yosys/tests/openmsp430/rtl/omsp_watchdog.v

557 lines
18 KiB
Verilog

//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_watchdog.v
//
// *Module Description:
// Watchdog Timer
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_watchdog (
// OUTPUTs
per_dout, // Peripheral data output
wdt_irq, // Watchdog-timer interrupt
wdt_reset, // Watchdog-timer reset
wdt_wkup, // Watchdog Wakeup
wdtifg, // Watchdog-timer interrupt flag
wdtnmies, // Watchdog-timer NMI edge selection
// INPUTs
aclk, // ACLK
aclk_en, // ACLK enable
dbg_freeze, // Freeze Watchdog counter
mclk, // Main system clock
per_addr, // Peripheral address
per_din, // Peripheral data input
per_en, // Peripheral enable (high active)
per_we, // Peripheral write enable (high active)
por, // Power-on reset
puc_rst, // Main system reset
scan_enable, // Scan enable (active during scan shifting)
scan_mode, // Scan mode
smclk, // SMCLK
smclk_en, // SMCLK enable
wdtie, // Watchdog timer interrupt enable
wdtifg_irq_clr, // Watchdog-timer interrupt flag irq accepted clear
wdtifg_sw_clr, // Watchdog-timer interrupt flag software clear
wdtifg_sw_set // Watchdog-timer interrupt flag software set
);
// OUTPUTs
//=========
output [15:0] per_dout; // Peripheral data output
output wdt_irq; // Watchdog-timer interrupt
output wdt_reset; // Watchdog-timer reset
output wdt_wkup; // Watchdog Wakeup
output wdtifg; // Watchdog-timer interrupt flag
output wdtnmies; // Watchdog-timer NMI edge selection
// INPUTs
//=========
input aclk; // ACLK
input aclk_en; // ACLK enable
input dbg_freeze; // Freeze Watchdog counter
input mclk; // Main system clock
input [13:0] per_addr; // Peripheral address
input [15:0] per_din; // Peripheral data input
input per_en; // Peripheral enable (high active)
input [1:0] per_we; // Peripheral write enable (high active)
input por; // Power-on reset
input puc_rst; // Main system reset
input scan_enable; // Scan enable (active during scan shifting)
input scan_mode; // Scan mode
input smclk; // SMCLK
input smclk_en; // SMCLK enable
input wdtie; // Watchdog timer interrupt enable
input wdtifg_irq_clr; // Clear Watchdog-timer interrupt flag
input wdtifg_sw_clr; // Watchdog-timer interrupt flag software clear
input wdtifg_sw_set; // Watchdog-timer interrupt flag software set
//=============================================================================
// 1) PARAMETER DECLARATION
//=============================================================================
// Register base address (must be aligned to decoder bit width)
parameter [14:0] BASE_ADDR = 15'h0120;
// Decoder bit width (defines how many bits are considered for address decoding)
parameter DEC_WD = 2;
// Register addresses offset
parameter [DEC_WD-1:0] WDTCTL = 'h0;
// Register one-hot decoder utilities
parameter DEC_SZ = (1 << DEC_WD);
parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
// Register one-hot decoder
parameter [DEC_SZ-1:0] WDTCTL_D = (BASE_REG << WDTCTL);
//============================================================================
// 2) REGISTER DECODER
//============================================================================
// Local register selection
wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
// Register local address
wire [DEC_WD-1:0] reg_addr = {per_addr[DEC_WD-2:0], 1'b0};
// Register address decode
wire [DEC_SZ-1:0] reg_dec = (WDTCTL_D & {DEC_SZ{(reg_addr==WDTCTL)}});
