yosys/passes/pmgen/xilinx_dsp.pmg

582 lines
13 KiB
Plaintext

pattern xilinx_dsp_pack
udata <std::function<SigSpec(const SigSpec&)>> unextend
state <SigBit> clock
state <SigSpec> sigA sigB sigC sigD sigM sigP
state <IdString> postAddAB postAddMuxAB
state <bool> ffA1cepol ffA2cepol ffADcepol ffB1cepol ffB2cepol ffDcepol ffMcepol ffPcepol
state <bool> ffArstpol ffADrstpol ffBrstpol ffDrstpol ffMrstpol ffPrstpol
state <Cell*> ffAD ffADcemux ffADrstmux ffA1 ffA1cemux ffA1rstmux ffA2 ffA2cemux ffA2rstmux
state <Cell*> ffB1 ffB1cemux ffB1rstmux ffB2 ffB2cemux ffB2rstmux
state <Cell*> ffD ffDcemux ffDrstmux ffM ffMcemux ffMrstmux ffP ffPcemux ffPrstmux
// subpattern
state <SigSpec> argQ argD
state <bool> ffcepol ffrstpol
state <int> ffoffset
udata <SigSpec> dffD dffQ
udata <SigBit> dffclock
udata <Cell*> dff dffcemux dffrstmux
udata <bool> dffcepol dffrstpol
match dsp
select dsp->type.in(\DSP48E1)
endmatch
code sigA sigB sigC sigD sigM clock
unextend = [](const SigSpec &sig) {
int i;
for (i = GetSize(sig)-1; i > 0; i--)
if (sig[i] != sig[i-1])
break;
// Do not remove non-const sign bit
if (sig[i].wire)
++i;
return sig.extract(0, i);
};
sigA = unextend(port(dsp, \A));
sigB = unextend(port(dsp, \B));
sigC = port(dsp, \C, SigSpec());
sigD = port(dsp, \D, SigSpec());
SigSpec P = port(dsp, \P);
if (param(dsp, \USE_MULT, Const("MULTIPLY")).decode_string() == "MULTIPLY") {
// Only care about those bits that are used
int i;
for (i = 0; i < GetSize(P); i++) {
if (nusers(P[i]) <= 1)
break;
sigM.append(P[i]);
}
log_assert(nusers(P.extract_end(i)) <= 1);
}
else
sigM = P;
clock = port(dsp, \CLK, SigBit());
endcode
code argQ ffAD ffADcemux ffADrstmux ffADcepol ffADrstpol sigA clock
if (param(dsp, \ADREG).as_int() == 0) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
ffAD = dff;
clock = dffclock;
if (dffrstmux) {
ffADrstmux = dffrstmux;
ffADrstpol = dffrstpol;
}
if (dffcemux) {
ffADcemux = dffcemux;
ffADcepol = dffcepol;
}
sigA = dffD;
}
}
endcode
match preAdd
if sigD.empty() || sigD.is_fully_zero()
// Ensure that preAdder not already used
if param(dsp, \USE_DPORT, Const("FALSE")).decode_string() == "FALSE"
if port(dsp, \INMODE, Const(0, 5)).is_fully_zero()
select preAdd->type.in($add)
// Output has to be 25 bits or less
select GetSize(port(preAdd, \Y)) <= 25
select nusers(port(preAdd, \Y)) == 2
choice <IdString> AB {\A, \B}
// A port has to be 30 bits or less
select GetSize(port(preAdd, AB)) <= 30
define <IdString> BA (AB == \A ? \B : \A)
// D port has to be 25 bits or less
select GetSize(port(preAdd, BA)) <= 25
index <SigSpec> port(preAdd, \Y) === sigA
optional
endmatch
code sigA sigD
if (preAdd) {
sigA = port(preAdd, \A);
sigD = port(preAdd, \B);
if (GetSize(sigA) < GetSize(sigD))
std::swap(sigA, sigD);
}
endcode
code argQ ffAD ffADcemux ffADrstmux ffADcepol ffADrstpol sigA clock ffA2 ffA2cemux ffA2rstmux ffA2cepol ffArstpol ffA1 ffA1cemux ffA1rstmux ffA1cepol
// Only search for ffA2 if there was a pre-adder
// (otherwise ffA2 would have been matched as ffAD)
if (preAdd) {
if (param(dsp, \AREG).as_int() == 0) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
