|
|
bool is_extending_cell(RTLIL::IdString type)
|
|
{
|
|
return !type.in(
|
|
ID($logic_not), ID($logic_and), ID($logic_or),
|
|
ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool));
|
|
}
|
|
|
|
bool is_inlinable_cell(RTLIL::IdString type)
|
|
{
|
|
return is_unary_cell(type) || is_binary_cell(type) || type.in(
|
|
ID($mux), ID($concat), ID($slice), ID($pmux));
|
|
}
|
|
|
|
bool is_ff_cell(RTLIL::IdString type)
|
|
{
|
|
return type.in(
|
|
ID($dff), ID($dffe), ID($sdff), ID($sdffe), ID($sdffce),
|
|
ID($adff), ID($adffe), ID($dffsr), ID($dffsre),
|
|
ID($dlatch), ID($adlatch), ID($dlatchsr), ID($sr));
|
|
}
|
|
|
|
bool is_internal_cell(RTLIL::IdString type)
|
|
{
|
|
return !type.isPublic() && !type.begins_with("$paramod");
|
|
}
|
|
|
|
bool is_effectful_cell(RTLIL::IdString type)
|
|
{
|
|
return type.isPublic();
|
|
}
|
|
|
|
bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell)
|
|
{
|
|
RTLIL::Module *cell_module = cell->module->design->module(cell->type);
|
|
log_assert(cell_module != nullptr);
|
|
return cell_module->get_bool_attribute(ID(cxxrtl_blackbox));
|
|
}
|
|
|
|
bool is_memwr_process(const RTLIL::Process *process)
|
|
{
|
|
for (auto sync : process->syncs)
|
|
if (!sync->mem_write_actions.empty())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
enum class CxxrtlPortType {
|
|
UNKNOWN = 0, // or mixed comb/sync
|
|
COMB = 1,
|
|
SYNC = 2,
|
|
};
|
|
|
|
CxxrtlPortType cxxrtl_port_type(RTLIL::Module *module, RTLIL::IdString port)
|
|
{
|
|
RTLIL::Wire *output_wire = module->wire(port);
|
|
log_assert(output_wire != nullptr);
|
|
bool is_comb = output_wire->get_bool_attribute(ID(cxxrtl_comb));
|
|
bool is_sync = output_wire->get_bool_attribute(ID(cxxrtl_sync));
|
|
if (is_comb && is_sync)
|
|
log_cmd_error("Port `%s.%s' is marked as both `cxxrtl_comb` and `cxxrtl_sync`.\n",
|
|
log_id(module), log_signal(output_wire));
|
|
else if (is_comb)
|
|
return CxxrtlPortType::COMB;
|
|
else if (is_sync)
|
|
return CxxrtlPortType::SYNC;
|
|
return CxxrtlPortType::UNKNOWN;
|
|
}
|
|
|
|
CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port)
|
|
{
|
|
RTLIL::Module *cell_module = cell->module->design->module(cell->type);
|
|
if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
|
|
return CxxrtlPortType::UNKNOWN;
|
|
return cxxrtl_port_type(cell_module, port);
|
|
}
|
|
|
|
bool is_cxxrtl_comb_port(const RTLIL::Cell *cell, RTLIL::IdString port)
|
|
{
|
|
return cxxrtl_port_type(cell, port) == CxxrtlPortType::COMB;
|
|
}
|
|
|
|
bool is_cxxrtl_sync_port(const RTLIL::Cell *cell, RTLIL::IdString port)
|
|
{
|
|
return cxxrtl_port_type(cell, port) == CxxrtlPortType::SYNC;
|
|
}
|
|
|
|
struct FlowGraph {
|
|
struct Node {
|
|
enum class Type {
|
|
CONNECT,
|
|
CELL_SYNC,
|
|
CELL_EVAL,
|
|
PROCESS_SYNC,
|
|
PROCESS_CASE,
|
|
MEM_RDPORT,
|
|
MEM_WRPORTS,
|
|
};
|
|
|
|
Type type;
|
|
RTLIL::SigSig connect = {};
|
|
const RTLIL::Cell *cell = nullptr;
|
|
const RTLIL::Process *process = nullptr;
|
|
const Mem *mem = nullptr;
|
|
int portidx;
|
|
};
|
|
|
|
std::vector<Node*> nodes;
|
|
dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses;
|
|
dict<Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_comb_defs, node_sync_defs, node_uses;
|
|
dict<const RTLIL::Wire*, bool> wire_def_inlinable;
|
|
dict<const RTLIL::Wire*, dict<Node*, bool, hash_ptr_ops>> wire_use_inlinable;
|
|
dict<RTLIL::SigBit, bool> bit_has_state;
|
|
|
|
~FlowGraph()
|
|
{
|
|
for (auto node : nodes)
|
|
delete node;
|
|
}
|
|
|
|
void add_defs(Node *node, const RTLIL::SigSpec &sig, bool is_ff, bool inlinable)
|
|
{
|
|
for (auto chunk : sig.chunks())
|
|
if (chunk.wire) {
|
|
if (is_ff) {
|
|
// A sync def means that a wire holds design state because it is driven directly by
|
|
// a flip-flop output. Such a wire can never be unbuffered.
|
|
wire_sync_defs[chunk.wire].insert(node);
|
|
node_sync_defs[node].insert(chunk.wire);
|
|
} else {
|
|
// A comb def means that a wire doesn't hold design state. It might still be connected,
|
|
// indirectly, to a flip-flop output.
|
|
wire_comb_defs[chunk.wire].insert(node);
|
|
node_comb_defs[node].insert(chunk.wire);
|
|
}
|
|
}
|
|
for (auto bit : sig.bits())
|
|
bit_has_state[bit] |= is_ff;
|
|
// Only comb defs of an entire wire in the right order can be inlined.
|
|
if (!is_ff && sig.is_wire()) {
|
|
// Only a single def of a wire can be inlined. (Multiple defs of a wire are unsound, but we
|
|
// handle them anyway to avoid assertion failures later.)
|
|
if (!wire_def_inlinable.count(sig.as_wire()))
|
|
wire_def_inlinable[sig.as_wire()] = inlinable;
|
|
else
|
|
wire_def_inlinable[sig.as_wire()] = false;
|
|
}
|
|
}
|
|
|
|
void add_uses(Node *node, const RTLIL::SigSpec &sig)
|
|
{
|
|
for (auto chunk : sig.chunks())
|
|
if (chunk.wire) {
|
|
wire_uses[chunk.wire].insert(node);
|
|
node_uses[node].insert(chunk.wire);
|
|
// Only a single use of an entire wire in the right order can be inlined. (But the use can include
|
|
// other chunks.) This is tracked per-node because a wire used by multiple nodes can still be inlined
|
|
// if all but one of those nodes is dead.
|
|
if (!wire_use_inlinable[chunk.wire].count(node))
|
|
wire_use_inlinable[chunk.wire][node] = true;
|
|
else
|
|
wire_use_inlinable[chunk.wire][node] = false;
|
|
}
|
|
}
|
|
|
|
bool is_inlinable(const RTLIL::Wire *wire) const
|
|
{
|
|
// Can the wire be inlined at all?
|
|
if (wire_def_inlinable.count(wire))
|
|
return wire_def_inlinable.at(wire);
|
|
return false;
|
|
}
|
|
|
|
bool is_inlinable(const RTLIL::Wire *wire, const pool<Node*, hash_ptr_ops> &nodes) const
|
|
{
|
|
// Can the wire be inlined, knowing that the given nodes are reachable?
|
|
if (nodes.size() != 1)
|
|
return false;
|
|
Node *node = *nodes.begin();
|
|
log_assert(node_uses.at(node).count(wire));
|
|
if (is_inlinable(wire) && wire_use_inlinable.count(wire) && wire_use_inlinable.at(wire).count(node))
|
|
return wire_use_inlinable.at(wire).at(node);
|
|
return false;
|
|
}
|
|
|
|
// Connections
|
|
void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn)
|
|
{
|
|
add_defs(node, conn.first, /*is_ff=*/false, /*inlinable=*/true);
|
|
add_uses(node, conn.second);
|
|
}
|
|
|
|
Node *add_node(const RTLIL::SigSig &conn)
|
|
{
|
|
Node *node = new Node;
|
|
node->type = Node::Type::CONNECT;
|
|
node->connect = conn;
|
|
nodes.push_back(node);
|
|
add_connect_defs_uses(node, conn);
|
|
return node;
|
|
}
|
|
|
|
// Cells
|
|
void add_cell_sync_defs(Node *node, const RTLIL::Cell *cell)
|
|
{
|
|
// To understand why this node type is necessary and why it produces comb defs, consider a cell
|
|
// with input \i and sync output \o, used in a design such that \i is connected to \o. This does
|
|
// not result in a feedback arc because the output is synchronous. However, a naive implementation
|
|
// of code generation for cells that assigns to inputs, evaluates cells, assigns from outputs
|
|
// would not be able to immediately converge...
|
|
//
|
|
// wire<1> i_tmp;
|
|
// cell->p_i = i_tmp.curr;
|
|
// cell->eval();
|
|
// i_tmp.next = cell->p_o.curr;
|
|
//
|
|
// ... since the wire connecting the input and output ports would not be localizable. To solve
|
|
// this, the cell is split into two scheduling nodes; one exclusively for sync outputs, and
|
|
// another for inputs and all non-sync outputs. This way the generated code can be rearranged...
|
|
//
|
|
// value<1> i_tmp;
|
|
// i_tmp = cell->p_o.curr;
|
|
// cell->p_i = i_tmp;
|
|
// cell->eval();
|
|
//
|
|
// eliminating the unnecessary delta cycle. Conceptually, the CELL_SYNC node type is a series of
|
|
// connections of the form `connect \lhs \cell.\sync_output`; the right-hand side of these is not
|
|
// expressible as a wire in RTLIL. If it was expressible, then `\cell.\sync_output` would have
|
|
// a sync def, and this node would be an ordinary CONNECT node, with `\lhs` having a comb def.
|
|
// Because it isn't, a special node type is used, the right-hand side does not appear anywhere,
|
|
// and the left-hand side has a comb def.
|
|
for (auto conn : cell->connections())
|
|
if (cell->output(conn.first))
|
|
if (is_cxxrtl_sync_port(cell, conn.first)) {
|
|
// See note regarding inlinability below.
|
|
add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false);
|
|
}
|
|
}
|
|
|
|
void add_cell_eval_defs_uses(Node *node, const RTLIL::Cell *cell)
|
|
{
|
|
for (auto conn : cell->connections()) {
|
|
if (cell->output(conn.first)) {
|
|
if (is_inlinable_cell(cell->type))
|
|
add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/true);
|
|
else if (is_ff_cell(cell->type))
|
|
add_defs(node, conn.second, /*is_ff=*/true, /*inlinable=*/false);
|
|
else if (is_internal_cell(cell->type))
|
|
add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false);
|
|
else if (!is_cxxrtl_sync_port(cell, conn.first)) {
|
|
// Although at first it looks like outputs of user-defined cells may always be inlined, the reality is
|
|
// more complex. Fully sync outputs produce no defs and so don't participate in inlining. Fully comb
|
|
// outputs are assigned in a different way depending on whether the cell's eval() immediately converged.
|
|
// Unknown/mixed outputs could be inlined, but should be rare in practical designs and don't justify
|
|
// the infrastructure required to inline outputs of cells with many of them.
|
|
add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false);
|
|
}
|
|
}
|
|
if (cell->input(conn.first))
|
|
add_uses(node, conn.second);
|
|
}
|
|
}
|
|
|
|
Node *add_node(const RTLIL::Cell *cell)
|
|
{
|
|
log_assert(cell->known());
|
|
|
|
bool has_fully_sync_outputs = false;
|
|
for (auto conn : cell->connections())
|
|
if (cell->output(conn.first) && is_cxxrtl_sync_port(cell, conn.first)) {
|
|
has_fully_sync_outputs = true;
|
|
break;
|
|
}
|
|
if (has_fully_sync_outputs) {
|
|
Node *node = new Node;
|
|
node->type = Node::Type::CELL_SYNC;
|
|
node->cell = cell;
|
|
nodes.push_back(node);
|
|
add_cell_sync_defs(node, cell);
|
|
}
|
|
|
|
Node *node = new Node;
|
|
node->type = Node::Type::CELL_EVAL;
|
|
node->cell = cell;
|
|
nodes.push_back(node);
|
|
add_cell_eval_defs_uses(node, cell);
|
|
return node;
|
|
}
|
|
|
|
// Processes
|
|
void add_case_rule_defs_uses(Node *node, const RTLIL::CaseRule *case_)
|
|
{
|
|
for (auto &action : case_->actions) {
|
|
add_defs(node, action.first, /*is_ff=*/false, /*inlinable=*/false);
|
|
add_uses(node, action.second);
|
|
}
|
|
for (auto sub_switch : case_->switches) {
|
|
add_uses(node, sub_switch->signal);
|
|
for (auto sub_case : sub_switch->cases) {
|
|
for (auto &compare : sub_case->compare)
|
|
add_uses(node, compare);
|
|
add_case_rule_defs_uses(node, sub_case);
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_sync_rules_defs_uses(Node *node, const RTLIL::Process *process)
|
|
{
|
|
for (auto sync : process->syncs) {
|
|
for (auto &action : sync->actions) {
|
|
if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe)
|
|
add_defs(node, action.first, /*is_ff=*/true, /*inlinable=*/false);
|
|
else
|
|
add_defs(node, action.first, /*is_ff=*/false, /*inlinable=*/false);
|
|
add_uses(node, action.second);
|
|
}
|
|
for (auto &memwr : sync->mem_write_actions) {
|
|
add_uses(node, memwr.address);
|
|
add_uses(node, memwr.data);
|
|
add_uses(node, memwr.enable);
|
|
}
|
|
}
|
|
}
|
|
|
|
Node *add_node(const RTLIL::Process *process)
|
|
{
|
|
Node *node = new Node;
|
|
node->type = Node::Type::PROCESS_SYNC;
|
|
node->process = process;
|
|
nodes.push_back(node);
|
|
add_sync_rules_defs_uses(node, process);
|
|
|
|
node = new Node;
|
|
node->type = Node::Type::PROCESS_CASE;
|
|
node->process = process;
|
|
nodes.push_back(node);
|
|
add_case_rule_defs_uses(node, &process->root_case);
|
|
return node;
|
|
}
|
|
|
|
// Memories
|
|
void add_node(const Mem *mem) {
|
|
for (int i = 0; i < GetSize(mem->rd_ports); i++) {
|
|
auto &port = mem->rd_ports[i];
|
|
Node *node = new Node;
|
|
node->type = Node::Type::MEM_RDPORT;
|
|
node->mem = mem;
|
|
node->portidx = i;
|
|
nodes.push_back(node);
|
|
add_defs(node, port.data, /*is_ff=*/port.clk_enable, /*inlinable=*/false);
|
|
add_uses(node, port.clk);
|
|
add_uses(node, port.en);
|
|
add_uses(node, port.arst);
|
|
add_uses(node, port.srst);
|
|
add_uses(node, port.addr);
|
|
bool transparent = false;
|
|
for (int j = 0; j < GetSize(mem->wr_ports); j++) {
|
|
auto &wrport = mem->wr_ports[j];
|
|
if (port.transparency_mask[j]) {
|
|
// Our implementation of transparent read ports reads en, addr and data from every write port
|
|
// the read port is transparent with.
|
|
add_uses(node, wrport.en);
|
|
add_uses(node, wrport.addr);
|
|
add_uses(node, wrport.data);
|
|
transparent = true;
|
|
}
|
|
}
|
|
// Also we read the read address twice in this case (prevent inlining).