// Read/Write probes
wire reg_write = |per_we & reg_sel;
wire reg_read = ~|per_we & reg_sel;
// Read/Write vectors
wire [DEC_SZ-1:0] reg_wr = reg_dec & {DEC_SZ{reg_write}};
wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
//============================================================================
// 3) REGISTERS
//============================================================================
// WDTCTL Register
//-----------------
// WDTNMI is not implemented and therefore masked
reg [7:0] wdtctl;
wire wdtctl_wr = reg_wr[WDTCTL];
`ifdef CLOCK_GATING
wire mclk_wdtctl;
omsp_clock_gate clock_gate_wdtctl (.gclk(mclk_wdtctl),
.clk (mclk), .enable(wdtctl_wr), .scan_enable(scan_enable));
`else
wire mclk_wdtctl = mclk;
`endif
`ifdef NMI
parameter [7:0] WDTNMIES_MASK = 8'h40;
`else
parameter [7:0] WDTNMIES_MASK = 8'h00;
`endif
`ifdef ASIC
`ifdef WATCHDOG_MUX
parameter [7:0] WDTSSEL_MASK = 8'h04;
`else
parameter [7:0] WDTSSEL_MASK = 8'h00;
`endif
`else
parameter [7:0] WDTSSEL_MASK = 8'h04;
`endif
parameter [7:0] WDTCTL_MASK = (8'b1001_0011 | WDTSSEL_MASK | WDTNMIES_MASK);
always @ (posedge mclk_wdtctl or posedge puc_rst)
if (puc_rst) wdtctl <= 8'h00;
`ifdef CLOCK_GATING
else wdtctl <= per_din[7:0] & WDTCTL_MASK;
`else
else if (wdtctl_wr) wdtctl <= per_din[7:0] & WDTCTL_MASK;
`endif
wire wdtpw_error = wdtctl_wr & (per_din[15:8]!=8'h5a);
wire wdttmsel = wdtctl[4];
wire wdtnmies = wdtctl[6];
//============================================================================
// 4) DATA OUTPUT GENERATION
//============================================================================
`ifdef NMI
parameter [7:0] WDTNMI_RD_MASK = 8'h20;
`else
parameter [7:0] WDTNMI_RD_MASK = 8'h00;
`endif
`ifdef WATCHDOG_MUX
parameter [7:0] WDTSSEL_RD_MASK = 8'h00;
`else
`ifdef WATCHDOG_NOMUX_ACLK
parameter [7:0] WDTSSEL_RD_MASK = 8'h04;
`else
parameter [7:0] WDTSSEL_RD_MASK = 8'h00;
`endif
`endif
parameter [7:0] WDTCTL_RD_MASK = WDTNMI_RD_MASK | WDTSSEL_RD_MASK;
// Data output mux
wire [15:0] wdtctl_rd = {8'h69, wdtctl | WDTCTL_RD_MASK} & {16{reg_rd[WDTCTL]}};
wire [15:0] per_dout = wdtctl_rd;
//=============================================================================
// 5) WATCHDOG TIMER (ASIC IMPLEMENTATION)
//=============================================================================
`ifdef ASIC
// Watchdog clock source selection
//---------------------------------
wire wdt_clk;
`ifdef WATCHDOG_MUX
omsp_clock_mux clock_mux_watchdog (
.clk_out (wdt_clk),
.clk_in0 (smclk),
.clk_in1 (aclk),
.reset (puc_rst),
.scan_mode (scan_mode),
.select (wdtctl[2])
);
`else
`ifdef WATCHDOG_NOMUX_ACLK
assign wdt_clk = aclk;
`else
assign wdt_clk = smclk;
`endif
`endif
// Reset synchronizer for the watchdog local clock domain
//--------------------------------------------------------
wire wdt_rst_noscan;
wire wdt_rst;
// Reset Synchronizer
omsp_sync_reset sync_reset_por (
.rst_s (wdt_rst_noscan),
.clk (wdt_clk),
.rst_a (puc_rst)
);
// Scan Reset Mux
omsp_scan_mux scan_mux_wdt_rst (
.scan_mode (scan_mode),
.data_in_scan (puc_rst),
.data_in_func (wdt_rst_noscan),
.data_out (wdt_rst)
);
// Watchog counter clear (synchronization)
//-----------------------------------------
// Toggle bit whenever the watchog needs to be cleared
reg wdtcnt_clr_toggle;
wire wdtcnt_clr_detect = (wdtctl_wr & per_din[3]);