ffA2 = dff;
clock = dffclock;
if (dffrstmux) {
ffA2rstmux = dffrstmux;
ffArstpol = dffrstpol;
}
if (dffcemux) {
ffA2cepol = dffcepol;
ffA2cemux = dffcemux;
}
sigA = dffD;
}
}
}
// And if there wasn't a pre-adder,
// move AD register to A
else if (ffAD) {
log_assert(!ffA2 && !ffA2cemux && !ffA2rstmux);
std::swap(ffA2, ffAD);
std::swap(ffA2cemux, ffADcemux);
std::swap(ffA2rstmux, ffADrstmux);
ffA2cepol = ffADcepol;
ffArstpol = ffADrstpol;
}
// Now attempt to match A1
if (ffA2) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
if ((ffA2rstmux != nullptr) ^ (dffrstmux != nullptr))
goto ffA1_end;
if (dffrstmux) {
if (ffArstpol != dffrstpol)
goto ffA1_end;
if (port(ffA2rstmux, \S) != port(dffrstmux, \S))
goto ffA1_end;
ffA1rstmux = dffrstmux;
}
ffA1 = dff;
clock = dffclock;
if (dffcemux) {
ffA1cemux = dffcemux;
ffA1cepol = dffcepol;
}
sigA = dffD;
ffA1_end: ;
}
}
endcode
code argQ ffB2 ffB2cemux ffB2rstmux ffB2cepol ffBrstpol sigB clock ffB1 ffB1cemux ffB1rstmux ffB1cepol
if (param(dsp, \BREG).as_int() == 0) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
ffB2 = dff;
clock = dffclock;
if (dffrstmux) {
ffB2rstmux = dffrstmux;
ffBrstpol = dffrstpol;
}
if (dffcemux) {
ffB2cemux = dffcemux;
ffB2cepol = dffcepol;
}
sigB = dffD;
// Now attempt to match B1
if (ffB2) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
if ((ffB2rstmux != nullptr) ^ (dffrstmux != nullptr))
goto ffB1_end;
if (dffrstmux) {
if (ffBrstpol != dffrstpol)
goto ffB1_end;
if (port(ffB2rstmux, \S) != port(dffrstmux, \S))
goto ffB1_end;
ffB1rstmux = dffrstmux;
}
ffB1 = dff;
clock = dffclock;
if (dffcemux) {
ffB1cemux = dffcemux;
ffB1cepol = dffcepol;
}
sigB = dffD;
ffB1_end: ;
}
}
}
}
endcode
code argQ ffD ffDcemux ffDrstmux ffDcepol ffDrstpol sigD clock
if (param(dsp, \DREG).as_int() == 0) {
argQ = sigD;
subpattern(in_dffe);
if (dff) {
ffD = dff;
clock = dffclock;
if (dffrstmux) {
ffDrstmux = dffrstmux;
ffDrstpol = dffrstpol;
}
if (dffcemux) {
ffDcemux = dffcemux;
ffDcepol = dffcepol;
}
sigD = dffD;
}
}
endcode
code argD ffM ffMcemux ffMrstmux ffMcepol ffMrstpol sigM sigP clock
if (param(dsp, \MREG).as_int() == 0 && nusers(sigM) == 2) {
argD = sigM;
subpattern(out_dffe);
if (dff) {
ffM = dff;
clock = dffclock;
if (dffrstmux) {
ffMrstmux = dffrstmux;
ffMrstpol = dffrstpol;
}
if (dffcemux) {
ffMcemux = dffcemux;
ffMcepol = dffcepol;
}
sigM = dffQ;
}
}
sigP = sigM;
endcode
match postAdd
// Ensure that Z mux is not already used
if port(dsp, \OPMODE).extract(4,3).is_fully_zero()
select postAdd->type.in($add)
select GetSize(port(postAdd, \Y)) <= 48
choice <IdString> AB {\A, \B}
select nusers(port(postAdd, AB)) <= 3
filter ffMcemux || nusers(port(postAdd, AB)) == 2
filter !ffMcemux || nusers(port(postAdd, AB)) == 3
index <SigBit> port(postAdd, AB)[0] === sigP[0]
filter GetSize(unextend(port(postAdd, AB))) <= GetSize(sigP)
filter unextend(port(postAdd, AB)) == sigP.extract(0, GetSize(unextend(port(postAdd, AB))))
filter nusers(sigP.extract_end(GetSize(unextend(port(postAdd, AB))))) <= 1
set postAddAB AB
optional
endmatch
code sigC sigP
if (postAdd) {
sigC = port(postAdd, postAddAB == \A ? \B : \A);
sigP = port(postAdd, \Y);
}
endcode
code argD ffP ffPcemux ffPrstmux ffPcepol ffPrstpol sigP clock
if (param(dsp, \PREG).as_int() == 0) {
int users = 2;
// If ffMcemux and no postAdd new-value net must have three users: ffMcemux, ffM and ffPcemux
if (ffMcemux && !postAdd) users++;
if (nusers(sigP) == users) {
argD = sigP;
subpattern(out_dffe);
if (dff) {
ffP = dff;
clock = dffclock;
if (dffrstmux) {
ffPrstmux = dffrstmux;
ffPrstpol = dffrstpol;
}
if (dffcemux) {
ffPcemux = dffcemux;
ffPcepol = dffcepol;
}
sigP = dffQ;
}
}
}
endcode
match postAddMux
if postAdd
if ffP
select postAddMux->type.in($mux)
select nusers(port(postAddMux, \Y)) == 2
choice <IdString> AB {\A, \B}
index <SigSpec> port(postAddMux, AB) === sigP
index <SigSpec> port(postAddMux, \Y) === sigC
set postAddMuxAB AB
optional
endmatch
code sigC
if (postAddMux)
sigC = port(postAddMux, postAddMuxAB == \A ? \B : \A);
endcode
match overflow
if ffP
if param(dsp, \USE_PATTERN_DETECT, Const("NO_PATDET")).decode_string() == "NO_PATDET"
select overflow->type.in($ge)
select GetSize(port(overflow, \Y)) <= 48
select port(overflow, \B).is_fully_const()
define <Const> B port(overflow, \B).as_const()
select std::count(B.bits.begin(), B.bits.end(), State::S1) == 1
index <SigSpec> port(overflow, \A) === sigP
optional
endmatch
code
accept;
endcode
// #######################
subpattern in_dffe
arg argD argQ clock
code
dff = nullptr;
for (auto c : argQ.chunks()) {
if (!c.wire)
reject;
if (c.wire->get_bool_attribute(\keep))
reject;
}
endcode
match ff
select ff->type.in($dff)
// DSP48E1 does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \Q)[offset] === argQ[0]
// Check that the rest of argQ is present
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
set ffoffset offset
endmatch
code argQ argD
{
if (clock != SigBit() && port(ff, \CLK) != clock)
reject;
SigSpec Q = port(ff, \Q);
dff = ff;
dffclock = port(ff, \CLK);
dffD = argQ;
argD = port(ff, \D);
argQ = Q;
dffD.replace(argQ, argD);
// Only search for ffrstmux if dffD only
// has two (ff, ffrstmux) users
if (nusers(dffD) > 2)
argD = SigSpec();
}
endcode
match ffrstmux
if !argD.empty()
select ffrstmux->type.in($mux)
index <SigSpec> port(ffrstmux, \Y) === argD
choice <IdString> BA {\B, \A}
// DSP48E1 only supports reset to zero
select port(ffrstmux, BA).is_fully_zero()
define <bool> pol (BA == \B)
set ffrstpol pol
semioptional
endmatch
code argD
if (ffrstmux) {
dffrstmux = ffrstmux;
dffrstpol = ffrstpol;
argD = port(ffrstmux, ffrstpol ? \A : \B);
dffD.replace(port(ffrstmux, \Y), argD);
// Only search for ffcemux if argQ has at
// least 3 users (ff, <upstream>, ffrstmux) and
// dffD only has two (ff, ffrstmux)
if (!(nusers(argQ) >= 3 && nusers(dffD) == 2))
argD = SigSpec();
}
else
dffrstmux = nullptr;
endcode
match ffcemux
if !argD.empty()
select ffcemux->type.in($mux)
index <SigSpec> port(ffcemux, \Y) === argD
choice <IdString> AB {\A, \B}
index <SigSpec> port(ffcemux, AB) === argQ
define <bool> pol (AB == \A)
set ffcepol pol
semioptional
endmatch
code argD
if (ffcemux) {
dffcemux = ffcemux;
dffcepol = ffcepol;
argD = port(ffcemux, ffcepol ? \B : \A);
dffD.replace(port(ffcemux, \Y), argD);
}
else
dffcemux = nullptr;
endcode
// #######################
subpattern out_dffe
arg argD argQ clock
code
dff = nullptr;
for (auto c : argD.chunks())
if (c.wire->get_bool_attribute(\keep))
reject;
endcode
match ffcemux
select ffcemux->type.in($mux)
// ffcemux output must have two users: ffcemux and ff.D
select nusers(port(ffcemux, \Y)) == 2
choice <IdString> AB {\A, \B}
// keep-last-value net must have at least three users: ffcemux, ff, downstream sink(s)
select nusers(port(ffcemux, AB)) >= 3
slice offset GetSize(port(ffcemux, \Y))
define <IdString> BA (AB == \A ? \B : \A)
index <SigBit> port(ffcemux, BA)[offset] === argD[0]
// Check that the rest of argD is present
filter GetSize(port(ffcemux, BA)) >= offset + GetSize(argD)
filter port(ffcemux, BA).extract(offset, GetSize(argD)) == argD
set ffoffset offset
define <bool> pol (AB == \A)
set ffcepol pol
semioptional
endmatch
code argD argQ
dffcemux = ffcemux;
if (ffcemux) {
SigSpec BA = port(ffcemux, ffcepol ? \B : \A);
SigSpec Y = port(ffcemux, \Y);
argQ = argD;
argD.replace(BA, Y);
argQ.replace(BA, port(ffcemux, ffcepol ? \A : \B));
dffcemux = ffcemux;
dffcepol = ffcepol;
}
endcode
match ffrstmux
select ffrstmux->type.in($mux)
// ffrstmux output must have two users: ffrstmux and ff.D
select nusers(port(ffrstmux, \Y)) == 2
choice <IdString> BA {\B, \A}
// DSP48E1 only supports reset to zero
select port(ffrstmux, BA).is_fully_zero()
slice offset GetSize(port(ffrstmux, \Y))
define <IdString> AB (BA == \B ? \A : \B)
index <SigBit> port(ffrstmux, AB)[offset] === argD[0]
// Check that offset is consistent
filter !ffcemux || ffoffset == offset
// Check that the rest of argD is present
filter GetSize(port(ffrstmux, AB)) >= offset + GetSize(argD)
filter port(ffrstmux, AB).extract(offset, GetSize(argD)) == argD
set ffoffset offset
define <bool> pol (AB == \A)
set ffrstpol pol
semioptional
endmatch
code argD argQ
dffrstmux = ffrstmux;
if (ffrstmux) {
SigSpec AB = port(ffrstmux, ffrstpol ? \A : \B);
SigSpec Y = port(ffrstmux, \Y);
argD.replace(AB, Y);
dffrstmux = ffrstmux;
dffrstpol = ffrstpol;
}
endcode
match ff
select ff->type.in($dff)
// DSP48E1 does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \D)[offset] === argD[0]
// Check that offset is consistent
filter (!ffcemux && !ffrstmux) || ffoffset == offset
// Check that the rest of argD is present
filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
filter port(ff, \D).extract(offset, GetSize(argD)) == argD
// Check that FF.Q is connected to CE-mux
filter !ffcemux || port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
set ffoffset offset
endmatch
code argQ
if (ff) {
if (clock != SigBit() && port(ff, \CLK) != clock)
reject;
SigSpec D = port(ff, \D);
SigSpec Q = port(ff, \Q);
if (!ffcemux) {
argQ = argD;
argQ.replace(D, Q);
}
for (auto c : argQ.chunks()) {
Const init = c.wire->attributes.at(\init, State::Sx);
if (!init.is_fully_undef() && !init.is_fully_zero())
reject;
}
dff = ff;
dffQ = argQ;
dffclock = port(ff, \CLK);
}
// No enable/reset mux possible without flop
else if (dffcemux || dffrstmux)
reject;
endcode