|
|
if (transparent)
|
|
add_uses(node, port.addr);
|
|
}
|
|
if (!mem->wr_ports.empty()) {
|
|
Node *node = new Node;
|
|
node->type = Node::Type::MEM_WRPORTS;
|
|
node->mem = mem;
|
|
nodes.push_back(node);
|
|
for (auto &port : mem->wr_ports) {
|
|
add_uses(node, port.clk);
|
|
add_uses(node, port.en);
|
|
add_uses(node, port.addr);
|
|
add_uses(node, port.data);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
std::vector<std::string> split_by(const std::string &str, const std::string &sep)
|
|
{
|
|
std::vector<std::string> result;
|
|
size_t prev = 0;
|
|
while (true) {
|
|
size_t curr = str.find_first_of(sep, prev);
|
|
if (curr == std::string::npos) {
|
|
std::string part = str.substr(prev);
|
|
if (!part.empty()) result.push_back(part);
|
|
break;
|
|
} else {
|
|
std::string part = str.substr(prev, curr - prev);
|
|
if (!part.empty()) result.push_back(part);
|
|
prev = curr + 1;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::string escape_cxx_string(const std::string &input)
|
|
{
|
|
std::string output = "\"";
|
|
for (auto c : input) {
|
|
if (::isprint(c)) {
|
|
if (c == '\\')
|
|
output.push_back('\\');
|
|
output.push_back(c);
|
|
} else {
|
|
char l = c & 0xf, h = (c >> 4) & 0xf;
|
|
output.append("\\x");
|
|
output.push_back((h < 10 ? '0' + h : 'a' + h - 10));
|
|
output.push_back((l < 10 ? '0' + l : 'a' + l - 10));
|
|
}
|
|
}
|
|
output.push_back('"');
|
|
if (output.find('\0') != std::string::npos) {
|
|
output.insert(0, "std::string {");
|
|
output.append(stringf(", %zu}", input.size()));
|
|
}
|
|
return output;
|
|
}
|
|
|
|
template<class T>
|
|
std::string get_hdl_name(T *object)
|
|
{
|
|
if (object->has_attribute(ID::hdlname))
|
|
return object->get_string_attribute(ID::hdlname);
|
|
else
|
|
return object->name.str().substr(1);
|
|
}
|
|
|
|
struct WireType {
|
|
enum Type {
|
|
// Non-referenced wire; is not a part of the design.
|
|
UNUSED,
|
|
// Double-buffered wire; is a class member, and holds design state.
|
|
BUFFERED,
|
|
// Single-buffered wire; is a class member, but holds no state.
|
|
MEMBER,
|
|
// Single-buffered wire; is a class member, and is computed on demand.
|
|
OUTLINE,
|
|
// Local wire; is a local variable in eval method.
|
|
LOCAL,
|
|
// Inline wire; is an unnamed temporary in eval method.
|
|
INLINE,
|
|
// Alias wire; is replaced with aliasee, except in debug info.
|
|
ALIAS,
|
|
// Const wire; is replaced with constant, except in debug info.
|
|
CONST,
|
|
};
|
|
|
|
Type type = UNUSED;
|
|
const RTLIL::Cell *cell_subst = nullptr; // for INLINE
|
|
RTLIL::SigSpec sig_subst = {}; // for INLINE, ALIAS, and CONST
|
|
|
|
WireType() = default;
|
|
|
|
WireType(Type type) : type(type) {
|
|
log_assert(type == UNUSED || type == BUFFERED || type == MEMBER || type == OUTLINE || type == LOCAL);
|
|
}
|
|
|
|
WireType(Type type, const RTLIL::Cell *cell) : type(type), cell_subst(cell) {
|
|
log_assert(type == INLINE && is_inlinable_cell(cell->type));
|
|
}
|
|
|
|
WireType(Type type, RTLIL::SigSpec sig) : type(type), sig_subst(sig) {
|
|
log_assert(type == INLINE || (type == ALIAS && sig.is_wire()) || (type == CONST && sig.is_fully_const()));
|
|
}
|
|
|
|
bool is_buffered() const { return type == BUFFERED; }
|
|
bool is_member() const { return type == BUFFERED || type == MEMBER || type == OUTLINE; }
|
|
bool is_outline() const { return type == OUTLINE; }
|
|
bool is_named() const { return is_member() || type == LOCAL; }
|
|
bool is_local() const { return type == LOCAL || type == INLINE; }
|
|
bool is_exact() const { return type == ALIAS || type == CONST; }
|
|
};
|
|
|
|
// Tests for a SigSpec that is a valid clock input, clocks have to have a backing wire and be a single bit
|
|
// using this instead of sig.is_wire() solves issues when the clock is a slice instead of a full wire
|
|
bool is_valid_clock(const RTLIL::SigSpec& sig) {
|
|
return sig.is_chunk() && sig.is_bit() && sig[0].wire;
|
|
}
|
|
|
|
struct CxxrtlWorker {
|
|
bool split_intf = false;
|
|
std::string intf_filename;
|
|
std::string design_ns = "cxxrtl_design";
|
|
std::ostream *impl_f = nullptr;
|
|
std::ostream *intf_f = nullptr;
|
|
|
|
bool print_wire_types = false;
|
|
bool print_debug_wire_types = false;
|
|
bool run_hierarchy = false;
|
|
bool run_flatten = false;
|
|
bool run_proc = false;
|
|
|
|
bool unbuffer_internal = false;
|
|
bool unbuffer_public = false;
|
|
bool localize_internal = false;
|
|
bool localize_public = false;
|
|
bool inline_internal = false;
|
|
bool inline_public = false;
|
|
|
|
bool debug_info = false;
|
|
bool debug_member = false;
|
|
bool debug_alias = false;
|
|
bool debug_eval = false;
|
|
|
|
std::ostringstream f;
|
|
std::string indent;
|
|
int temporary = 0;
|
|
|
|
dict<const RTLIL::Module*, SigMap> sigmaps;
|
|
dict<const RTLIL::Module*, std::vector<Mem>> mod_memories;
|
|
pool<std::pair<const RTLIL::Module*, RTLIL::IdString>> writable_memories;
|
|
pool<const RTLIL::Wire*> edge_wires;
|
|
dict<const RTLIL::Wire*, RTLIL::Const> wire_init;
|
|
dict<RTLIL::SigBit, RTLIL::SyncType> edge_types;
|
|
dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule, debug_schedule;
|
|
dict<const RTLIL::Wire*, WireType> wire_types, debug_wire_types;
|
|
dict<RTLIL::SigBit, bool> bit_has_state;
|
|
dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations;
|
|
dict<const RTLIL::Module*, bool> eval_converges;
|
|
|
|
void inc_indent() {
|
|
indent += "\t";
|
|
}
|
|
void dec_indent() {
|
|
indent.resize(indent.size() - 1);
|
|
}
|
|
|
|
// RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
|
|
// because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
|
|
// identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
|
|
// in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
|
|
// 1. All generated identifiers start with `_`.
|
|
// 1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
|
|
// 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
|
|
// 2. An underscore is escaped with another underscore, i.e. `__`.
|
|
// 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
|
|
std::string mangle_name(const RTLIL::IdString &name)
|
|
{
|
|
std::string mangled;
|
|
bool first = true;
|
|
for (char c : name.str()) {
|
|
if (first) {
|
|
first = false;
|
|
if (c == '\\')
|
|
mangled += "p_";
|
|
else if (c == '$')
|
|
mangled += "i_";
|
|
else
|
|
log_assert(false);
|
|
} else {
|
|
if (isalnum(c)) {
|
|
mangled += c;
|
|
} else if (c == '_') {
|
|
mangled += "__";
|
|
} else {
|
|
char l = c & 0xf, h = (c >> 4) & 0xf;
|
|
mangled += '_';
|
|
mangled += (h < 10 ? '0' + h : 'a' + h - 10);
|
|
mangled += (l < 10 ? '0' + l : 'a' + l - 10);
|
|
mangled += '_';
|
|
}
|
|
}
|
|
}
|
|
return mangled;
|
|
}
|
|
|
|
std::string mangle_module_name(const RTLIL::IdString &name, bool is_blackbox = false)
|
|
{
|
|
// Class namespace.
|
|
if (is_blackbox)
|
|
return "bb_" + mangle_name(name);
|
|
return mangle_name(name);
|
|
}
|
|
|
|
std::string mangle_memory_name(const RTLIL::IdString &name)
|
|
{
|
|
// Class member namespace.
|
|
return "memory_" + mangle_name(name);
|
|
}
|
|
|
|
std::string mangle_cell_name(const RTLIL::IdString &name)
|
|
{
|
|
// Class member namespace.
|
|
return "cell_" + mangle_name(name);
|
|
}
|
|
|
|
std::string mangle_wire_name(const RTLIL::IdString &name)
|
|
{
|
|
// Class member namespace.
|
|
return mangle_name(name);
|
|
}
|
|
|
|
std::string mangle(const RTLIL::Module *module)
|
|
{
|
|
return mangle_module_name(module->name, /*is_blackbox=*/module->get_bool_attribute(ID(cxxrtl_blackbox)));
|
|
}
|
|
|
|
std::string mangle(const Mem *mem)
|
|
{
|
|
return mangle_memory_name(mem->memid);
|
|
}
|
|
|
|
std::string mangle(const RTLIL::Memory *memory)
|
|
{
|
|
return mangle_memory_name(memory->name);
|
|
}
|
|
|
|
std::string mangle(const RTLIL::Cell *cell)
|
|
{
|
|
return mangle_cell_name(cell->name);
|
|
}
|
|
|
|
std::string mangle(const RTLIL::Wire *wire)
|
|
{
|
|
return mangle_wire_name(wire->name);
|
|
}
|
|
|
|
std::string mangle(RTLIL::SigBit sigbit)
|
|
{
|
|
log_assert(sigbit.wire != NULL);
|
|
if (sigbit.wire->width == 1)
|
|
return mangle(sigbit.wire);
|
|
return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
|
|
}
|
|
|
|
std::vector<std::string> template_param_names(const RTLIL::Module *module)
|
|
{
|
|
if (!module->has_attribute(ID(cxxrtl_template)))
|
|
return {};
|
|
|
|
if (module->attributes.at(ID(cxxrtl_template)).flags != RTLIL::CONST_FLAG_STRING)
|
|
log_cmd_error("Attribute `cxxrtl_template' of module `%s' is not a string.\n", log_id(module));
|
|
|
|
std::vector<std::string> param_names = split_by(module->get_string_attribute(ID(cxxrtl_template)), " \t");
|
|
for (const auto ¶m_name : param_names) {
|
|
// Various lowercase prefixes (p_, i_, cell_, ...) are used for member variables, so require
|
|
// parameters to start with an uppercase letter to avoid name conflicts. (This is the convention
|
|
// in both Verilog and C++, anyway.)
|
|
if (!isupper(param_name[0]))
|
|
log_cmd_error("Attribute `cxxrtl_template' of module `%s' includes a parameter `%s', "
|
|
"which does not start with an uppercase letter.\n",
|
|
log_id(module), param_name.c_str());
|
|
}
|
|
return param_names;
|
|
}
|
|
|
|
std::string template_params(const RTLIL::Module *module, bool is_decl)
|
|
{
|
|
std::vector<std::string> param_names = template_param_names(module);
|
|
if (param_names.empty())
|
|
return "";
|
|
|
|
std::string params = "<";
|
|
bool first = true;
|
|
for (const auto ¶m_name : param_names) {
|
|
if (!first)
|
|
params += ", ";
|
|
first = false;
|
|
if (is_decl)
|
|
params += "size_t ";
|
|
params += param_name;
|
|
}
|
|
params += ">";
|
|
return params;
|
|
}
|
|
|
|
std::string template_args(const RTLIL::Cell *cell)
|
|
{
|
|
RTLIL::Module *cell_module = cell->module->design->module(cell->type);
|
|
log_assert(cell_module != nullptr);
|
|
if (!cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
|
|
return "";
|
|
|
|
std::vector<std::string> param_names = template_param_names(cell_module);
|
|
if (param_names.empty())
|
|
return "";
|
|
|
|
std::string params = "<";
|
|
bool first = true;
|
|
for (const auto ¶m_name : param_names) {
|
|
if (!first)
|
|
params += ", ";
|
|
first = false;
|
|
params += "/*" + param_name + "=*/";
|
|
RTLIL::IdString id_param_name = '\\' + param_name;
|
|
if (!cell->hasParam(id_param_name))
|
|
log_cmd_error("Cell `%s.%s' does not have a parameter `%s', which is required by the templated module `%s'.\n",
|
|
log_id(cell->module), log_id(cell), param_name.c_str(), log_id(cell_module));
|
|
RTLIL::Const param_value = cell->getParam(id_param_name);
|
|
if (((param_value.flags & ~RTLIL::CONST_FLAG_SIGNED) != 0) || param_value.as_int() < 0)
|
|
log_cmd_error("Parameter `%s' of cell `%s.%s', which is required by the templated module `%s', "
|
|
"is not a positive integer.\n",
|
|
param_name.c_str(), log_id(cell->module), log_id(cell), log_id(cell_module));
|
|
params += std::to_string(cell->getParam(id_param_name).as_int());
|
|
}
|
|
params += ">";
|
|
return params;
|
|
}
|
|
|
|
std::string fresh_temporary()
|
|
{
|
|
return stringf("tmp_%d", temporary++);
|
|
}
|
|
|
|
void dump_attrs(const RTLIL::AttrObject *object)
|
|
{
|
|
for (auto attr : object->attributes) {
|
|
f << indent << "// " << attr.first.str() << ": ";
|
|
if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
|
|
f << attr.second.decode_string();
|
|
} else {
|
|
f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
|
|
}
|
|
f << "\n";
|
|
}
|
|
}
|
|
|
|
void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
|
|
{
|
|
const int CHUNK_SIZE = 32;
|
|
f << "{";
|
|
while (width > 0) {
|
|
int chunk_width = min(width, CHUNK_SIZE);
|
|
uint32_t chunk = data.extract(offset, chunk_width).as_int();
|
|
if (fixed_width)
|
|
f << stringf("0x%.*xu", (3 + chunk_width) / 4, chunk);
|
|
else
|
|
f << stringf("%#xu", chunk);
|
|
if (width > CHUNK_SIZE)
|
|
f << ',';
|
|
offset += CHUNK_SIZE;
|
|
width -= CHUNK_SIZE;
|
|
}
|
|
f << "}";
|
|
}
|
|
|
|
void dump_const_init(const RTLIL::Const &data)
|
|
{
|
|
dump_const_init(data, data.size());
|
|
}
|
|
|
|
void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
|
|
{
|
|
f << "value<" << width << ">";
|
|
dump_const_init(data, width, offset, fixed_width);
|
|
}
|
|
|
|
void dump_const(const RTLIL::Const &data)
|
|
{
|
|
dump_const(data, data.size());
|
|
}
|
|
|
|
bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs, bool for_debug = false)
|
|
{
|
|
if (chunk.wire == NULL) {
|
|
dump_const(chunk.data, chunk.width, chunk.offset);
|
|
return false;
|
|
} else {
|
|
const auto &wire_type = (for_debug ? debug_wire_types : wire_types)[chunk.wire];
|
|
switch (wire_type.type) {
|
|
case WireType::BUFFERED:
|
|
f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
|
|
break;
|
|
case WireType::MEMBER:
|
|
case WireType::LOCAL:
|
|
case WireType::OUTLINE:
|
|
f << mangle(chunk.wire);
|
|
break;
|
|
case WireType::INLINE:
|
|
log_assert(!is_lhs);
|
|
if (wire_type.cell_subst != nullptr) {
|
|
dump_cell_expr(wire_type.cell_subst, for_debug);
|
|
break;
|
|
}
|
|
YS_FALLTHROUGH
|
|
case WireType::ALIAS:
|
|
case WireType::CONST:
|
|
log_assert(!is_lhs);
|
|
return dump_sigspec(wire_type.sig_subst.extract(chunk.offset, chunk.width), is_lhs, for_debug);
|
|
case WireType::UNUSED:
|
|
log_assert(is_lhs);
|
|
f << "value<" << chunk.width << ">()";
|
|
return false;
|
|
}
|
|
if (chunk.width == chunk.wire->width && chunk.offset == 0)
|
|
return false;
|
|
else if (chunk.width == 1)
|
|
f << ".slice<" << chunk.offset << ">()";
|
|
else
|
|
f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs, bool for_debug = false)
|
|
{
|
|
if (sig.empty()) {
|
|
f << "value<0>()";
|
|
return false;
|
|
} else if (sig.is_chunk()) {
|
|
return dump_sigchunk(sig.as_chunk(), is_lhs, for_debug);
|
|
} else {
|
|
bool first = true;
|
|
auto chunks = sig.chunks();
|
|
for (auto it = chunks.rbegin(); it != chunks.rend(); it++) {
|
|
if (!first)
|
|
f << ".concat(";
|
|
bool is_complex = dump_sigchunk(*it, is_lhs, for_debug);
|
|
if (!is_lhs && it->width == 1) {
|
|
size_t repeat = 1;
|
|
while ((it + repeat) != chunks.rend() && *(it + repeat) == *it)
|
|
repeat++;
|
|
if (repeat > 1) {
|
|
if (is_complex)
|
|
f << ".val()";
|
|
f << ".repeat<" << repeat << ">()";
|
|
}
|
|
it += repeat - 1;
|
|
}
|
|
if (!first)
|
|
f << ")";
|
|
first = false;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void dump_sigspec_lhs(const RTLIL::SigSpec &sig, bool for_debug = false)
|
|
{
|
|
dump_sigspec(sig, /*is_lhs=*/true, for_debug);
|
|
}
|
|
|
|
void dump_sigspec_rhs(const RTLIL::SigSpec &sig, bool for_debug = false)
|
|
{
|
|
// In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
|
|
// it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
|
|
// type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
|
|
// type conversion, but only if the expression needs it.
|
|
bool is_complex = dump_sigspec(sig, /*is_lhs=*/false, for_debug);
|
|
if (is_complex)
|
|
f << ".val()";
|
|
}
|
|
|
|
void dump_inlined_cells(const std::vector<const RTLIL::Cell*> &cells)
|
|
{
|
|
if (cells.empty()) {
|
|
f << indent << "// connection\n";
|
|
} else if (cells.size() == 1) {
|
|
dump_attrs(cells.front());
|
|
f << indent << "// cell " << cells.front()->name.str() << "\n";
|
|
} else {
|
|
f << indent << "// cells";
|
|
for (auto cell : cells)
|
|
f << " " << cell->name.str();
|
|
f << "\n";
|
|
}
|
|
}
|
|
|
|
void collect_sigspec_rhs(const RTLIL::SigSpec &sig, bool for_debug, std::vector<const RTLIL::Cell*> &cells)
|
|
{
|
|
for (auto chunk : sig.chunks()) {
|
|
if (!chunk.wire)
|
|
continue;
|
|
const auto &wire_type = wire_types[chunk.wire];
|
|
switch (wire_type.type) {
|
|
case WireType::INLINE:
|
|
if (wire_type.cell_subst != nullptr) {
|
|
collect_cell_eval(wire_type.cell_subst, for_debug, cells);
|
|
break;
|
|
}
|
|
YS_FALLTHROUGH
|
|
case WireType::ALIAS:
|
|
collect_sigspec_rhs(wire_type.sig_subst, for_debug, cells);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void dump_connect_expr(const RTLIL::SigSig &conn, bool for_debug = false)
|
|
{
|
|
dump_sigspec_rhs(conn.second, for_debug);
|
|
}
|
|
|
|
void dump_connect(const RTLIL::SigSig &conn, bool for_debug = false)
|
|
{
|
|
std::vector<const RTLIL::Cell*> inlined_cells;
|
|
collect_sigspec_rhs(conn.second, for_debug, inlined_cells);
|
|
dump_inlined_cells(inlined_cells);
|
|
|
|
f << indent;
|
|
dump_sigspec_lhs(conn.first, for_debug);
|
|
f << " = ";
|
|
dump_connect_expr(conn, for_debug);
|
|
f << ";\n";
|
|
}
|
|
|
|
void collect_connect(const RTLIL::SigSig &conn, bool for_debug, std::vector<const RTLIL::Cell*> &cells)
|
|
{
|
|
collect_sigspec_rhs(conn.second, for_debug, cells);
|
|
}
|
|
|
|
void dump_cell_sync(const RTLIL::Cell *cell, bool for_debug = false)
|
|
{
|
|
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
|
|
f << indent << "// cell " << cell->name.str() << " syncs\n";
|
|
for (auto conn : cell->connections())
|
|
if (cell->output(conn.first))
|
|
if (is_cxxrtl_sync_port(cell, conn.first)) {
|
|
f << indent;
|
|
dump_sigspec_lhs(conn.second, for_debug);
|
|
f << " = " << mangle(cell) << access << mangle_wire_name(conn.first) << ".curr;\n";
|
|
}
|
|
}
|
|
|
|
void dump_cell_expr(const RTLIL::Cell *cell, bool for_debug = false)
|
|
{
|
|
// Unary cells
|
|
if (is_unary_cell(cell->type)) {
|
|
f << cell->type.substr(1);
|
|
if (is_extending_cell(cell->type))
|
|
f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u');
|
|
f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
|
|
dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
|
|
f << ")";
|
|
// Binary cells
|
|
} else if (is_binary_cell(cell->type)) {
|
|
f << cell->type.substr(1);
|
|
if (is_extending_cell(cell->type))
|
|
f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
|
|
(cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u');
|
|
f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
|
|
dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
|
|
f << ", ";
|
|
dump_sigspec_rhs(cell->getPort(ID::B), for_debug);
|
|
f << ")";
|
|
// Muxes
|
|
} else if (cell->type == ID($mux)) {
|
|
f << "(";
|
|
dump_sigspec_rhs(cell->getPort(ID::S), for_debug);
|
|
f << " ? ";
|
|
dump_sigspec_rhs(cell->getPort(ID::B), for_debug);
|
|
f << " : ";
|
|
dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
|
|
f << ")";
|
|
// Parallel (one-hot) muxes
|
|
} else if (cell->type == ID($pmux)) {
|
|
int width = cell->getParam(ID::WIDTH).as_int();
|
|
int s_width = cell->getParam(ID::S_WIDTH).as_int();
|
|
for (int part = 0; part < s_width; part++) {
|
|
f << "(";
|
|
dump_sigspec_rhs(cell->getPort(ID::S).extract(part), for_debug);
|
|
f << " ? ";
|
|
dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width), for_debug);
|
|
f << " : ";
|
|
}
|
|
dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
|
|
for (int part = 0; part < s_width; part++) {
|
|
f << ")";
|
|
}
|
|
// Concats
|
|
} else if (cell->type == ID($concat)) {
|
|
dump_sigspec_rhs(cell->getPort(ID::B), for_debug);
|
|
f << ".concat(";
|
|
dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
|
|
f << ").val()";
|
|
// Slices
|
|
} else if (cell->type == ID($slice)) {
|
|
dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
|
|
f << ".slice<";
|
|
f << cell->getParam(ID::OFFSET).as_int() + cell->getParam(ID::Y_WIDTH).as_int() - 1;
|
|
f << ",";
|
|
f << cell->getParam(ID::OFFSET).as_int();
|
|
f << ">().val()";
|
|
} else {
|
|
log_assert(false);
|
|
}
|
|
}
|
|
|
|
void dump_cell_eval(const RTLIL::Cell *cell, bool for_debug = false)
|
|
{
|
|
std::vector<const RTLIL::Cell*> inlined_cells;
|
|
collect_cell_eval(cell, for_debug, inlined_cells);
|
|
dump_inlined_cells(inlined_cells);
|
|
|
|
// Elidable cells
|
|
if (is_inlinable_cell(cell->type)) {
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID::Y), for_debug);
|
|
f << " = ";
|
|
dump_cell_expr(cell, for_debug);
|
|
f << ";\n";
|
|
// Flip-flops
|
|
} else if (is_ff_cell(cell->type)) {
|
|
log_assert(!for_debug);
|
|
// Clocks might be slices of larger signals but should only ever be single bit
|
|
if (cell->hasPort(ID::CLK) && is_valid_clock(cell->getPort(ID::CLK))) {
|
|
// Edge-sensitive logic
|
|
RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
|
|
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
|
|
if (clk_bit.wire) {
|
|
f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
|
|
<< mangle(clk_bit) << ") {\n";
|
|
} else {
|
|
f << indent << "if (false) {\n";
|
|
}
|
|
inc_indent();
|
|
if (cell->hasPort(ID::EN)) {
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(cell->getPort(ID::EN));
|
|
f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
|
|
inc_indent();
|
|
}
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID::Q));
|
|
f << " = ";
|
|
dump_sigspec_rhs(cell->getPort(ID::D));
|
|
f << ";\n";
|
|
if (cell->hasPort(ID::EN) && cell->type != ID($sdffce)) {
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (cell->hasPort(ID::SRST)) {
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(cell->getPort(ID::SRST));
|
|
f << " == value<1> {" << cell->getParam(ID::SRST_POLARITY).as_bool() << "u}) {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID::Q));
|
|
f << " = ";
|
|
dump_const(cell->getParam(ID::SRST_VALUE));
|
|
f << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (cell->hasPort(ID::EN) && cell->type == ID($sdffce)) {
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
} else if (cell->hasPort(ID::EN)) {
|
|
// Level-sensitive logic
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(cell->getPort(ID::EN));
|
|
f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID::Q));
|
|
f << " = ";
|
|
dump_sigspec_rhs(cell->getPort(ID::D));
|
|
f << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (cell->hasPort(ID::ARST)) {
|
|
// Asynchronous reset (entire coarse cell at once)
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(cell->getPort(ID::ARST));
|
|
f << " == value<1> {" << cell->getParam(ID::ARST_POLARITY).as_bool() << "u}) {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID::Q));
|
|
f << " = ";
|
|
dump_const(cell->getParam(ID::ARST_VALUE));
|
|
f << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (cell->hasPort(ID::SET)) {
|
|
// Asynchronous set (for individual bits)
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID::Q));
|
|
f << " = ";
|
|
dump_sigspec_lhs(cell->getPort(ID::Q));
|
|
f << ".update(";
|
|
dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID::WIDTH).as_int()));
|
|
f << ", ";
|
|
dump_sigspec_rhs(cell->getPort(ID::SET));
|
|
f << (cell->getParam(ID::SET_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
|
|
}
|
|
if (cell->hasPort(ID::CLR)) {
|
|
// Asynchronous clear (for individual bits; priority over set)
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID::Q));
|
|
f << " = ";
|
|
dump_sigspec_lhs(cell->getPort(ID::Q));
|
|
f << ".update(";
|
|
dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID::WIDTH).as_int()));
|
|
f << ", ";
|
|
dump_sigspec_rhs(cell->getPort(ID::CLR));
|
|
f << (cell->getParam(ID::CLR_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
|
|
}
|
|
// Internal cells
|
|
} else if (is_internal_cell(cell->type)) {
|
|
log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
|
|
// User cells
|
|
} else {
|
|
log_assert(!for_debug);
|
|
log_assert(cell->known());
|
|
bool buffered_inputs = false;
|
|
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
|
|
for (auto conn : cell->connections())
|
|
if (cell->input(conn.first)) {
|
|
RTLIL::Module *cell_module = cell->module->design->module(cell->type);
|
|
log_assert(cell_module != nullptr && cell_module->wire(conn.first));
|
|
RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first);
|
|
f << indent << mangle(cell) << access << mangle_wire_name(conn.first);
|
|
if (!is_cxxrtl_blackbox_cell(cell) && wire_types[cell_module_wire].is_buffered()) {
|
|
buffered_inputs = true;
|
|
f << ".next";
|
|
}
|
|
f << " = ";
|
|
dump_sigspec_rhs(conn.second);
|
|
f << ";\n";
|
|
if (getenv("CXXRTL_VOID_MY_WARRANTY") && conn.second.is_wire()) {
|
|
// Until we have proper clock tree detection, this really awful hack that opportunistically
|
|
// propagates prev_* values for clocks can be used to estimate how much faster a design could
|
|
// be if only one clock edge was simulated by replacing:
|
|
// top.p_clk = value<1>{0u}; top.step();
|
|
// top.p_clk = value<1>{1u}; top.step();
|
|
// with:
|
|
// top.prev_p_clk = value<1>{0u}; top.p_clk = value<1>{1u}; top.step();
|
|
// Don't rely on this; it will be removed without warning.
|
|
if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) {
|
|
f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = ";
|
|
f << "prev_" << mangle(conn.second.as_wire()) << ";\n";
|
|
}
|
|
}
|
|
}
|
|
auto assign_from_outputs = [&](bool cell_converged) {
|
|
for (auto conn : cell->connections()) {
|
|
if (cell->output(conn.first)) {
|
|
if (conn.second.empty())
|
|
continue; // ignore disconnected ports
|
|
if (is_cxxrtl_sync_port(cell, conn.first))
|
|
continue; // fully sync ports are handled in CELL_SYNC nodes
|
|
f << indent;
|
|
dump_sigspec_lhs(conn.second);
|
|
f << " = " << mangle(cell) << access << mangle_wire_name(conn.first);
|
|
// Similarly to how there is no purpose to buffering cell inputs, there is also no purpose to buffering
|
|
// combinatorial cell outputs in case the cell converges within one cycle. (To convince yourself that
|
|
// this optimization is valid, consider that, since the cell converged within one cycle, it would not
|
|
// have any buffered wires if they were not output ports. Imagine inlining the cell's eval() function,
|
|
// and consider the fate of the localized wires that used to be output ports.)
|
|
//
|
|
// It is not possible to know apriori whether the cell (which may be late bound) will converge immediately.
|
|
// Because of this, the choice between using .curr (appropriate for buffered outputs) and .next (appropriate
|
|
// for unbuffered outputs) is made at runtime.
|
|
if (cell_converged && is_cxxrtl_comb_port(cell, conn.first))
|
|
f << ".next;\n";
|
|
else
|
|
f << ".curr;\n";
|
|
}
|
|
}
|
|
};
|
|
if (buffered_inputs) {
|
|
// If we have any buffered inputs, there's no chance of converging immediately.
|
|
f << indent << mangle(cell) << access << "eval();\n";
|
|
f << indent << "converged = false;\n";
|
|
assign_from_outputs(/*cell_converged=*/false);
|
|
} else {
|
|
f << indent << "if (" << mangle(cell) << access << "eval()) {\n";
|
|
inc_indent();
|
|
assign_from_outputs(/*cell_converged=*/true);
|
|
dec_indent();
|
|
f << indent << "} else {\n";
|
|
inc_indent();
|
|
f << indent << "converged = false;\n";
|
|
assign_from_outputs(/*cell_converged=*/false);
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void collect_cell_eval(const RTLIL::Cell *cell, bool for_debug, std::vector<const RTLIL::Cell*> &cells)
|
|
{
|
|
cells.push_back(cell);
|
|
for (auto port : cell->connections())
|
|
if (cell->input(port.first))
|
|
collect_sigspec_rhs(port.second, for_debug, cells);
|
|
}
|
|
|
|
void dump_assign(const RTLIL::SigSig &sigsig, bool for_debug = false)
|
|
{
|
|
f << indent;
|
|
dump_sigspec_lhs(sigsig.first, for_debug);
|
|
f << " = ";
|
|
dump_sigspec_rhs(sigsig.second, for_debug);
|
|
f << ";\n";
|
|
}
|
|
|
|
void dump_case_rule(const RTLIL::CaseRule *rule, bool for_debug = false)
|
|
{
|
|
for (auto action : rule->actions)
|
|
dump_assign(action, for_debug);
|
|
for (auto switch_ : rule->switches)
|
|
dump_switch_rule(switch_, for_debug);
|
|
}
|
|
|
|
void dump_switch_rule(const RTLIL::SwitchRule *rule, bool for_debug = false)
|
|
{
|
|
// The switch attributes are printed before the switch condition is captured.
|
|
dump_attrs(rule);
|
|
std::string signal_temp = fresh_temporary();
|
|
f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
|
|
dump_sigspec(rule->signal, /*is_lhs=*/false, for_debug);
|
|
f << ";\n";
|
|
|
|
bool first = true;
|
|
for (auto case_ : rule->cases) {
|
|
// The case attributes (for nested cases) are printed before the if/else if/else statement.
|
|
dump_attrs(rule);
|
|
f << indent;
|
|
if (!first)
|
|
f << "} else ";
|
|
first = false;
|
|
if (!case_->compare.empty()) {
|
|
f << "if (";
|
|
bool first = true;
|
|
for (auto &compare : case_->compare) {
|
|
if (!first)
|
|
f << " || ";
|
|
first = false;
|
|
if (compare.is_fully_def()) {
|
|
f << signal_temp << " == ";
|
|
dump_sigspec(compare, /*is_lhs=*/false, for_debug);
|
|
} else if (compare.is_fully_const()) {
|
|
RTLIL::Const compare_mask, compare_value;
|
|
for (auto bit : compare.as_const()) {
|
|
switch (bit) {
|
|
case RTLIL::S0:
|
|
case RTLIL::S1:
|
|
compare_mask.bits.push_back(RTLIL::S1);
|
|
compare_value.bits.push_back(bit);
|
|
break;
|
|
|
|
case RTLIL::Sx:
|
|
case RTLIL::Sz:
|
|
case RTLIL::Sa:
|
|
compare_mask.bits.push_back(RTLIL::S0);
|
|
compare_value.bits.push_back(RTLIL::S0);
|
|
break;
|
|
|
|
default:
|
|
log_assert(false);
|
|
}
|
|
}
|
|
f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
|
|
dump_const(compare_mask);
|
|
f << ") == ";
|
|
dump_const(compare_value);
|
|
} else {
|
|
log_assert(false);
|
|
}
|
|
}
|
|
f << ") ";
|
|
}
|
|
f << "{\n";
|
|
inc_indent();
|
|
dump_case_rule(case_, for_debug);
|
|
dec_indent();
|
|
}
|
|
f << indent << "}\n";
|
|
}
|
|
|
|
void dump_process_case(const RTLIL::Process *proc, bool for_debug = false)
|
|
{
|
|
dump_attrs(proc);
|
|
f << indent << "// process " << proc->name.str() << " case\n";
|
|
// The case attributes (for root case) are always empty.
|
|
log_assert(proc->root_case.attributes.empty());
|
|
dump_case_rule(&proc->root_case, for_debug);
|
|
}
|
|
|
|
void dump_process_syncs(const RTLIL::Process *proc, bool for_debug = false)
|
|
{
|
|
dump_attrs(proc);
|
|
f << indent << "// process " << proc->name.str() << " syncs\n";
|
|
for (auto sync : proc->syncs) {
|
|
log_assert(!for_debug || sync->type == RTLIL::STa);
|
|
|
|
RTLIL::SigBit sync_bit;
|
|
if (!sync->signal.empty()) {
|
|
sync_bit = sync->signal[0];
|
|
sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
|
|
if (!sync_bit.is_wire())
|
|
continue; // a clock, or more commonly a reset, can be tied to a constant driver
|
|
}
|
|
|
|
pool<std::string> events;
|
|
switch (sync->type) {
|
|
case RTLIL::STp:
|
|
log_assert(sync_bit.wire != nullptr);
|
|
events.insert("posedge_" + mangle(sync_bit));
|
|
break;
|
|
case RTLIL::STn:
|
|
log_assert(sync_bit.wire != nullptr);
|
|
events.insert("negedge_" + mangle(sync_bit));
|
|
break;
|
|
case RTLIL::STe:
|
|
log_assert(sync_bit.wire != nullptr);
|
|
events.insert("posedge_" + mangle(sync_bit));
|
|
events.insert("negedge_" + mangle(sync_bit));
|
|
break;
|
|
|
|
case RTLIL::STa:
|
|
events.insert("true");
|
|
break;
|
|
|
|
case RTLIL::ST0:
|
|
case RTLIL::ST1:
|
|
case RTLIL::STg:
|
|
case RTLIL::STi:
|
|
log_assert(false);
|
|
}
|
|
if (!events.empty()) {
|
|
f << indent << "if (";
|
|
bool first = true;
|
|
for (auto &event : events) {
|
|
if (!first)
|
|
f << " || ";
|
|
first = false;
|
|
f << event;
|
|
}
|
|
f << ") {\n";
|
|
inc_indent();
|
|
for (auto &action : sync->actions)
|
|
dump_assign(action, for_debug);
|
|
for (auto &memwr : sync->mem_write_actions) {
|
|
RTLIL::Memory *memory = proc->module->memories.at(memwr.memid);
|
|
std::string valid_index_temp = fresh_temporary();
|
|
f << indent << "auto " << valid_index_temp << " = memory_index(";
|
|
dump_sigspec_rhs(memwr.address);
|
|
f << ", " << memory->start_offset << ", " << memory->size << ");\n";
|
|
// See below for rationale of having both the assert and the condition.
|
|
//
|
|
// If assertions are disabled, out of bounds writes are defined to do nothing.
|
|
f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
|
|
f << indent << "if (" << valid_index_temp << ".valid) {\n";
|
|
inc_indent();
|
|
f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, ";
|
|
dump_sigspec_rhs(memwr.data);
|
|
f << ", ";
|
|
dump_sigspec_rhs(memwr.enable);
|
|
f << ");\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void dump_mem_rdport(const Mem *mem, int portidx, bool for_debug = false)
|
|
{
|
|
auto &port = mem->rd_ports[portidx];
|
|
dump_attrs(&port);
|
|
f << indent << "// memory " << mem->memid.str() << " read port " << portidx << "\n";
|
|
if (port.clk_enable) {
|
|
log_assert(!for_debug);
|
|
RTLIL::SigBit clk_bit = port.clk[0];
|
|
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
|
|
if (clk_bit.wire) {
|
|
f << indent << "if (" << (port.clk_polarity ? "posedge_" : "negedge_")
|
|
<< mangle(clk_bit) << ") {\n";
|
|
} else {
|
|
f << indent << "if (false) {\n";
|
|
}
|
|
inc_indent();
|
|
}
|
|
std::vector<const RTLIL::Cell*> inlined_cells_addr;
|
|
collect_sigspec_rhs(port.addr, for_debug, inlined_cells_addr);
|
|
if (!inlined_cells_addr.empty())
|
|
dump_inlined_cells(inlined_cells_addr);
|
|
std::string valid_index_temp = fresh_temporary();
|
|
f << indent << "auto " << valid_index_temp << " = memory_index(";
|
|
// Almost all non-elidable cells cannot appear in debug_eval(), but $memrd is an exception; asynchronous
|
|
// memory read ports can.
|
|
dump_sigspec_rhs(port.addr, for_debug);
|
|
f << ", " << mem->start_offset << ", " << mem->size << ");\n";
|
|
bool has_enable = port.clk_enable && !port.en.is_fully_ones();
|
|
if (has_enable) {
|
|
std::vector<const RTLIL::Cell*> inlined_cells_en;
|
|
collect_sigspec_rhs(port.en, for_debug, inlined_cells_en);
|
|
if (!inlined_cells_en.empty())
|
|
dump_inlined_cells(inlined_cells_en);
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(port.en);
|
|
f << ") {\n";
|
|
inc_indent();
|
|
}
|
|
// The generated code has two bounds checks; one in an assertion, and another that guards the read.
|
|
// This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
|
|
// loudly crashes if an illegal condition is encountered. The assert may be turned off with -DCXXRTL_NDEBUG
|
|
// not only for release builds, but also to make sure the simulator (which is presumably embedded in some
|
|
// larger program) will never crash the code that calls into it.
|
|
//
|
|
// If assertions are disabled, out of bounds reads are defined to return zero.
|
|
f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
|
|
f << indent << "if(" << valid_index_temp << ".valid) {\n";
|
|
inc_indent();
|
|
if (!mem->wr_ports.empty()) {
|
|
std::string lhs_temp = fresh_temporary();
|
|
f << indent << "value<" << mem->width << "> " << lhs_temp << " = "
|
|
<< mangle(mem) << "[" << valid_index_temp << ".index];\n";
|
|
bool transparent = false;
|
|
for (auto bit : port.transparency_mask)
|
|
if (bit)
|
|
transparent = true;
|
|
if (transparent) {
|
|
std::string addr_temp = fresh_temporary();
|
|
f << indent << "const value<" << port.addr.size() << "> &" << addr_temp << " = ";
|
|
dump_sigspec_rhs(port.addr);
|
|
f << ";\n";
|
|
for (int i = 0; i < GetSize(mem->wr_ports); i++) {
|
|
auto &wrport = mem->wr_ports[i];
|
|
if (!port.transparency_mask[i])
|
|
continue;
|
|
f << indent << "if (" << addr_temp << " == ";
|
|
dump_sigspec_rhs(wrport.addr);
|
|
f << ") {\n";
|
|
inc_indent();
|
|
f << indent << lhs_temp << " = " << lhs_temp;
|
|
f << ".update(";
|
|
dump_sigspec_rhs(wrport.data);
|
|
f << ", ";
|
|
dump_sigspec_rhs(wrport.en);
|
|
f << ");\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
}
|
|
f << indent;
|
|
dump_sigspec_lhs(port.data);
|
|
f << " = " << lhs_temp << ";\n";
|
|
} else {
|
|
f << indent;
|
|
dump_sigspec_lhs(port.data);
|
|
f << " = " << mangle(mem) << "[" << valid_index_temp << ".index];\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "} else {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(port.data);
|
|
f << " = value<" << mem->width << "> {};\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
if (has_enable && !port.ce_over_srst) {
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (port.srst != State::S0) {
|
|
// Synchronous reset
|
|
std::vector<const RTLIL::Cell*> inlined_cells_srst;
|
|
collect_sigspec_rhs(port.srst, for_debug, inlined_cells_srst);
|
|
if (!inlined_cells_srst.empty())
|
|
dump_inlined_cells(inlined_cells_srst);
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(port.srst);
|
|
f << " == value<1> {1u}) {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(port.data);
|
|
f << " = ";
|
|
dump_const(port.srst_value);
|
|
f << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (has_enable && port.ce_over_srst) {
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (port.clk_enable) {
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (port.arst != State::S0) {
|
|
// Asynchronous reset
|
|
std::vector<const RTLIL::Cell*> inlined_cells_arst;
|
|
collect_sigspec_rhs(port.arst, for_debug, inlined_cells_arst);
|
|
if (!inlined_cells_arst.empty())
|
|
dump_inlined_cells(inlined_cells_arst);
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(port.arst);
|
|
f << " == value<1> {1u}) {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(port.data);
|
|
f << " = ";
|
|
dump_const(port.arst_value);
|
|
f << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
}
|
|
|
|
void dump_mem_wrports(const Mem *mem, bool for_debug = false)
|
|
{
|
|
log_assert(!for_debug);
|
|
for (int portidx = 0; portidx < GetSize(mem->wr_ports); portidx++) {
|
|
auto &port = mem->wr_ports[portidx];
|
|
dump_attrs(&port);
|
|
f << indent << "// memory " << mem->memid.str() << " write port " << portidx << "\n";
|
|
if (port.clk_enable) {
|
|
RTLIL::SigBit clk_bit = port.clk[0];
|
|
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
|
|
if (clk_bit.wire) {
|
|
f << indent << "if (" << (port.clk_polarity ? "posedge_" : "negedge_")
|
|
<< mangle(clk_bit) << ") {\n";
|
|
} else {
|
|
f << indent << "if (false) {\n";
|
|
}
|
|
inc_indent();
|
|
}
|
|
std::vector<const RTLIL::Cell*> inlined_cells_addr;
|
|
collect_sigspec_rhs(port.addr, for_debug, inlined_cells_addr);
|
|
if (!inlined_cells_addr.empty())
|
|
dump_inlined_cells(inlined_cells_addr);
|
|
std::string valid_index_temp = fresh_temporary();
|
|
f << indent << "auto " << valid_index_temp << " = memory_index(";
|
|
dump_sigspec_rhs(port.addr);
|
|
f << ", " << mem->start_offset << ", " << mem->size << ");\n";
|
|
// See above for rationale of having both the assert and the condition.
|
|
//
|
|
// If assertions are disabled, out of bounds writes are defined to do nothing.
|
|
f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
|
|
f << indent << "if (" << valid_index_temp << ".valid) {\n";
|
|
inc_indent();
|
|
std::vector<const RTLIL::Cell*> inlined_cells;
|
|
collect_sigspec_rhs(port.data, for_debug, inlined_cells);
|
|
collect_sigspec_rhs(port.en, for_debug, inlined_cells);
|
|
if (!inlined_cells.empty())
|
|
dump_inlined_cells(inlined_cells);
|
|
f << indent << mangle(mem) << ".update(" << valid_index_temp << ".index, ";
|
|
dump_sigspec_rhs(port.data);
|
|
f << ", ";
|
|
dump_sigspec_rhs(port.en);
|
|
f << ", " << portidx << ");\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
if (port.clk_enable) {
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void dump_wire(const RTLIL::Wire *wire, bool is_local)
|
|
{
|
|
const auto &wire_type = wire_types[wire];
|
|
if (!wire_type.is_named() || wire_type.is_local() != is_local)
|
|
return;
|
|
|
|
dump_attrs(wire);
|
|
f << indent;
|
|
if (wire->port_input && wire->port_output)
|
|
f << "/*inout*/ ";
|
|
else if (wire->port_input)
|
|
f << "/*input*/ ";
|
|
else if (wire->port_output)
|
|
f << "/*output*/ ";
|
|
f << (wire_type.is_buffered() ? "wire" : "value");
|
|
if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) {
|
|
f << "<" << wire->get_string_attribute(ID(cxxrtl_width)) << ">";
|
|
} else {
|
|
f << "<" << wire->width << ">";
|
|
}
|
|
f << " " << mangle(wire);
|
|
if (wire_init.count(wire)) {
|
|
f << " ";
|
|
dump_const_init(wire_init.at(wire));
|
|
}
|
|
f << ";\n";
|
|
if (edge_wires[wire]) {
|
|
if (!wire_type.is_buffered()) {
|
|
f << indent << "value<" << wire->width << "> prev_" << mangle(wire);
|
|
if (wire_init.count(wire)) {
|
|
f << " ";
|
|
dump_const_init(wire_init.at(wire));
|
|
}
|
|
f << ";\n";
|
|
}
|
|
for (auto edge_type : edge_types) {
|
|
if (edge_type.first.wire == wire) {
|
|
std::string prev, next;
|
|
if (!wire_type.is_buffered()) {
|
|
prev = "prev_" + mangle(edge_type.first.wire);
|
|
next = mangle(edge_type.first.wire);
|
|
} else {
|
|
prev = mangle(edge_type.first.wire) + ".curr";
|
|
next = mangle(edge_type.first.wire) + ".next";
|
|
}
|
|
prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
|
|
next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
|
|
if (edge_type.second != RTLIL::STn) {
|
|
f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n";
|
|
inc_indent();
|
|
f << indent << "return !" << prev << " && " << next << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (edge_type.second != RTLIL::STp) {
|
|
f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n";
|
|
inc_indent();
|
|
f << indent << "return " << prev << " && !" << next << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void dump_debug_wire(const RTLIL::Wire *wire, bool is_local)
|
|
{
|
|
const auto &wire_type = wire_types[wire];
|
|
if (wire_type.is_member())
|
|
return;
|
|
|
|
const auto &debug_wire_type = debug_wire_types[wire];
|
|
if (!debug_wire_type.is_named() || debug_wire_type.is_local() != is_local)
|
|
return;
|
|
|
|
dump_attrs(wire);
|
|
f << indent;
|
|
if (debug_wire_type.is_outline())
|
|
f << "/*outline*/ ";
|
|
f << "value<" << wire->width << "> " << mangle(wire) << ";\n";
|
|
}
|
|
|
|
void dump_memory(Mem *mem)
|
|
{
|
|
dump_attrs(mem);
|
|
f << indent << "memory<" << mem->width << "> " << mangle(mem)
|
|
<< " { " << mem->size << "u";
|
|
if (!GetSize(mem->inits)) {
|
|
f << " };\n";
|
|
} else {
|
|
f << ",\n";
|
|
inc_indent();
|
|
for (auto &init : mem->inits) {
|
|
if (init.removed)
|
|
continue;
|
|
dump_attrs(&init);
|
|
int words = GetSize(init.data) / mem->width;
|
|
f << indent << "memory<" << mem->width << ">::init<" << words << "> { "
|
|
<< stringf("%#x", init.addr.as_int()) << ", {";
|
|
inc_indent();
|
|
for (int n = 0; n < words; n++) {
|
|
if (n % 4 == 0)
|
|
f << "\n" << indent;
|
|
else
|
|
f << " ";
|
|
dump_const(init.data, mem->width, n * mem->width, /*fixed_width=*/true);
|
|
f << ",";
|
|
}
|
|
dec_indent();
|
|
f << "\n" << indent << "}},\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "};\n";
|
|
}
|
|
}
|
|
|
|
void dump_eval_method(RTLIL::Module *module)
|
|
{
|
|
inc_indent();
|
|
f << indent << "bool converged = " << (eval_converges.at(module) ? "true" : "false") << ";\n";
|
|
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
|
|
for (auto wire : module->wires()) {
|
|
if (edge_wires[wire]) {
|
|
for (auto edge_type : edge_types) {
|
|
if (edge_type.first.wire == wire) {
|
|
if (edge_type.second != RTLIL::STn) {
|
|
f << indent << "bool posedge_" << mangle(edge_type.first) << " = ";
|
|
f << "this->posedge_" << mangle(edge_type.first) << "();\n";
|
|
}
|
|
if (edge_type.second != RTLIL::STp) {
|
|
f << indent << "bool negedge_" << mangle(edge_type.first) << " = ";
|
|
f << "this->negedge_" << mangle(edge_type.first) << "();\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (auto wire : module->wires())
|
|
dump_wire(wire, /*is_local=*/true);
|
|
for (auto node : schedule[module]) {
|
|
switch (node.type) {
|
|
case FlowGraph::Node::Type::CONNECT:
|
|
dump_connect(node.connect);
|
|
break;
|
|
case FlowGraph::Node::Type::CELL_SYNC:
|
|
dump_cell_sync(node.cell);
|
|
break;
|
|
case FlowGraph::Node::Type::CELL_EVAL:
|
|
dump_cell_eval(node.cell);
|
|
break;
|
|
case FlowGraph::Node::Type::PROCESS_CASE:
|
|
dump_process_case(node.process);
|
|
break;
|
|
case FlowGraph::Node::Type::PROCESS_SYNC:
|
|
dump_process_syncs(node.process);
|
|
break;
|
|
case FlowGraph::Node::Type::MEM_RDPORT:
|
|
dump_mem_rdport(node.mem, node.portidx);
|
|
break;
|
|
case FlowGraph::Node::Type::MEM_WRPORTS:
|
|
dump_mem_wrports(node.mem);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
f << indent << "return converged;\n";
|
|
dec_indent();
|
|
}
|
|
|
|
void dump_debug_eval_method(RTLIL::Module *module)
|
|
{
|
|
inc_indent();
|
|
for (auto wire : module->wires())
|
|
dump_debug_wire(wire, /*is_local=*/true);
|
|
for (auto node : debug_schedule[module]) {
|
|
switch (node.type) {
|
|
case FlowGraph::Node::Type::CONNECT:
|
|
dump_connect(node.connect, /*for_debug=*/true);
|
|
break;
|
|
case FlowGraph::Node::Type::CELL_SYNC:
|
|
dump_cell_sync(node.cell, /*for_debug=*/true);
|
|
break;
|
|
case FlowGraph::Node::Type::CELL_EVAL:
|
|
dump_cell_eval(node.cell, /*for_debug=*/true);
|
|
break;
|
|
case FlowGraph::Node::Type::PROCESS_CASE:
|
|
dump_process_case(node.process, /*for_debug=*/true);
|
|
break;
|
|
case FlowGraph::Node::Type::PROCESS_SYNC:
|
|
dump_process_syncs(node.process, /*for_debug=*/true);
|
|
break;
|
|
case FlowGraph::Node::Type::MEM_RDPORT:
|
|
dump_mem_rdport(node.mem, node.portidx, /*for_debug=*/true);
|
|
break;
|
|
case FlowGraph::Node::Type::MEM_WRPORTS:
|
|
dump_mem_wrports(node.mem, /*for_debug=*/true);
|
|
break;
|
|
default:
|
|
log_abort();
|
|
}
|
|
}
|
|
dec_indent();
|
|
}
|
|
|
|
void dump_commit_method(RTLIL::Module *module)
|
|
{
|
|
inc_indent();
|
|
f << indent << "bool changed = false;\n";
|
|
for (auto wire : module->wires()) {
|
|
const auto &wire_type = wire_types[wire];
|
|
if (wire_type.type == WireType::MEMBER && edge_wires[wire])
|
|
f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n";
|
|
if (wire_type.is_buffered())
|
|
f << indent << "if (" << mangle(wire) << ".commit()) changed = true;\n";
|
|
}
|
|
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
|
|
for (auto &mem : mod_memories[module]) {
|
|
if (!writable_memories.count({module, mem.memid}))
|
|
continue;
|
|
f << indent << "if (" << mangle(&mem) << ".commit()) changed = true;\n";
|
|
}
|
|
for (auto cell : module->cells()) {
|
|
if (is_internal_cell(cell->type))
|
|
continue;
|
|
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
|
|
f << indent << "if (" << mangle(cell) << access << "commit()) changed = true;\n";
|
|
}
|
|
}
|
|
f << indent << "return changed;\n";
|
|
dec_indent();
|
|
}
|
|
|
|
void dump_debug_info_method(RTLIL::Module *module)
|
|
{
|
|
size_t count_public_wires = 0;
|
|
size_t count_member_wires = 0;
|
|
size_t count_undriven = 0;
|
|
size_t count_driven_sync = 0;
|
|
size_t count_driven_comb = 0;
|
|
size_t count_mixed_driver = 0;
|
|
size_t count_alias_wires = 0;
|
|
size_t count_const_wires = 0;
|
|
size_t count_inline_wires = 0;
|
|
size_t count_skipped_wires = 0;
|
|
inc_indent();
|
|
f << indent << "assert(path.empty() || path[path.size() - 1] == ' ');\n";
|
|
for (auto wire : module->wires()) {
|
|
const auto &debug_wire_type = debug_wire_types[wire];
|
|
if (!wire->name.isPublic())
|
|
continue;
|
|
count_public_wires++;
|
|
switch (debug_wire_type.type) {
|
|
case WireType::BUFFERED:
|
|
case WireType::MEMBER: {
|
|
// Member wire
|
|
std::vector<std::string> flags;
|
|
|
|
if (wire->port_input && wire->port_output)
|
|
flags.push_back("INOUT");
|
|
else if (wire->port_output)
|
|
flags.push_back("OUTPUT");
|
|
else if (wire->port_input)
|
|
flags.push_back("INPUT");
|
|
|
|
bool has_driven_sync = false;
|
|
bool has_driven_comb = false;
|
|
bool has_undriven = false;
|
|
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
|
|
for (auto bit : SigSpec(wire))
|
|
if (!bit_has_state.count(bit))
|
|
has_undriven = true;
|
|
else if (bit_has_state[bit])
|
|
has_driven_sync = true;
|
|
else
|
|
has_driven_comb = true;
|
|
} else if (wire->port_output) {
|
|
switch (cxxrtl_port_type(module, wire->name)) {
|
|
case CxxrtlPortType::SYNC:
|
|
has_driven_sync = true;
|
|
break;
|
|
case CxxrtlPortType::COMB:
|
|
has_driven_comb = true;
|
|
break;
|
|
case CxxrtlPortType::UNKNOWN:
|
|
has_driven_sync = has_driven_comb = true;
|
|
break;
|
|
}
|
|
} else {
|
|
has_undriven = true;
|
|
}
|
|
if (has_undriven)
|
|
flags.push_back("UNDRIVEN");
|
|
if (!has_driven_sync && !has_driven_comb && has_undriven)
|
|
count_undriven++;
|
|
if (has_driven_sync)
|
|
flags.push_back("DRIVEN_SYNC");
|
|
if (has_driven_sync && !has_driven_comb && !has_undriven)
|
|
count_driven_sync++;
|
|
if (has_driven_comb)
|
|
flags.push_back("DRIVEN_COMB");
|
|
if (!has_driven_sync && has_driven_comb && !has_undriven)
|
|
count_driven_comb++;
|
|
if (has_driven_sync + has_driven_comb + has_undriven > 1)
|
|
count_mixed_driver++;
|
|
|
|
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
|
|
f << ", debug_item(" << mangle(wire) << ", " << wire->start_offset;
|
|
bool first = true;
|
|
for (auto flag : flags) {
|
|
if (first) {
|
|
first = false;
|
|
f << ", ";
|
|
} else {
|
|
f << "|";
|
|
}
|
|
f << "debug_item::" << flag;
|
|
}
|
|
f << "));\n";
|
|
count_member_wires++;
|
|
break;
|
|
}
|
|
case WireType::ALIAS: {
|
|
// Alias of a member wire
|
|
const RTLIL::Wire *aliasee = debug_wire_type.sig_subst.as_wire();
|
|
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
|
|
f << ", debug_item(";
|
|
// If the aliasee is an outline, then the alias must be an outline, too; otherwise downstream
|
|
// tooling has no way to find out about the outline.
|
|
if (debug_wire_types[aliasee].is_outline())
|
|
f << "debug_eval_outline";
|
|
else
|
|
f << "debug_alias()";
|
|
f << ", " << mangle(aliasee) << ", " << wire->start_offset << "));\n";
|
|
count_alias_wires++;
|
|
break;
|
|
}
|
|
case WireType::CONST: {
|
|
// Wire tied to a constant
|
|
f << indent << "static const value<" << wire->width << "> const_" << mangle(wire) << " = ";
|
|
dump_const(debug_wire_type.sig_subst.as_const());
|
|
f << ";\n";
|
|
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
|
|
f << ", debug_item(const_" << mangle(wire) << ", " << wire->start_offset << "));\n";
|
|
count_const_wires++;
|
|
break;
|
|
}
|
|
case WireType::OUTLINE: {
|
|
// Localized or inlined, but rematerializable wire
|
|
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
|
|
f << ", debug_item(debug_eval_outline, " << mangle(wire) << ", " << wire->start_offset << "));\n";
|
|
count_inline_wires++;
|
|
break;
|
|
}
|
|
default: {
|
|
// Localized or inlined wire with no debug information
|
|
count_skipped_wires++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
|
|
for (auto &mem : mod_memories[module]) {
|
|
if (!mem.memid.isPublic())
|
|
continue;
|
|
f << indent << "items.add(path + " << escape_cxx_string(mem.packed ? get_hdl_name(mem.cell) : get_hdl_name(mem.mem));
|
|
f << ", debug_item(" << mangle(&mem) << ", ";
|
|
f << mem.start_offset << "));\n";
|
|
}
|
|
for (auto cell : module->cells()) {
|
|
if (is_internal_cell(cell->type))
|
|
continue;
|
|
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
|
|
f << indent << mangle(cell) << access << "debug_info(items, ";
|
|
f << "path + " << escape_cxx_string(get_hdl_name(cell) + ' ') << ");\n";
|
|
}
|
|
}
|
|
dec_indent();
|
|
|
|
log_debug("Debug information statistics for module `%s':\n", log_id(module));
|
|
log_debug(" Public wires: %zu, of which:\n", count_public_wires);
|
|
log_debug(" Member wires: %zu, of which:\n", count_member_wires);
|
|
log_debug(" Undriven: %zu (incl. inputs)\n", count_undriven);
|
|
log_debug(" Driven sync: %zu\n", count_driven_sync);
|
|
log_debug(" Driven comb: %zu\n", count_driven_comb);
|
|
log_debug(" Mixed driver: %zu\n", count_mixed_driver);
|
|
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
|
|
log_debug(" Inline wires: %zu\n", count_inline_wires);
|
|
log_debug(" Alias wires: %zu\n", count_alias_wires);
|
|
log_debug(" Const wires: %zu\n", count_const_wires);
|
|
log_debug(" Other wires: %zu%s\n", count_skipped_wires,
|
|
count_skipped_wires > 0 ? " (debug unavailable)" : "");
|
|
}
|
|
}
|
|
|
|
void dump_metadata_map(const dict<RTLIL::IdString, RTLIL::Const> &metadata_map)
|
|
{
|
|
if (metadata_map.empty()) {
|
|
f << "metadata_map()";
|
|
return;
|
|
}
|
|
f << "metadata_map({\n";
|
|
inc_indent();
|
|
for (auto metadata_item : metadata_map) {
|
|
if (!metadata_item.first.begins_with("\\"))
|
|
continue;
|
|
f << indent << "{ " << escape_cxx_string(metadata_item.first.str().substr(1)) << ", ";
|
|
if (metadata_item.second.flags & RTLIL::CONST_FLAG_REAL) {
|
|
f << std::showpoint << std::stod(metadata_item.second.decode_string()) << std::noshowpoint;
|
|
} else if (metadata_item.second.flags & RTLIL::CONST_FLAG_STRING) {
|
|
f << escape_cxx_string(metadata_item.second.decode_string());
|
|
} else {
|
|
f << metadata_item.second.as_int(/*is_signed=*/metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED);
|
|
if (!(metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED))
|
|
f << "u";
|
|
}
|
|
f << " },\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "})";
|
|
}
|
|
|
|
void dump_module_intf(RTLIL::Module *module)
|
|
{
|
|
dump_attrs(module);
|
|
if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
|
|
if (module->has_attribute(ID(cxxrtl_template)))
|
|
f << indent << "template" << template_params(module, /*is_decl=*/true) << "\n";
|
|
f << indent << "struct " << mangle(module) << " : public module {\n";
|
|
inc_indent();
|
|
for (auto wire : module->wires()) {
|
|
if (wire->port_id != 0)
|
|
dump_wire(wire, /*is_local=*/false);
|
|
}
|
|
f << "\n";
|
|
f << indent << "bool eval() override {\n";
|
|
dump_eval_method(module);
|
|
f << indent << "}\n";
|
|
f << "\n";
|
|
f << indent << "bool commit() override {\n";
|
|
dump_commit_method(module);
|
|
f << indent << "}\n";
|
|
f << "\n";
|
|
if (debug_info) {
|
|
f << indent << "void debug_info(debug_items &items, std::string path = \"\") override {\n";
|
|
dump_debug_info_method(module);
|
|
f << indent << "}\n";
|
|
f << "\n";
|
|
}
|
|
f << indent << "static std::unique_ptr<" << mangle(module);
|
|
f << template_params(module, /*is_decl=*/false) << "> ";
|
|
f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
|
|
dec_indent();
|
|
f << indent << "}; // struct " << mangle(module) << "\n";
|
|
f << "\n";
|
|
if (blackbox_specializations.count(module)) {
|
|
// If templated black boxes are used, the constructor of any module which includes the black box cell
|
|
// (which calls the declared but not defined in the generated code `create` function) may only be used
|
|
// if (a) the create function is defined in the same translation unit, or (b) the create function has
|
|
// a forward-declared explicit specialization.
|
|
//
|
|
// Option (b) makes it possible to have the generated code and the black box implementation in different
|
|
// translation units, which is convenient. Of course, its downside is that black boxes must predefine
|
|
// a specialization for every combination of parameters the generated code may use; but since the main
|
|
// purpose of templated black boxes is abstracting over datapath width, it is expected that there would
|
|
// be very few such combinations anyway.
|
|
for (auto specialization : blackbox_specializations[module]) {
|
|
f << indent << "template<>\n";
|
|
f << indent << "std::unique_ptr<" << mangle(module) << specialization << "> ";
|
|
f << mangle(module) << specialization << "::";
|
|
f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
|
|
f << "\n";
|
|
}
|
|
}
|
|
} else {
|
|
f << indent << "struct " << mangle(module) << " : public module {\n";
|
|
inc_indent();
|
|
for (auto wire : module->wires())
|
|
dump_wire(wire, /*is_local=*/false);
|
|
for (auto wire : module->wires())
|
|
dump_debug_wire(wire, /*is_local=*/false);
|
|
bool has_memories = false;
|
|
for (auto &mem : mod_memories[module]) {
|
|
dump_memory(&mem);
|
|
has_memories = true;
|
|
}
|
|
if (has_memories)
|
|
f << "\n";
|
|
bool has_cells = false;
|
|
for (auto cell : module->cells()) {
|
|
if (is_internal_cell(cell->type))
|
|
continue;
|
|
dump_attrs(cell);
|
|
RTLIL::Module *cell_module = module->design->module(cell->type);
|
|
log_assert(cell_module != nullptr);
|
|
if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) {
|
|
f << indent << "std::unique_ptr<" << mangle(cell_module) << template_args(cell) << "> ";
|
|
f << mangle(cell) << " = " << mangle(cell_module) << template_args(cell);
|
|
f << "::create(" << escape_cxx_string(get_hdl_name(cell)) << ", ";
|
|
dump_metadata_map(cell->parameters);
|
|
f << ", ";
|
|
dump_metadata_map(cell->attributes);
|
|
f << ");\n";
|
|
} else {
|
|
f << indent << mangle(cell_module) << " " << mangle(cell) << ";\n";
|
|
}
|
|
has_cells = true;
|
|
}
|
|
if (has_cells)
|
|
f << "\n";
|
|
f << indent << mangle(module) << "() {}\n";
|
|
if (has_cells) {
|
|
f << indent << mangle(module) << "(adopt, " << mangle(module) << " other) :\n";
|
|
bool first = true;
|
|
for (auto cell : module->cells()) {
|
|
if (is_internal_cell(cell->type))
|
|
continue;
|
|
if (first) {
|
|
first = false;
|
|
} else {
|
|
f << ",\n";
|
|
}
|
|
RTLIL::Module *cell_module = module->design->module(cell->type);
|
|
if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) {
|
|
f << indent << " " << mangle(cell) << "(std::move(other." << mangle(cell) << "))";
|
|
} else {
|
|
f << indent << " " << mangle(cell) << "(adopt {}, std::move(other." << mangle(cell) << "))";
|
|
}
|
|
}
|
|
f << " {\n";
|
|
inc_indent();
|
|
for (auto cell : module->cells()) {
|
|
if (is_internal_cell(cell->type))
|
|
continue;
|
|
RTLIL::Module *cell_module = module->design->module(cell->type);
|
|
if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
|
|
f << indent << mangle(cell) << "->reset();\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
} else {
|
|
f << indent << mangle(module) << "(adopt, " << mangle(module) << " other) {}\n";
|
|
}
|
|
f << "\n";
|
|
f << indent << "void reset() override {\n";
|
|
inc_indent();
|
|
f << indent << "*this = " << mangle(module) << "(adopt {}, std::move(*this));\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
f << "\n";
|
|
f << indent << "bool eval() override;\n";
|
|
f << indent << "bool commit() override;\n";
|
|
if (debug_info) {
|
|
if (debug_eval) {
|
|
f << "\n";
|
|
f << indent << "void debug_eval();\n";
|
|
for (auto wire : module->wires())
|
|
if (debug_wire_types[wire].is_outline()) {
|
|
f << indent << "debug_outline debug_eval_outline { std::bind(&"
|
|
<< mangle(module) << "::debug_eval, this) };\n";
|
|
break;
|
|
}
|
|
}
|
|
f << "\n";
|
|
f << indent << "void debug_info(debug_items &items, std::string path = \"\") override;\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "}; // struct " << mangle(module) << "\n";
|
|
f << "\n";
|
|
}
|
|
}
|
|
|
|
void dump_module_impl(RTLIL::Module *module)
|
|
{
|
|
if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
|
|
return;
|
|
f << indent << "bool " << mangle(module) << "::eval() {\n";
|
|
dump_eval_method(module);
|
|
f << indent << "}\n";
|
|
f << "\n";
|
|
f << indent << "bool " << mangle(module) << "::commit() {\n";
|
|
dump_commit_method(module);
|
|
f << indent << "}\n";
|
|
f << "\n";
|
|
if (debug_info) {
|
|
if (debug_eval) {
|
|
f << indent << "void " << mangle(module) << "::debug_eval() {\n";
|
|
dump_debug_eval_method(module);
|
|
f << indent << "}\n";
|
|
f << "\n";
|
|
}
|
|
f << indent << "CXXRTL_EXTREMELY_COLD\n";
|
|
f << indent << "void " << mangle(module) << "::debug_info(debug_items &items, std::string path) {\n";
|
|
dump_debug_info_method(module);
|
|
f << indent << "}\n";
|
|
f << "\n";
|
|
}
|
|
}
|
|
|
|
void dump_design(RTLIL::Design *design)
|
|
{
|
|
RTLIL::Module *top_module = nullptr;
|
|
std::vector<RTLIL::Module*> modules;
|
|
TopoSort<RTLIL::Module*> topo_design;
|
|
for (auto module : design->modules()) {
|
|
if (!design->selected_module(module))
|
|
continue;
|
|
if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
|
|
modules.push_back(module); // cxxrtl blackboxes first
|
|
if (module->get_blackbox_attribute() || module->get_bool_attribute(ID(cxxrtl_blackbox)))
|
|
continue;
|
|
if (module->get_bool_attribute(ID::top))
|
|
top_module = module;
|
|
|
|
topo_design.node(module);
|
|
for (auto cell : module->cells()) {
|
|
if (is_internal_cell(cell->type) || is_cxxrtl_blackbox_cell(cell))
|
|
continue;
|
|
RTLIL::Module *cell_module = design->module(cell->type);
|
|
log_assert(cell_module != nullptr);
|
|
topo_design.edge(cell_module, module);
|
|
}
|
|
}
|
|
bool no_loops = topo_design.sort();
|
|
log_assert(no_loops);
|
|
modules.insert(modules.end(), topo_design.sorted.begin(), topo_design.sorted.end());
|
|
|
|
if (split_intf) {
|
|
// The only thing more depraved than include guards, is mangling filenames to turn them into include guards.
|
|
std::string include_guard = design_ns + "_header";
|
|
std::transform(include_guard.begin(), include_guard.end(), include_guard.begin(), ::toupper);
|
|
|
|
f << "#ifndef " << include_guard << "\n";
|
|
f << "#define " << include_guard << "\n";
|
|
f << "\n";
|
|
if (top_module != nullptr && debug_info) {
|
|
f << "#include <backends/cxxrtl/cxxrtl_capi.h>\n";
|
|
f << "\n";
|
|
f << "#ifdef __cplusplus\n";
|
|
f << "extern \"C\" {\n";
|
|
f << "#endif\n";
|
|
f << "\n";
|
|
f << "cxxrtl_toplevel " << design_ns << "_create();\n";
|
|
f << "\n";
|
|
f << "#ifdef __cplusplus\n";
|
|
f << "}\n";
|
|
f << "#endif\n";
|
|
f << "\n";
|
|
} else {
|
|
f << "// The CXXRTL C API is not available because the design is built without debug information.\n";
|
|
f << "\n";
|
|
}
|
|
f << "#ifdef __cplusplus\n";
|
|
f << "\n";
|
|
f << "#include <backends/cxxrtl/cxxrtl.h>\n";
|
|
f << "\n";
|
|
f << "using namespace cxxrtl;\n";
|
|
f << "\n";
|
|
f << "namespace " << design_ns << " {\n";
|
|
f << "\n";
|
|
for (auto module : modules)
|
|
dump_module_intf(module);
|
|
f << "} // namespace " << design_ns << "\n";
|
|
f << "\n";
|
|
f << "#endif // __cplusplus\n";
|
|
f << "\n";
|
|
f << "#endif\n";
|
|
*intf_f << f.str(); f.str("");
|
|
}
|
|
|
|
if (split_intf)
|
|
f << "#include \"" << intf_filename << "\"\n";
|
|
else
|
|
f << "#include <backends/cxxrtl/cxxrtl.h>\n";
|
|
f << "\n";
|
|
f << "#if defined(CXXRTL_INCLUDE_CAPI_IMPL) || \\\n";
|
|
f << " defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
|
|
f << "#include <backends/cxxrtl/cxxrtl_capi.cc>\n";
|
|
f << "#endif\n";
|
|
f << "\n";
|
|
f << "#if defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
|
|
f << "#include <backends/cxxrtl/cxxrtl_vcd_capi.cc>\n";
|
|
f << "#endif\n";
|
|
f << "\n";
|
|
f << "using namespace cxxrtl_yosys;\n";
|
|
f << "\n";
|
|
f << "namespace " << design_ns << " {\n";
|
|
f << "\n";
|
|
for (auto module : modules) {
|
|
if (!split_intf)
|
|
dump_module_intf(module);
|
|
dump_module_impl(module);
|
|
}
|
|
f << "} // namespace " << design_ns << "\n";
|
|
f << "\n";
|
|
if (top_module != nullptr && debug_info) {
|
|
f << "extern \"C\"\n";
|
|
f << "cxxrtl_toplevel " << design_ns << "_create() {\n";
|
|
inc_indent();
|
|
std::string top_type = design_ns + "::" + mangle(top_module);
|
|
f << indent << "return new _cxxrtl_toplevel { ";
|
|
f << "std::unique_ptr<" << top_type << ">(new " + top_type + ")";
|
|
f << " };\n";
|
|
dec_indent();
|
|
f << "}\n";
|
|
}
|
|
|
|
*impl_f << f.str(); f.str("");
|
|
}
|
|
|
|
// Edge-type sync rules require us to emit edge detectors, which require coordination between
|
|
// eval and commit phases. To do this we need to collect them upfront.
|
|
//
|
|
// Note that the simulator commit phase operates at wire granularity but edge-type sync rules
|
|
// operate at wire bit granularity; it is possible to have code similar to:
|
|
// wire [3:0] clocks;
|
|
// always @(posedge clocks[0]) ...
|
|
// To handle this we track edge sensitivity both for wires and wire bits.
|
|
void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
|
|
{
|
|
signal = sigmap(signal);
|
|
if (signal.is_fully_const())
|
|
return; // a clock, or more commonly a reset, can be tied to a constant driver
|
|
log_assert(is_valid_clock(signal));
|
|
log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
|
|
|
|
RTLIL::SigBit sigbit = signal[0];
|
|
if (!edge_types.count(sigbit))
|
|
edge_types[sigbit] = type;
|
|
else if (edge_types[sigbit] != type)
|
|
edge_types[sigbit] = RTLIL::STe;
|
|
// Cannot use as_wire because signal might not be a full wire, instead extract the wire from the sigbit
|
|
edge_wires.insert(sigbit.wire);
|
|
}
|
|
|
|
void analyze_design(RTLIL::Design *design)
|
|
{
|
|
bool has_feedback_arcs = false;
|
|
bool has_buffered_comb_wires = false;
|
|
|
|
for (auto module : design->modules()) {
|
|
if (!design->selected_module(module))
|
|
continue;
|
|
|
|
SigMap &sigmap = sigmaps[module];
|
|
sigmap.set(module);
|
|
|
|
std::vector<Mem> &memories = mod_memories[module];
|
|
memories = Mem::get_all_memories(module);
|
|
for (auto &mem : memories) {
|
|
mem.narrow();
|
|
mem.coalesce_inits();
|
|
}
|
|
|
|
if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
|
|
for (auto port : module->ports) {
|
|
RTLIL::Wire *wire = module->wire(port);
|
|
if (wire->port_input && !wire->port_output) {
|
|
wire_types[wire] = debug_wire_types[wire] = {WireType::MEMBER};
|
|
} else if (wire->port_input || wire->port_output) {
|
|
wire_types[wire] = debug_wire_types[wire] = {WireType::BUFFERED};
|
|
}
|
|
if (wire->has_attribute(ID(cxxrtl_edge))) {
|
|
RTLIL::Const edge_attr = wire->attributes[ID(cxxrtl_edge)];
|
|
if (!(edge_attr.flags & RTLIL::CONST_FLAG_STRING) || (int)edge_attr.decode_string().size() != GetSize(wire))
|
|
log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' is not a string with one character per bit.\n",
|
|
log_id(module), log_signal(wire));
|
|
|
|
std::string edges = wire->get_string_attribute(ID(cxxrtl_edge));
|
|
for (int i = 0; i < GetSize(wire); i++) {
|
|
RTLIL::SigSpec wire_sig = wire;
|
|
switch (edges[i]) {
|
|
case '-': break;
|
|
case 'p': register_edge_signal(sigmap, wire_sig[i], RTLIL::STp); break;
|
|
case 'n': register_edge_signal(sigmap, wire_sig[i], RTLIL::STn); break;
|
|
case 'a': register_edge_signal(sigmap, wire_sig[i], RTLIL::STe); break;
|
|
default:
|
|
log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' contains specifiers "
|
|
"other than '-', 'p', 'n', or 'a'.\n",
|
|
log_id(module), log_signal(wire));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Black boxes converge by default, since their implementations are quite unlikely to require
|
|
// internal propagation of comb signals.
|
|
eval_converges[module] = true;
|
|
continue;
|
|
}
|
|
|
|
for (auto wire : module->wires())
|
|
if (wire->has_attribute(ID::init))
|
|
wire_init[wire] = wire->attributes.at(ID::init);
|
|
|
|
// Construct a flow graph where each node is a basic computational operation generally corresponding
|
|
// to a fragment of the RTLIL netlist.
|
|
FlowGraph flow;
|
|
|
|
for (auto conn : module->connections())
|
|
flow.add_node(conn);
|
|
|
|
for (auto cell : module->cells()) {
|
|
if (!cell->known())
|
|
log_cmd_error("Unknown cell `%s'.\n", log_id(cell->type));
|
|
|
|
if (cell->is_mem_cell())
|
|
continue;
|
|
|
|
RTLIL::Module *cell_module = design->module(cell->type);
|
|
if (cell_module &&
|
|
cell_module->get_blackbox_attribute() &&
|
|
!cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
|
|
log_cmd_error("External blackbox cell `%s' is not marked as a CXXRTL blackbox.\n", log_id(cell->type));
|
|
|
|
if (cell_module &&
|
|
cell_module->get_bool_attribute(ID(cxxrtl_blackbox)) &&
|
|
cell_module->get_bool_attribute(ID(cxxrtl_template)))
|
|
blackbox_specializations[cell_module].insert(template_args(cell));
|
|
|
|
flow.add_node(cell);
|
|
|
|
// Various DFF cells are treated like posedge/negedge processes, see above for details.
|
|
if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($sdff), ID($sdffe), ID($sdffce))) {
|
|
if (is_valid_clock(cell->getPort(ID::CLK)))
|
|
register_edge_signal(sigmap, cell->getPort(ID::CLK),
|
|
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
|
|
}
|
|
}
|
|
|
|
for (auto &mem : memories) {
|
|
flow.add_node(&mem);
|
|
|
|
// Clocked memory cells are treated like posedge/negedge processes as well.
|
|
for (auto &port : mem.rd_ports) {
|
|
if (port.clk_enable)
|
|
if (is_valid_clock(port.clk))
|
|
register_edge_signal(sigmap, port.clk,
|
|
port.clk_polarity ? RTLIL::STp : RTLIL::STn);
|
|
// For read ports, also move initial value to wire_init (if any).
|
|
for (int i = 0; i < GetSize(port.data); i++) {
|
|
if (port.init_value[i] != State::Sx) {
|
|
SigBit bit = port.data[i];
|
|
if (bit.wire) {
|
|
auto &init = wire_init[bit.wire];
|
|
if (init == RTLIL::Const()) {
|
|
init = RTLIL::Const(State::Sx, GetSize(bit.wire));
|
|
}
|
|
init[bit.offset] = port.init_value[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (auto &port : mem.wr_ports) {
|
|
if (port.clk_enable)
|
|
if (is_valid_clock(port.clk))
|
|
register_edge_signal(sigmap, port.clk,
|
|
port.clk_polarity ? RTLIL::STp : RTLIL::STn);
|
|
}
|
|
|
|
if (!mem.wr_ports.empty())
|
|
writable_memories.insert({module, mem.memid});
|
|
}
|
|
|
|
for (auto proc : module->processes) {
|
|
flow.add_node(proc.second);
|
|
|
|
for (auto sync : proc.second->syncs) {
|
|
switch (sync->type) {
|
|
// Edge-type sync rules require pre-registration.
|
|
case RTLIL::STp:
|
|
case RTLIL::STn:
|
|
case RTLIL::STe:
|
|
register_edge_signal(sigmap, sync->signal, sync->type);
|
|
break;
|
|
|
|
// Level-type sync rules require no special handling.
|
|
case RTLIL::ST0:
|
|
case RTLIL::ST1:
|
|
case RTLIL::STa:
|
|
break;
|
|
|
|
case RTLIL::STg:
|
|
log_cmd_error("Global clock is not supported.\n");
|
|
|
|
// Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
|
|
// attribute regardless of input.
|
|
case RTLIL::STi:
|
|
log_assert(false);
|
|
}
|
|
for (auto &memwr : sync->mem_write_actions) {
|
|
writable_memories.insert({module, memwr.memid});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Construct a linear order of the flow graph that minimizes the amount of feedback arcs. A flow graph
|
|
// without feedback arcs can generally be evaluated in a single pass, i.e. it always requires only
|
|
// a single delta cycle.
|
|
Scheduler<FlowGraph::Node> scheduler;
|
|
dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_vertex_map;
|
|
for (auto node : flow.nodes)
|
|
node_vertex_map[node] = scheduler.add(node);
|
|
for (auto node_comb_def : flow.node_comb_defs) {
|
|
auto vertex = node_vertex_map[node_comb_def.first];
|
|
for (auto wire : node_comb_def.second)
|
|
for (auto succ_node : flow.wire_uses[wire]) {
|
|
auto succ_vertex = node_vertex_map[succ_node];
|
|
vertex->succs.insert(succ_vertex);
|
|
succ_vertex->preds.insert(vertex);
|
|
}
|
|
}
|
|
|
|
// Find out whether the order includes any feedback arcs.
|
|
std::vector<FlowGraph::Node*> node_order;
|
|
pool<FlowGraph::Node*, hash_ptr_ops> evaluated_nodes;
|
|
pool<const RTLIL::Wire*> feedback_wires;
|
|
for (auto vertex : scheduler.schedule()) {
|
|
auto node = vertex->data;
|
|
node_order.push_back(node);
|
|
// Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi
|
|
// is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be
|
|
// caused by a true logic loop, but usually are a benign result of dependency tracking that works
|
|
// on wire, not bit, level. Nevertheless, feedback wires cannot be unbuffered.
|
|
evaluated_nodes.insert(node);
|
|
for (auto wire : flow.node_comb_defs[node])
|
|
for (auto succ_node : flow.wire_uses[wire])
|
|
if (evaluated_nodes[succ_node])
|
|
feedback_wires.insert(wire);
|
|
}
|
|
if (!feedback_wires.empty()) {
|
|
has_feedback_arcs = true;
|
|
log("Module `%s' contains feedback arcs through wires:\n", log_id(module));
|
|
for (auto wire : feedback_wires)
|
|
log(" %s\n", log_id(wire));
|
|
}
|
|
|
|
// Conservatively assign wire types. Assignment of types BUFFERED and MEMBER is final, but assignment
|
|
// of type LOCAL may be further refined to UNUSED or INLINE.
|
|
for (auto wire : module->wires()) {
|
|
auto &wire_type = wire_types[wire];
|
|
wire_type = {WireType::BUFFERED};
|
|
|
|
if (feedback_wires[wire]) continue;
|
|
if (wire->port_output && !module->get_bool_attribute(ID::top)) continue;
|
|
if (!wire->name.isPublic() && !unbuffer_internal) continue;
|
|
if (wire->name.isPublic() && !unbuffer_public) continue;
|
|
if (flow.wire_sync_defs.count(wire) > 0) continue;
|
|
wire_type = {WireType::MEMBER};
|
|
|
|
if (edge_wires[wire]) continue;
|
|
if (wire->get_bool_attribute(ID::keep)) continue;
|
|
if (wire->port_input || wire->port_output) continue;
|
|
if (!wire->name.isPublic() && !localize_internal) continue;
|
|
if (wire->name.isPublic() && !localize_public) continue;
|
|
wire_type = {WireType::LOCAL};
|
|
}
|
|
|
|
// Discover nodes reachable from primary outputs (i.e. members) and collect reachable wire users.
|
|
pool<FlowGraph::Node*, hash_ptr_ops> worklist;
|
|
for (auto node : flow.nodes) {
|
|
if (node->type == FlowGraph::Node::Type::CELL_EVAL && is_effectful_cell(node->cell->type))
|
|
worklist.insert(node); // node has effects
|
|
else if (node->type == FlowGraph::Node::Type::MEM_WRPORTS)
|
|
worklist.insert(node); // node is memory write
|
|
else if (node->type == FlowGraph::Node::Type::PROCESS_SYNC && is_memwr_process(node->process))
|
|
worklist.insert(node); // node is memory write
|
|
else if (flow.node_sync_defs.count(node))
|
|
worklist.insert(node); // node is a flip-flop
|
|
else if (flow.node_comb_defs.count(node)) {
|
|
for (auto wire : flow.node_comb_defs[node])
|
|
if (wire_types[wire].is_member())
|
|
worklist.insert(node); // node drives public wires
|
|
}
|
|
}
|
|
dict<const RTLIL::Wire*, pool<FlowGraph::Node*, hash_ptr_ops>> live_wires;
|
|
pool<FlowGraph::Node*, hash_ptr_ops> live_nodes;
|
|
while (!worklist.empty()) {
|
|
auto node = worklist.pop();
|
|
live_nodes.insert(node);
|
|
for (auto wire : flow.node_uses[node]) {
|
|
live_wires[wire].insert(node);
|
|
for (auto pred_node : flow.wire_comb_defs[wire])
|
|
if (!live_nodes[pred_node])
|
|
worklist.insert(pred_node);
|
|
}
|
|
}
|
|
|
|
// Refine wire types taking into account the amount of uses from reachable nodes only.
|
|
for (auto wire : module->wires()) {
|
|
auto &wire_type = wire_types[wire];
|
|
if (!wire_type.is_local()) continue;
|
|
if (live_wires[wire].empty()) {
|
|
wire_type = {WireType::UNUSED}; // wire never used
|
|
continue;
|
|
}
|
|
|
|
if (!wire->name.isPublic() && !inline_internal) continue;
|
|
if (wire->name.isPublic() && !inline_public) continue;
|
|
if (flow.is_inlinable(wire, live_wires[wire])) {
|
|
if (flow.wire_comb_defs[wire].size() > 1)
|
|
log_cmd_error("Wire %s.%s has multiple drivers!\n", log_id(module), log_id(wire));
|
|
log_assert(flow.wire_comb_defs[wire].size() == 1);
|
|
FlowGraph::Node *node = *flow.wire_comb_defs[wire].begin();
|
|
switch (node->type) {
|
|
case FlowGraph::Node::Type::CELL_EVAL:
|
|
if (!is_inlinable_cell(node->cell->type)) continue;
|
|
wire_type = {WireType::INLINE, node->cell}; // wire replaced with cell
|
|
break;
|
|
case FlowGraph::Node::Type::CONNECT:
|
|
wire_type = {WireType::INLINE, node->connect.second}; // wire replaced with sig
|
|
break;
|
|
default: continue;
|
|
}
|
|
live_nodes.erase(node);
|
|
}
|
|
}
|
|
|
|
// Emit reachable nodes in eval().
|
|
for (auto node : node_order)
|
|
if (live_nodes[node])
|
|
schedule[module].push_back(*node);
|
|
|
|
// For maximum performance, the state of the simulation (which is the same as the set of its double buffered
|
|
// wires, since using a singly buffered wire for any kind of state introduces a race condition) should contain
|
|
// no wires attached to combinatorial outputs. Feedback wires, by definition, make that impossible. However,
|
|
// it is possible that a design with no feedback arcs would end up with doubly buffered wires in such cases
|
|
// as a wire with multiple drivers where one of them is combinatorial and the other is synchronous. Such designs
|
|
// also require more than one delta cycle to converge.
|
|
pool<const RTLIL::Wire*> buffered_comb_wires;
|
|
for (auto wire : module->wires())
|
|
if (wire_types[wire].is_buffered() && !feedback_wires[wire] && flow.wire_comb_defs[wire].size() > 0)
|
|
buffered_comb_wires.insert(wire);
|
|
if (!buffered_comb_wires.empty()) {
|
|
has_buffered_comb_wires = true;
|
|
log("Module `%s' contains buffered combinatorial wires:\n", log_id(module));
|
|
for (auto wire : buffered_comb_wires)
|
|
log(" %s\n", log_id(wire));
|
|
}
|
|
|
|
// Record whether eval() requires only one delta cycle in this module.
|
|
eval_converges[module] = feedback_wires.empty() && buffered_comb_wires.empty();
|
|
|
|
if (debug_info) {
|
|
// Annotate wire bits with the type of their driver; this is exposed in the debug metadata.
|
|
for (auto item : flow.bit_has_state)
|
|
bit_has_state.insert(item);
|
|
|
|
// Assign debug information wire types to public wires according to the chosen debug level.
|
|
// Unlike with optimized wire types, all assignments here are final.
|
|
for (auto wire : module->wires()) {
|
|
const auto &wire_type = wire_types[wire];
|
|
auto &debug_wire_type = debug_wire_types[wire];
|
|
|
|
if (!debug_info) continue;
|
|
if (wire->port_input || wire_type.is_buffered())
|
|
debug_wire_type = wire_type; // wire contains state
|
|
else if (!wire->name.isPublic())
|
|
continue; // internal and stateless
|
|
|
|
if (!debug_member) continue;
|
|
if (wire_type.is_member())
|
|
debug_wire_type = wire_type; // wire is a member
|
|
|
|
if (!debug_alias) continue;
|
|
const RTLIL::Wire *it = wire;
|
|
while (flow.is_inlinable(it)) {
|
|
log_assert(flow.wire_comb_defs[it].size() == 1);
|
|
FlowGraph::Node *node = *flow.wire_comb_defs[it].begin();
|
|
if (node->type != FlowGraph::Node::Type::CONNECT) break; // not an alias
|
|
RTLIL::SigSpec rhs = node->connect.second;
|
|
if (rhs.is_fully_const()) {
|
|
debug_wire_type = {WireType::CONST, rhs}; // wire replaced with const
|
|
} else if (rhs.is_wire()) {
|
|
if (wire_types[rhs.as_wire()].is_member())
|
|
debug_wire_type = {WireType::ALIAS, rhs}; // wire replaced with wire
|
|
else if (debug_eval && rhs.as_wire()->name.isPublic())
|
|
debug_wire_type = {WireType::ALIAS, rhs}; // wire replaced with outline
|
|
it = rhs.as_wire(); // and keep looking
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!debug_eval) continue;
|
|
if (!debug_wire_type.is_exact() && !wire_type.is_member())
|
|
debug_wire_type = {WireType::OUTLINE}; // wire is local or inlined
|
|
}
|
|
|
|
// Discover nodes reachable from primary outputs (i.e. outlines) up until primary inputs (i.e. members)
|
|
// and collect reachable wire users.
|
|
pool<FlowGraph::Node*, hash_ptr_ops> worklist;
|
|
for (auto node : flow.nodes) {
|
|
if (flow.node_comb_defs.count(node))
|
|
for (auto wire : flow.node_comb_defs[node])
|
|
if (debug_wire_types[wire].is_outline())
|
|
worklist.insert(node); // node drives outline
|
|
}
|
|
dict<const RTLIL::Wire*, pool<FlowGraph::Node*, hash_ptr_ops>> debug_live_wires;
|
|
pool<FlowGraph::Node*, hash_ptr_ops> debug_live_nodes;
|
|
while (!worklist.empty()) {
|
|
auto node = worklist.pop();
|
|
debug_live_nodes.insert(node);
|
|
for (auto wire : flow.node_uses[node]) {
|
|
if (debug_wire_types[wire].is_member())
|
|
continue; // node uses member
|
|
if (debug_wire_types[wire].is_exact())
|
|
continue; // node uses alias or const
|
|
debug_live_wires[wire].insert(node);
|
|
for (auto pred_node : flow.wire_comb_defs[wire])
|
|
if (!debug_live_nodes[pred_node])
|
|
worklist.insert(pred_node);
|
|
}
|
|
}
|
|
|
|
// Assign debug information wire types to internal wires used by reachable nodes. This is similar
|
|
// to refining optimized wire types with the exception that the assignments here are first and final.
|
|
for (auto wire : module->wires()) {
|
|
const auto &wire_type = wire_types[wire];
|
|
auto &debug_wire_type = debug_wire_types[wire];
|
|
if (wire->name.isPublic()) continue;
|
|
|
|
if (debug_live_wires[wire].empty()) {
|
|
continue; // wire never used
|
|
} else if (flow.is_inlinable(wire, debug_live_wires[wire])) {
|
|
log_assert(flow.wire_comb_defs[wire].size() == 1);
|
|
FlowGraph::Node *node = *flow.wire_comb_defs[wire].begin();
|
|
switch (node->type) {
|
|
case FlowGraph::Node::Type::CELL_EVAL:
|
|
if (!is_inlinable_cell(node->cell->type)) continue;
|
|
debug_wire_type = {WireType::INLINE, node->cell}; // wire replaced with cell
|
|
break;
|
|
case FlowGraph::Node::Type::CONNECT:
|
|
debug_wire_type = {WireType::INLINE, node->connect.second}; // wire replaced with sig
|
|
break;
|
|
default: continue;
|
|
}
|
|
debug_live_nodes.erase(node);
|
|
} else if (wire_type.is_member() || wire_type.is_local()) {
|
|
debug_wire_type = wire_type; // wire not inlinable
|
|
} else {
|
|
log_assert(wire_type.type == WireType::UNUSED);
|
|
if (flow.wire_comb_defs[wire].size() == 0) {
|
|
if (wire_init.count(wire)) { // wire never modified
|
|
debug_wire_type = {WireType::CONST, wire_init.at(wire)};
|
|
} else {
|
|
debug_wire_type = {WireType::CONST, RTLIL::SigSpec(RTLIL::S0, wire->width)};
|
|
}
|
|
} else {
|
|
debug_wire_type = {WireType::LOCAL}; // wire used only for debug
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit reachable nodes in debug_eval().
|
|
for (auto node : node_order)
|
|
if (debug_live_nodes[node])
|
|
debug_schedule[module].push_back(*node);
|
|
}
|
|
|
|
auto show_wire_type = [&](const RTLIL::Wire* wire, const WireType &wire_type) {
|
|
const char *type_str;
|
|
switch (wire_type.type) {
|
|
case WireType::UNUSED: type_str = "UNUSED"; break;
|
|
case WireType::BUFFERED: type_str = "BUFFERED"; break;
|
|
case WireType::MEMBER: type_str = "MEMBER"; break;
|
|
case WireType::OUTLINE: type_str = "OUTLINE"; break;
|
|
case WireType::LOCAL: type_str = "LOCAL"; break;
|
|
case WireType::INLINE: type_str = "INLINE"; break;
|
|
case WireType::ALIAS: type_str = "ALIAS"; break;
|
|
case WireType::CONST: type_str = "CONST"; break;
|
|
default: type_str = "(invalid)";
|
|
}
|
|
if (wire_type.sig_subst.empty())
|
|
log_debug(" %s: %s\n", log_signal((RTLIL::Wire*)wire), type_str);
|
|
else
|
|
log_debug(" %s: %s = %s\n", log_signal((RTLIL::Wire*)wire), type_str, log_signal(wire_type.sig_subst));
|
|
};
|
|
if (print_wire_types && !wire_types.empty()) {
|
|
log_debug("Wire types:\n");
|
|
for (auto wire_type : wire_types)
|
|
show_wire_type(wire_type.first, wire_type.second);
|
|
}
|
|
if (print_debug_wire_types && !debug_wire_types.empty()) {
|
|
log_debug("Debug wire types:\n");
|
|
for (auto debug_wire_type : debug_wire_types)
|
|
show_wire_type(debug_wire_type.first, debug_wire_type.second);
|
|
}
|
|
}
|
|
if (has_feedback_arcs || has_buffered_comb_wires) {
|
|
// Although both non-feedback buffered combinatorial wires and apparent feedback wires may be eliminated
|
|
// by optimizing the design, if after `proc; flatten` there are any feedback wires remaining, it is very
|
|
// likely that these feedback wires are indicative of a true logic loop, so they get emphasized in the message.
|
|
const char *why_pessimistic = nullptr;
|
|
if (has_feedback_arcs)
|
|
why_pessimistic = "feedback wires";
|
|
else if (has_buffered_comb_wires)
|
|
why_pessimistic = "buffered combinatorial wires";
|
|
log_warning("Design contains %s, which require delta cycles during evaluation.\n", why_pessimistic);
|
|
if (!run_flatten)
|
|
log("Flattening may eliminate %s from the design.\n", why_pessimistic);
|
|
if (!run_proc)
|
|
log("Converting processes to netlists may eliminate %s from the design.\n", why_pessimistic);
|
|
}
|
|
}
|
|
|
|
void check_design(RTLIL::Design *design, bool &has_sync_init)
|
|
{
|
|
has_sync_init = false;
|
|
|
|
for (auto module : design->modules()) {
|
|
if (module->get_blackbox_attribute() && !module->has_attribute(ID(cxxrtl_blackbox)))
|
|
continue;
|
|
|
|
if (!design->selected_whole_module(module))
|
|
if (design->selected_module(module))
|
|
log_cmd_error("Can't handle partially selected module `%s'!\n", id2cstr(module->name));
|
|
if (!design->selected_module(module))
|
|
continue;
|
|
|
|
for (auto proc : module->processes)
|
|
for (auto sync : proc.second->syncs)
|
|
if (sync->type == RTLIL::STi)
|
|
has_sync_init = true;
|
|
}
|
|
}
|
|
|
|
void prepare_design(RTLIL::Design *design)
|
|
{
|
|
bool did_anything = false;
|
|
bool has_sync_init;
|
|
log_push();
|
|
check_design(design, has_sync_init);
|
|
if (run_hierarchy) {
|
|
Pass::call(design, "hierarchy -auto-top");
|
|
did_anything = true;
|
|
}
|
|
if (run_flatten) {
|
|
Pass::call(design, "flatten");
|
|
did_anything = true;
|
|
}
|
|
if (run_proc) {
|
|
Pass::call(design, "proc");
|
|
did_anything = true;
|
|
} else if (has_sync_init) {
|
|
// We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those
|
|
// in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.)
|
|
Pass::call(design, "proc_prune");
|
|
Pass::call(design, "proc_clean");
|
|
Pass::call(design, "proc_init");
|
|
did_anything = true;
|
|
}
|
|
// Recheck the design if it was modified.
|
|
if (did_anything)
|
|
check_design(design, has_sync_init);
|
|
log_assert(!has_sync_init);
|
|
log_pop();
|
|
if (did_anything)
|
|
log_spacer();
|
|
analyze_design(design);
|
|
}
|
|
};
|
|
|
|
struct CxxrtlBackend : public Backend {
|
|
static const int DEFAULT_OPT_LEVEL = 6;
|
|
static const int DEFAULT_DEBUG_LEVEL = 4;
|
|
|
|
CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
|
|
void help() override
|
|
{
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
log("\n");
|
|
log(" write_cxxrtl [options] [filename]\n");
|
|
log("\n");
|
|
log("Write C++ code that simulates the design. The generated code requires a driver\n");
|
|
log("that instantiates the design, toggles its clock, and interacts with its ports.\n");
|
|
log("\n");
|
|
log("The following driver may be used as an example for a design with a single clock\n");
|
|
log("driving rising edge triggered flip-flops:\n");
|
|
log("\n");
|
|
log(" #include \"top.cc\"\n");
|
|
log("\n");
|
|
log(" int main() {\n");
|
|
log(" cxxrtl_design::p_top top;\n");
|
|
log(" top.step();\n");
|
|
log(" while (1) {\n");
|
|
log(" /* user logic */\n");
|
|
log(" top.p_clk.set(false);\n");
|
|
log(" top.step();\n");
|
|
log(" top.p_clk.set(true);\n");
|
|
log(" top.step();\n");
|
|
log(" }\n");
|
|
log(" }\n");
|
|
log("\n");
|
|
log("Note that CXXRTL simulations, just like the hardware they are simulating, are\n");
|
|
log("subject to race conditions. If, in the example above, the user logic would run\n");
|
|
log("simultaneously with the rising edge of the clock, the design would malfunction.\n");
|
|
log("\n");
|
|
log("This backend supports replacing parts of the design with black boxes implemented\n");
|
|
log("in C++. If a module marked as a CXXRTL black box, its implementation is ignored,\n");
|
|
log("and the generated code consists only of an interface and a factory function.\n");
|
|
log("The driver must implement the factory function that creates an implementation of\n");
|
|
log("the black box, taking into account the parameters it is instantiated with.\n");
|
|
log("\n");
|
|
log("For example, the following Verilog code defines a CXXRTL black box interface for\n");
|
|
log("a synchronous debug sink:\n");
|
|
log("\n");
|
|
log(" (* cxxrtl_blackbox *)\n");
|
|
log(" module debug(...);\n");
|
|
log(" (* cxxrtl_edge = \"p\" *) input clk;\n");
|
|
log(" input en;\n");
|
|
log(" input [7:0] i_data;\n");
|
|
log(" (* cxxrtl_sync *) output [7:0] o_data;\n");
|
|
log(" endmodule\n");
|
|
log("\n");
|
|
log("For this HDL interface, this backend will generate the following C++ interface:\n");
|
|
log("\n");
|
|
log(" struct bb_p_debug : public module {\n");
|
|
log(" value<1> p_clk;\n");
|
|
log(" bool posedge_p_clk() const { /* ... */ }\n");
|
|
log(" value<1> p_en;\n");
|
|
log(" value<8> p_i_data;\n");
|
|
log(" wire<8> p_o_data;\n");
|
|
log("\n");
|
|
log(" bool eval() override;\n");
|
|
log(" bool commit() override;\n");
|
|
log("\n");
|
|
log(" static std::unique_ptr<bb_p_debug>\n");
|
|
log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n");
|
|
log(" };\n");
|
|
log("\n");
|
|
log("The `create' function must be implemented by the driver. For example, it could\n");
|
|
log("always provide an implementation logging the values to standard error stream:\n");
|
|
log("\n");
|
|
log(" namespace cxxrtl_design {\n");
|
|
log("\n");
|
|
log(" struct stderr_debug : public bb_p_debug {\n");
|
|
log(" bool eval() override {\n");
|
|
log(" if (posedge_p_clk() && p_en)\n");
|
|
log(" fprintf(stderr, \"debug: %%02x\\n\", p_i_data.data[0]);\n");
|
|
log(" p_o_data.next = p_i_data;\n");
|
|
log(" return bb_p_debug::eval();\n");
|
|
log(" }\n");
|
|
log(" };\n");
|
|
log("\n");
|
|
log(" std::unique_ptr<bb_p_debug>\n");
|
|
log(" bb_p_debug::create(std::string name, cxxrtl::metadata_map parameters,\n");
|
|
log(" cxxrtl::metadata_map attributes) {\n");
|
|
log(" return std::make_unique<stderr_debug>();\n");
|
|
log(" }\n");
|
|
log("\n");
|
|
log(" }\n");
|
|
log("\n");
|
|
log("For complex applications of black boxes, it is possible to parameterize their\n");
|
|
log("port widths. For example, the following Verilog code defines a CXXRTL black box\n");
|
|
log("interface for a configurable width debug sink:\n");
|
|
log("\n");
|
|
log(" (* cxxrtl_blackbox, cxxrtl_template = \"WIDTH\" *)\n");
|
|
log(" module debug(...);\n");
|
|
log(" parameter WIDTH = 8;\n");
|
|
log(" (* cxxrtl_edge = \"p\" *) input clk;\n");
|
|
log(" input en;\n");
|
|
log(" (* cxxrtl_width = \"WIDTH\" *) input [WIDTH - 1:0] i_data;\n");
|
|
log(" (* cxxrtl_width = \"WIDTH\" *) output [WIDTH - 1:0] o_data;\n");
|
|
log(" endmodule\n");
|
|
log("\n");
|
|
log("For this parametric HDL interface, this backend will generate the following C++\n");
|
|
log("interface (only the differences are shown):\n");
|
|
log("\n");
|
|
log(" template<size_t WIDTH>\n");
|
|
log(" struct bb_p_debug : public module {\n");
|
|
log(" // ...\n");
|
|
log(" value<WIDTH> p_i_data;\n");
|
|
log(" wire<WIDTH> p_o_data;\n");
|
|
log(" // ...\n");
|
|
log(" static std::unique_ptr<bb_p_debug<WIDTH>>\n");
|
|
log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n");
|
|
log(" };\n");
|
|
log("\n");
|
|
log("The `create' function must be implemented by the driver, specialized for every\n");
|
|
log("possible combination of template parameters. (Specialization is necessary to\n");
|
|
log("enable separate compilation of generated code and black box implementations.)\n");
|
|
log("\n");
|
|
log(" template<size_t SIZE>\n");
|
|
log(" struct stderr_debug : public bb_p_debug<SIZE> {\n");
|
|
log(" // ...\n");
|
|
log(" };\n");
|
|
log("\n");
|
|
log(" template<>\n");
|
|
log(" std::unique_ptr<bb_p_debug<8>>\n");
|
|
log(" bb_p_debug<8>::create(std::string name, cxxrtl::metadata_map parameters,\n");
|
|
log(" cxxrtl::metadata_map attributes) {\n");
|
|
log(" return std::make_unique<stderr_debug<8>>();\n");
|
|
log(" }\n");
|
|
log("\n");
|
|
log("The following attributes are recognized by this backend:\n");
|
|
log("\n");
|
|
log(" cxxrtl_blackbox\n");
|
|
log(" only valid on modules. if specified, the module contents are ignored,\n");
|
|
log(" and the generated code includes only the module interface and a factory\n");
|
|
log(" function, which will be called to instantiate the module.\n");
|
|
log("\n");
|
|
log(" cxxrtl_edge\n");
|
|
log(" only valid on inputs of black boxes. must be one of \"p\", \"n\", \"a\".\n");
|
|
log(" if specified on signal `clk`, the generated code includes edge detectors\n");
|
|
log(" `posedge_p_clk()` (if \"p\"), `negedge_p_clk()` (if \"n\"), or both (if\n");
|
|
log(" \"a\"), simplifying implementation of clocked black boxes.\n");
|
|
log("\n");
|
|
log(" cxxrtl_template\n");
|
|
log(" only valid on black boxes. must contain a space separated sequence of\n");
|
|
log(" identifiers that have a corresponding black box parameters. for each\n");
|
|
log(" of them, the generated code includes a `size_t` template parameter.\n");
|
|
log("\n");
|
|
log(" cxxrtl_width\n");
|
|
log(" only valid on ports of black boxes. must be a constant expression, which\n");
|
|
log(" is directly inserted into generated code.\n");
|
|
log("\n");
|
|
log(" cxxrtl_comb, cxxrtl_sync\n");
|
|
log(" only valid on outputs of black boxes. if specified, indicates that every\n");
|
|
log(" bit of the output port is driven, correspondingly, by combinatorial or\n");
|
|
log(" synchronous logic. this knowledge is used for scheduling optimizations.\n");
|
|
log(" if neither is specified, the output will be pessimistically treated as\n");
|
|
log(" driven by both combinatorial and synchronous logic.\n");
|
|
log("\n");
|
|
log("The following options are supported by this backend:\n");
|
|
log("\n");
|
|
log(" -print-wire-types, -print-debug-wire-types\n");
|
|
log(" enable additional debug logging, for pass developers.\n");
|
|
log("\n");
|
|
log(" -header\n");
|
|
log(" generate separate interface (.h) and implementation (.cc) files.\n");
|
|
log(" if specified, the backend must be called with a filename, and filename\n");
|
|
log(" of the interface is derived from filename of the implementation.\n");
|
|
log(" otherwise, interface and implementation are generated together.\n");
|
|
log("\n");
|
|
log(" -namespace <ns-name>\n");
|
|
log(" place the generated code into namespace <ns-name>. if not specified,\n");
|
|
log(" \"cxxrtl_design\" is used.\n");
|
|
log("\n");
|
|
log(" -nohierarchy\n");
|
|
log(" use design hierarchy as-is. in most designs, a top module should be\n");
|
|
log(" present as it is exposed through the C API and has unbuffered outputs\n");
|
|
log(" for improved performance; it will be determined automatically if absent.\n");
|
|
log("\n");
|
|
log(" -noflatten\n");
|
|
log(" don't flatten the design. fully flattened designs can evaluate within\n");
|
|
log(" one delta cycle if they have no combinatorial feedback.\n");
|
|
log(" note that the debug interface and waveform dumps use full hierarchical\n");
|
|
log(" names for all wires even in flattened designs.\n");
|
|
log("\n");
|
|
log(" -noproc\n");
|
|
log(" don't convert processes to netlists. in most designs, converting\n");
|
|
log(" processes significantly improves evaluation performance at the cost of\n");
|
|
log(" slight increase in compilation time.\n");
|
|
log("\n");
|
|
log(" -O <level>\n");
|
|
log(" set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL);
|
|
log(" levels dramatically decrease compile and run time, and highest level\n");
|
|
log(" possible for a design should be used.\n");
|
|
log("\n");
|
|
log(" -O0\n");
|
|
log(" no optimization.\n");
|
|
log("\n");
|
|
log(" -O1\n");
|
|
log(" unbuffer internal wires if possible.\n");
|
|
log("\n");
|
|
log(" -O2\n");
|
|
log(" like -O1, and localize internal wires if possible.\n");
|
|
log("\n");
|
|
log(" -O3\n");
|
|
log(" like -O2, and inline internal wires if possible.\n");
|
|
log("\n");
|
|
log(" -O4\n");
|
|
log(" like -O3, and unbuffer public wires not marked (*keep*) if possible.\n");
|
|
log("\n");
|
|
log(" -O5\n");
|
|
log(" like -O4, and localize public wires not marked (*keep*) if possible.\n");
|
|
log("\n");
|
|
log(" -O6\n");
|
|
log(" like -O5, and inline public wires not marked (*keep*) if possible.\n");
|
|
log("\n");
|
|
log(" -g <level>\n");
|
|
log(" set the debug level. the default is -g%d. higher debug levels provide\n", DEFAULT_DEBUG_LEVEL);
|
|
log(" more visibility and generate more code, but do not pessimize evaluation.\n");
|
|
log("\n");
|
|
log(" -g0\n");
|
|
log(" no debug information. the C API is disabled.\n");
|
|
log("\n");
|
|
log(" -g1\n");
|
|
log(" include bare minimum of debug information necessary to access all design\n");
|
|
log(" state. the C API is enabled.\n");
|
|
log("\n");
|
|
log(" -g2\n");
|
|
log(" like -g1, but include debug information for all public wires that are\n");
|
|
log(" directly accessible through the C++ interface.\n");
|
|
log("\n");
|
|
log(" -g3\n");
|
|
log(" like -g2, and include debug information for public wires that are tied\n");
|
|
log(" to a constant or another public wire.\n");
|
|
log("\n");
|
|
log(" -g4\n");
|
|
log(" like -g3, and compute debug information on demand for all public wires\n");
|
|
log(" that were optimized out.\n");
|
|
log("\n");
|
|
}
|
|
|
|
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
|
|
{
|
|
bool print_wire_types = false;
|
|
bool print_debug_wire_types = false;
|
|
bool nohierarchy = false;
|
|
bool noflatten = false;
|
|
bool noproc = false;
|
|
int opt_level = DEFAULT_OPT_LEVEL;
|
|
int debug_level = DEFAULT_DEBUG_LEVEL;
|
|
CxxrtlWorker worker;
|
|
|
|
log_header(design, "Executing CXXRTL backend.\n");
|
|
|
|
size_t argidx;
|
|
for (argidx = 1; argidx < args.size(); argidx++)
|
|
{
|
|
if (args[argidx] == "-print-wire-types") {
|
|
print_wire_types = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-print-debug-wire-types") {
|
|
print_debug_wire_types = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-nohierarchy") {
|
|
nohierarchy = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-noflatten") {
|
|
noflatten = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-noproc") {
|
|
noproc = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-Og") {
|
|
log_warning("The `-Og` option has been removed. Use `-g3` instead for complete "
|
|
"design coverage regardless of optimization level.\n");
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-O" && argidx+1 < args.size() && args[argidx+1] == "g") {
|
|
argidx++;
|
|
log_warning("The `-Og` option has been removed. Use `-g3` instead for complete "
|
|
"design coverage regardless of optimization level.\n");
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-O" && argidx+1 < args.size()) {
|
|
opt_level = std::stoi(args[++argidx]);
|
|
continue;
|
|
}
|
|
if (args[argidx].substr(0, 2) == "-O" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
|
|
opt_level = std::stoi(args[argidx].substr(2));
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-g" && argidx+1 < args.size()) {
|
|
debug_level = std::stoi(args[++argidx]);
|
|
continue;
|
|
}
|
|
if (args[argidx].substr(0, 2) == "-g" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
|
|
debug_level = std::stoi(args[argidx].substr(2));
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-header") {
|
|
worker.split_intf = true;
|
|
continue;
|
|
}
|
|
if (args[argidx] == "-namespace" && argidx+1 < args.size()) {
|
|
worker.design_ns = args[++argidx];
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
extra_args(f, filename, args, argidx);
|
|
|
|
worker.print_wire_types = print_wire_types;
|
|
worker.print_debug_wire_types = print_debug_wire_types;
|
|
worker.run_hierarchy = !nohierarchy;
|
|
worker.run_flatten = !noflatten;
|
|
worker.run_proc = !noproc;
|
|
switch (opt_level) {
|
|
// the highest level here must match DEFAULT_OPT_LEVEL
|
|
case 6:
|
|
worker.inline_public = true;
|
|
YS_FALLTHROUGH
|
|
case 5:
|
|
worker.localize_public = true;
|
|
YS_FALLTHROUGH
|
|
case 4:
|
|
worker.unbuffer_public = true;
|
|
YS_FALLTHROUGH
|
|
case 3:
|
|
worker.inline_internal = true;
|
|
YS_FALLTHROUGH
|
|
case 2:
|
|
worker.localize_internal = true;
|
|
YS_FALLTHROUGH
|
|
case 1:
|
|
worker.unbuffer_internal = true;
|
|
YS_FALLTHROUGH
|
|
case 0:
|
|
break;
|
|
default:
|
|
log_cmd_error("Invalid optimization level %d.\n", opt_level);
|
|
}
|
|
switch (debug_level) {
|
|
// the highest level here must match DEFAULT_DEBUG_LEVEL
|
|
case 4:
|
|
worker.debug_eval = true;
|
|
YS_FALLTHROUGH
|
|
case 3:
|
|
worker.debug_alias = true;
|
|
YS_FALLTHROUGH
|
|
case 2:
|
|
worker.debug_member = true;
|
|
YS_FALLTHROUGH
|
|
case 1:
|
|
worker.debug_info = true;
|
|
YS_FALLTHROUGH
|
|
case 0:
|
|
break;
|
|
default:
|
|
log_cmd_error("Invalid debug information level %d.\n", debug_level);
|
|
}
|
|
|
|
std::ofstream intf_f;
|
|
if (worker.split_intf) {
|
|
if (filename == "<stdout>")
|
|
log_cmd_error("Option -header must be used with a filename.\n");
|
|
|
|
worker.intf_filename = filename.substr(0, filename.rfind('.')) + ".h";
|
|
intf_f.open(worker.intf_filename, std::ofstream::trunc);
|
|
if (intf_f.fail())
|
|
log_cmd_error("Can't open file `%s' for writing: %s\n",
|
|
worker.intf_filename.c_str(), strerror(errno));
|
|
|
|
worker.intf_f = &intf_f;
|
|
}
|
|
worker.impl_f = f;
|
|
|
|
worker.prepare_design(design);
|
|
worker.dump_design(design);
|
|
}
|
|
} CxxrtlBackend;
|
|
|
|
PRIVATE_NAMESPACE_END
|