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdtcnt_clr_toggle <= 1'b0;
else if (wdtcnt_clr_detect) wdtcnt_clr_toggle <= ~wdtcnt_clr_toggle;
// Synchronization
wire wdtcnt_clr_sync;
omsp_sync_cell sync_cell_wdtcnt_clr (
.data_out (wdtcnt_clr_sync),
.data_in (wdtcnt_clr_toggle),
.clk (wdt_clk),
.rst (wdt_rst)
);
// Edge detection
reg wdtcnt_clr_sync_dly;
always @ (posedge wdt_clk or posedge wdt_rst)
if (wdt_rst) wdtcnt_clr_sync_dly <= 1'b0;
else wdtcnt_clr_sync_dly <= wdtcnt_clr_sync;
wire wdtqn_edge;
wire wdtcnt_clr = (wdtcnt_clr_sync ^ wdtcnt_clr_sync_dly) | wdtqn_edge;
// Watchog counter increment (synchronization)
//----------------------------------------------
wire wdtcnt_incr;
omsp_sync_cell sync_cell_wdtcnt_incr (
.data_out (wdtcnt_incr),
.data_in (~wdtctl[7] & ~dbg_freeze),
.clk (wdt_clk),
.rst (wdt_rst)
);
// Watchdog 16 bit counter
//--------------------------
reg [15:0] wdtcnt;
wire [15:0] wdtcnt_nxt = wdtcnt+16'h0001;
`ifdef CLOCK_GATING
wire wdtcnt_en = wdtcnt_clr | wdtcnt_incr;
wire wdt_clk_cnt;
omsp_clock_gate clock_gate_wdtcnt (.gclk(wdt_clk_cnt),
.clk (wdt_clk), .enable(wdtcnt_en), .scan_enable(scan_enable));
`else
wire wdt_clk_cnt = wdt_clk;
`endif
always @ (posedge wdt_clk_cnt or posedge wdt_rst)
if (wdt_rst) wdtcnt <= 16'h0000;
else if (wdtcnt_clr) wdtcnt <= 16'h0000;
`ifdef CLOCK_GATING
else wdtcnt <= wdtcnt_nxt;
`else
else if (wdtcnt_incr) wdtcnt <= wdtcnt_nxt;
`endif
// Local synchronizer for the wdtctl.WDTISx
// configuration (note that we can live with
// a full bus synchronizer as it won't hurt
// if we get a wrong WDTISx value for a
// single clock cycle)
//--------------------------------------------
reg [1:0] wdtisx_s;
reg [1:0] wdtisx_ss;
always @ (posedge wdt_clk_cnt or posedge wdt_rst)
if (wdt_rst)
begin
wdtisx_s <= 2'h0;
wdtisx_ss <= 2'h0;
end
else
begin
wdtisx_s <= wdtctl[1:0];
wdtisx_ss <= wdtisx_s;
end
// Interval selection mux
//--------------------------
reg wdtqn;
always @(wdtisx_ss or wdtcnt_nxt)
case(wdtisx_ss)
2'b00 : wdtqn = wdtcnt_nxt[15];
2'b01 : wdtqn = wdtcnt_nxt[13];
2'b10 : wdtqn = wdtcnt_nxt[9];
default: wdtqn = wdtcnt_nxt[6];
endcase
// Watchdog event detection
//-----------------------------
// Interval end detection
assign wdtqn_edge = (wdtqn & wdtcnt_incr);
// Toggle bit for the transmition to the MCLK domain
reg wdt_evt_toggle;
always @ (posedge wdt_clk_cnt or posedge wdt_rst)
if (wdt_rst) wdt_evt_toggle <= 1'b0;
else if (wdtqn_edge) wdt_evt_toggle <= ~wdt_evt_toggle;
// Synchronize in the MCLK domain
wire wdt_evt_toggle_sync;
omsp_sync_cell sync_cell_wdt_evt (
.data_out (wdt_evt_toggle_sync),
.data_in (wdt_evt_toggle),
.clk (mclk),
.rst (puc_rst)
);
// Delay for edge detection of the toggle bit
reg wdt_evt_toggle_sync_dly;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdt_evt_toggle_sync_dly <= 1'b0;
else wdt_evt_toggle_sync_dly <= wdt_evt_toggle_sync;
wire wdtifg_evt = (wdt_evt_toggle_sync_dly ^ wdt_evt_toggle_sync) | wdtpw_error;
// Watchdog wakeup generation
//-------------------------------------------------------------
// Clear wakeup when the watchdog flag is cleared (glitch free)
reg wdtifg_clr_reg;
wire wdtifg_clr;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdtifg_clr_reg <= 1'b1;
else wdtifg_clr_reg <= wdtifg_clr;
// Set wakeup when the watchdog event is detected (glitch free)
reg wdtqn_edge_reg;
always @ (posedge wdt_clk_cnt or posedge wdt_rst)
if (wdt_rst) wdtqn_edge_reg <= 1'b0;
else wdtqn_edge_reg <= wdtqn_edge;
// Watchdog wakeup cell
wire wdt_wkup_pre;
omsp_wakeup_cell wakeup_cell_wdog (
.wkup_out (wdt_wkup_pre), // Wakup signal (asynchronous)
.scan_clk (mclk), // Scan clock
.scan_mode (scan_mode), // Scan mode
.scan_rst (puc_rst), // Scan reset
.wkup_clear (wdtifg_clr_reg), // Glitch free wakeup event clear
.wkup_event (wdtqn_edge_reg) // Glitch free asynchronous wakeup event
);
// When not in HOLD, the watchdog can generate a wakeup when:
// - in interval mode (if interrupts are enabled)
// - in reset mode (always)
reg wdt_wkup_en;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdt_wkup_en <= 1'b0;
else wdt_wkup_en <= ~wdtctl[7] & (~wdttmsel | (wdttmsel & wdtie));
// Make wakeup when not enabled
wire wdt_wkup;
omsp_and_gate and_wdt_wkup (.y(wdt_wkup), .a(wdt_wkup_pre), .b(wdt_wkup_en));
// Watchdog interrupt flag
//------------------------------
reg wdtifg;
wire wdtifg_set = wdtifg_evt | wdtifg_sw_set;
assign wdtifg_clr = (wdtifg_irq_clr & wdttmsel) | wdtifg_sw_clr;
always @ (posedge mclk or posedge por)
if (por) wdtifg <= 1'b0;
else if (wdtifg_set) wdtifg <= 1'b1;
else if (wdtifg_clr) wdtifg <= 1'b0;
// Watchdog interrupt generation
//---------------------------------
wire wdt_irq = wdttmsel & wdtifg & wdtie;
// Watchdog reset generation
//-----------------------------
reg wdt_reset;
always @ (posedge mclk or posedge por)
if (por) wdt_reset <= 1'b0;
else wdt_reset <= wdtpw_error | (wdtifg_set & ~wdttmsel);
//=============================================================================
// 6) WATCHDOG TIMER (FPGA IMPLEMENTATION)
//=============================================================================
`else
// Watchdog clock source selection
//---------------------------------
wire clk_src_en = wdtctl[2] ? aclk_en : smclk_en;
// Watchdog 16 bit counter
//--------------------------
reg [15:0] wdtcnt;
wire wdtifg_evt;
wire wdtcnt_clr = (wdtctl_wr & per_din[3]) | wdtifg_evt;
wire wdtcnt_incr = ~wdtctl[7] & clk_src_en & ~dbg_freeze;
wire [15:0] wdtcnt_nxt = wdtcnt+16'h0001;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdtcnt <= 16'h0000;
else if (wdtcnt_clr) wdtcnt <= 16'h0000;
else if (wdtcnt_incr) wdtcnt <= wdtcnt_nxt;
// Interval selection mux
//--------------------------
reg wdtqn;
always @(wdtctl or wdtcnt_nxt)
case(wdtctl[1:0])
2'b00 : wdtqn = wdtcnt_nxt[15];
2'b01 : wdtqn = wdtcnt_nxt[13];
2'b10 : wdtqn = wdtcnt_nxt[9];
default: wdtqn = wdtcnt_nxt[6];
endcase
// Watchdog event detection
//-----------------------------
assign wdtifg_evt = (wdtqn & wdtcnt_incr) | wdtpw_error;
// Watchdog interrupt flag
//------------------------------
reg wdtifg;
wire wdtifg_set = wdtifg_evt | wdtifg_sw_set;
wire wdtifg_clr = (wdtifg_irq_clr & wdttmsel) | wdtifg_sw_clr;
always @ (posedge mclk or posedge por)
if (por) wdtifg <= 1'b0;
else if (wdtifg_set) wdtifg <= 1'b1;
else if (wdtifg_clr) wdtifg <= 1'b0;
// Watchdog interrupt generation
//---------------------------------
wire wdt_irq = wdttmsel & wdtifg & wdtie;
wire wdt_wkup = 1'b0;
// Watchdog reset generation
//-----------------------------
reg wdt_reset;
always @ (posedge mclk or posedge por)
if (por) wdt_reset <= 1'b0;
else wdt_reset <= wdtpw_error | (wdtifg_set & ~wdttmsel);
`endif
endmodule // omsp_watchdog
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif