yosys/backends/aiger/xaiger.cc

822 lines
24 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// https://stackoverflow.com/a/46137633
#ifdef _MSC_VER
#include <stdlib.h>
#define bswap32 _byteswap_ulong
#elif defined(__APPLE__)
#include <libkern/OSByteOrder.h>
#define bswap32 OSSwapInt32
#elif defined(__GNUC__)
#define bswap32 __builtin_bswap32
#else
#include <cstdint>
inline static uint32_t bswap32(uint32_t x)
{
// https://stackoverflow.com/a/27796212
register uint32_t value = number_to_be_reversed;
uint8_t lolo = (value >> 0) & 0xFF;
uint8_t lohi = (value >> 8) & 0xFF;
uint8_t hilo = (value >> 16) & 0xFF;
uint8_t hihi = (value >> 24) & 0xFF;
return (hihi << 24)
| (hilo << 16)
| (lohi << 8)
| (lolo << 0);
}
#endif
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/timinginfo.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
inline int32_t to_big_endian(int32_t i32) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return bswap32(i32);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return i32;
#else
#error "Unknown endianness"
#endif
}
void aiger_encode(std::ostream &f, int x)
{
log_assert(x >= 0);
while (x & ~0x7f) {
f.put((x & 0x7f) | 0x80);
x = x >> 7;
}
f.put(x);
}
struct XAigerWriter
{
Module *module;
SigMap sigmap;
pool<SigBit> input_bits, output_bits;
dict<SigBit, SigBit> not_map, alias_map;
dict<SigBit, pair<SigBit, SigBit>> and_map;
vector<SigBit> ci_bits, co_bits;
dict<SigBit, Cell*> ff_bits;
dict<SigBit, float> arrival_times;
vector<pair<int, int>> aig_gates;
vector<int> aig_outputs;
int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0;
dict<SigBit, int> aig_map;
dict<SigBit, int> ordered_outputs;
vector<Cell*> box_list;
int mkgate(int a0, int a1)
{
aig_m++, aig_a++;
aig_gates.push_back(a0 > a1 ? make_pair(a0, a1) : make_pair(a1, a0));
return 2*aig_m;
}
int bit2aig(SigBit bit)
{
auto it = aig_map.find(bit);
if (it != aig_map.end()) {
log_assert(it->second >= 0);
return it->second;
}
// NB: Cannot use iterator returned from aig_map.insert()
// since this function is called recursively
int a = -1;
if (not_map.count(bit)) {
a = bit2aig(not_map.at(bit)) ^ 1;
} else
if (and_map.count(bit)) {
auto args = and_map.at(bit);
int a0 = bit2aig(args.first);
int a1 = bit2aig(args.second);
a = mkgate(a0, a1);
} else
if (alias_map.count(bit)) {
a = bit2aig(alias_map.at(bit));
}
if (bit == State::Sx || bit == State::Sz) {
log_debug("Design contains 'x' or 'z' bits. Treating as 1'b0.\n");
a = aig_map.at(State::S0);
}
log_assert(a >= 0);
aig_map[bit] = a;
return a;
}
XAigerWriter(Module *module, bool holes_mode=false) : module(module), sigmap(module)
{
pool<SigBit> undriven_bits;
pool<SigBit> unused_bits;
// promote public wires
for (auto wire : module->wires())
if (wire->name[0] == '\\')
sigmap.add(wire);
// promote input wires
for (auto wire : module->wires())
if (wire->port_input)
sigmap.add(wire);
// promote keep wires
for (auto wire : module->wires())
if (wire->get_bool_attribute(ID::keep))
sigmap.add(wire);
for (auto wire : module->wires())
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wirebit(wire, i);
SigBit bit = sigmap(wirebit);
if (bit.wire == nullptr) {
if (wire->port_output) {
aig_map[wirebit] = (bit == State::S1) ? 1 : 0;
output_bits.insert(wirebit);
}
continue;
}
undriven_bits.insert(bit);
unused_bits.insert(bit);
bool scc = wire->attributes.count(ID::abc9_scc);
if (wire->port_input || scc)
input_bits.insert(bit);
bool keep = wire->get_bool_attribute(ID::keep);
if (wire->port_output || keep || scc) {
if (bit != wirebit)
alias_map[wirebit] = bit;
output_bits.insert(wirebit);
}
}
TimingInfo timing;
for (auto cell : module->cells()) {
if (!cell->has_keep_attr()) {
if (cell->type == ID($_NOT_))
{
SigBit A = sigmap(cell->getPort(ID::A).as_bit());
SigBit Y = sigmap(cell->getPort(ID::Y).as_bit());
unused_bits.erase(A);
undriven_bits.erase(Y);
not_map[Y] = A;
continue;
}
if (cell->type == ID($_AND_))
{
SigBit A = sigmap(cell->getPort(ID::A).as_bit());
SigBit B = sigmap(cell->getPort(ID::B).as_bit());
SigBit Y = sigmap(cell->getPort(ID::Y).as_bit());
unused_bits.erase(A);
unused_bits.erase(B);
undriven_bits.erase(Y);
and_map[Y] = make_pair(A, B);
continue;
}
if (cell->type == ID($__ABC9_FF_) &&
// The presence of an abc9_mergeability attribute indicates
// that we do want to pass this flop to ABC
cell->attributes.count(ID::abc9_mergeability))
{
SigBit D = sigmap(cell->getPort(ID::D).as_bit());
SigBit Q = sigmap(cell->getPort(ID::Q).as_bit());
unused_bits.erase(D);
undriven_bits.erase(Q);
alias_map[Q] = D;
auto r YS_ATTRIBUTE(unused) = ff_bits.insert(std::make_pair(D, cell));
log_assert(r.second);
continue;
}
if (cell->type.in(ID($specify2), ID($specify3), ID($specrule)))
continue;
}
RTLIL::Module* inst_module = module->design->module(cell->type);
if (inst_module) {
IdString derived_type = inst_module->derive(module->design, cell->parameters);
inst_module = module->design->module(derived_type);
log_assert(inst_module);
bool abc9_flop = false;
if (!cell->has_keep_attr()) {
auto it = cell->attributes.find(ID::abc9_box_seq);
if (it != cell->attributes.end()) {
int abc9_box_seq = it->second.as_int();
if (GetSize(box_list) <= abc9_box_seq)
box_list.resize(abc9_box_seq+1);
box_list[abc9_box_seq] = cell;
// Only flop boxes may have arrival times
// (all others are combinatorial)
abc9_flop = inst_module->get_bool_attribute(ID::abc9_flop);
if (!abc9_flop)
continue;
}
}
if (!timing.count(derived_type))
timing.setup_module(inst_module);
auto &t = timing.at(derived_type).arrival;
for (const auto &conn : cell->connections()) {
auto port_wire = inst_module->wire(conn.first);
if (!port_wire->port_output)
continue;
for (int i = 0; i < GetSize(conn.second); i++) {
auto d = t.at(TimingInfo::NameBit(conn.first,i), 0);
if (d == 0)
continue;
#ifndef NDEBUG
if (ys_debug(1)) {
static std::set<std::tuple<IdString,IdString,int>> seen;
if (seen.emplace(derived_type, conn.first, i).second) log("%s.%s[%d] abc9_arrival = %d\n",
log_id(cell->type), log_id(conn.first), i, d);
}
#endif
arrival_times[conn.second[i]] = d;
}
}
if (abc9_flop)
continue;
}
bool cell_known = inst_module || cell->known();
for (const auto &c : cell->connections()) {
if (c.second.is_fully_const()) continue;
auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
if (!is_input && !is_output)
log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
if (is_input)
for (auto b : c.second) {
Wire *w = b.wire;
if (!w) continue;
// Do not add as PO if bit is already a PI
if (input_bits.count(b))
continue;
if (!w->port_output || !cell_known) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
output_bits.insert(b);
}
}
}
//log_warning("Unsupported cell type: %s (%s)\n", log_id(cell->type), log_id(cell));
}
dict<IdString, std::vector<IdString>> box_ports;
for (auto cell : box_list) {
log_assert(cell);
RTLIL::Module* box_module = module->design->module(cell->type);
log_assert(box_module);
log_assert(box_module->attributes.count(ID::abc9_box_id) || box_module->get_bool_attribute(ID::abc9_flop));
auto r = box_ports.insert(cell->type);
if (r.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : box_module->ports) {
auto w = box_module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute(ID::abc9_carry)) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(box_module));
carry_in = port_name;
}
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(box_module));
carry_out = port_name;
}
}
else
r.first->second.push_back(port_name);
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(box_module));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(box_module));
if (carry_in != IdString()) {
r.first->second.push_back(carry_in);
r.first->second.push_back(carry_out);
}
}
for (auto port_name : r.first->second) {
auto w = box_module->wire(port_name);
log_assert(w);
auto rhs = cell->connections_.at(port_name, SigSpec());
rhs.append(Const(State::Sx, GetSize(w)-GetSize(rhs)));
if (w->port_input)
for (auto b : rhs) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;
else if (I != b) {
if (I == RTLIL::Sx)
alias_map[b] = State::S0;
else
alias_map[b] = I;
}
co_bits.emplace_back(b);
unused_bits.erase(I);
}
if (w->port_output)
for (const auto &b : rhs) {
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
ci_bits.emplace_back(b);
undriven_bits.erase(O);
}
}
// Connect <cell>.abc9_ff.Q (inserted by abc9_map.v) as the last input to the flop box
if (box_module->get_bool_attribute(ID::abc9_flop)) {
SigSpec rhs = module->wire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
if (rhs.empty())
log_error("'%s.abc9_ff.Q' is not a wire present in module '%s'.\n", log_id(cell), log_id(module));
for (auto b : rhs) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;
else if (I != b) {
if (I == RTLIL::Sx)
alias_map[b] = State::S0;
else
alias_map[b] = I;
}
co_bits.emplace_back(b);
unused_bits.erase(I);
}
}
}
for (auto bit : input_bits)
undriven_bits.erase(bit);
for (auto bit : output_bits)
unused_bits.erase(sigmap(bit));
for (auto bit : unused_bits)
undriven_bits.erase(bit);
// Make all undriven bits a primary input
for (auto bit : undriven_bits) {
input_bits.insert(bit);
undriven_bits.erase(bit);
}
if (holes_mode) {
struct sort_by_port_id {
bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const {
return a.wire->port_id < b.wire->port_id ||
(a.wire->port_id == b.wire->port_id && a.offset < b.offset);
}
};
input_bits.sort(sort_by_port_id());
output_bits.sort(sort_by_port_id());
}
aig_map[State::S0] = 0;
aig_map[State::S1] = 1;
for (const auto &bit : input_bits) {
aig_m++, aig_i++;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
for (const auto &i : ff_bits) {
const Cell *cell = i.second;
const SigBit &q = sigmap(cell->getPort(ID::Q));
aig_m++, aig_i++;
log_assert(!aig_map.count(q));
aig_map[q] = 2*aig_m;
}
for (auto &bit : ci_bits) {
aig_m++, aig_i++;
// 1'bx may exist here due to a box output
// that has been padded to its full width
if (bit == State::Sx)
continue;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
for (auto bit : co_bits) {
ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
for (const auto &bit : output_bits) {
ordered_outputs[bit] = aig_o++;
int aig;
// Unlike bit2aig() which checks aig_map first for
// inout/scc bits, since aig_map will point to
// the PI, first attempt to find the NOT/AND driver
// before resorting to an aig_map lookup (which
// could be another PO)
if (input_bits.count(bit)) {
if (not_map.count(bit)) {
aig = bit2aig(not_map.at(bit)) ^ 1;
} else if (and_map.count(bit)) {
auto args = and_map.at(bit);
int a0 = bit2aig(args.first);
int a1 = bit2aig(args.second);
aig = mkgate(a0, a1);
}
else
aig = aig_map.at(bit);
}
else
aig = bit2aig(bit);
aig_outputs.push_back(aig);
}
for (auto &i : ff_bits) {
const SigBit &d = i.first;
aig_o++;
aig_outputs.push_back(aig_map.at(d));
}
}
void write_aiger(std::ostream &f, bool ascii_mode)
{
int aig_obc = aig_o;
int aig_obcj = aig_obc;
int aig_obcjf = aig_obcj;
log_assert(aig_m == aig_i + aig_l + aig_a);
log_assert(aig_obcjf == GetSize(aig_outputs));
f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a);
f << stringf("\n");
if (ascii_mode)
{
for (int i = 0; i < aig_i; i++)
f << stringf("%d\n", 2*i+2);
for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("1\n");
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obcj; i < aig_obcjf; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = 0; i < aig_a; i++)
f << stringf("%d %d %d\n", 2*(aig_i+aig_l+i)+2, aig_gates.at(i).first, aig_gates.at(i).second);
}
else
{
for (int i = 0; i < aig_obc; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("1\n");
for (int i = aig_obc; i < aig_obcj; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = aig_obcj; i < aig_obcjf; i++)
f << stringf("%d\n", aig_outputs.at(i));
for (int i = 0; i < aig_a; i++) {
int lhs = 2*(aig_i+aig_l+i)+2;
int rhs0 = aig_gates.at(i).first;
int rhs1 = aig_gates.at(i).second;
int delta0 = lhs - rhs0;
int delta1 = rhs0 - rhs1;
aiger_encode(f, delta0);
aiger_encode(f, delta1);
}
}
f << "c";
auto write_buffer = [](std::stringstream &buffer, int i32) {
int32_t i32_be = to_big_endian(i32);
buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be));
};
std::stringstream h_buffer;
auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1);
write_h_buffer(1);
log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ff_bits) + GetSize(ci_bits));
write_h_buffer(input_bits.size() + ff_bits.size() + ci_bits.size());
log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(ff_bits) + GetSize(co_bits));
write_h_buffer(output_bits.size() + GetSize(ff_bits) + GetSize(co_bits));
log_debug("piNum = %d\n", GetSize(input_bits) + GetSize(ff_bits));
write_h_buffer(input_bits.size() + ff_bits.size());
log_debug("poNum = %d\n", GetSize(output_bits) + GetSize(ff_bits));
write_h_buffer(output_bits.size() + ff_bits.size());
log_debug("boxNum = %d\n", GetSize(box_list));
write_h_buffer(box_list.size());
auto write_buffer_float = [](std::stringstream &buffer, float f32) {
buffer.write(reinterpret_cast<const char*>(&f32), sizeof(f32));
};
std::stringstream i_buffer;
auto write_i_buffer = std::bind(write_buffer_float, std::ref(i_buffer), std::placeholders::_1);
for (auto bit : input_bits)
write_i_buffer(arrival_times.at(bit, 0));
//std::stringstream o_buffer;
//auto write_o_buffer = std::bind(write_buffer_float, std::ref(o_buffer), std::placeholders::_1);
//for (auto bit : output_bits)
// write_o_buffer(0);
if (!box_list.empty() || !ff_bits.empty()) {
dict<IdString, std::tuple<int,int,int>> cell_cache;
int box_count = 0;
for (auto cell : box_list) {
log_assert(cell);
RTLIL::Module* box_module = module->design->module(cell->type);
log_assert(box_module);
IdString derived_type = box_module->derive(box_module->design, cell->parameters);
box_module = box_module->design->module(derived_type);
log_assert(box_module);
auto r = cell_cache.insert(derived_type);
auto &v = r.first->second;
if (r.second) {
int box_inputs = 0, box_outputs = 0;
for (auto port_name : box_module->ports) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
if (w->port_input)
box_inputs += GetSize(w);
if (w->port_output)
box_outputs += GetSize(w);
}
// For flops only, create an extra 1-bit input that drives a new wire
// called "<cell>.abc9_ff.Q" that is used below
if (box_module->get_bool_attribute(ID::abc9_flop))
box_inputs++;
std::get<0>(v) = box_inputs;
std::get<1>(v) = box_outputs;
std::get<2>(v) = box_module->attributes.at(ID::abc9_box_id).as_int();
}
write_h_buffer(std::get<0>(v));
write_h_buffer(std::get<1>(v));
write_h_buffer(std::get<2>(v));
write_h_buffer(box_count++);
}
std::stringstream r_buffer;
auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1);
log_debug("flopNum = %d\n", GetSize(ff_bits));
write_r_buffer(ff_bits.size());
std::stringstream s_buffer;
auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1);
write_s_buffer(ff_bits.size());
for (const auto &i : ff_bits) {
const SigBit &d = i.first;
const Cell *cell = i.second;
int mergeability = cell->attributes.at(ID::abc9_mergeability).as_int();
log_assert(mergeability > 0);
write_r_buffer(mergeability);
Const init = cell->attributes.at(ID::abc9_init, State::Sx);
log_assert(GetSize(init) == 1);
if (init == State::S1)
write_s_buffer(1);
else if (init == State::S0)
write_s_buffer(0);
else {
log_assert(init == State::Sx);
write_s_buffer(0);
}
// Use arrival time from output of flop box
write_i_buffer(arrival_times.at(d, 0));
//write_o_buffer(0);
}
f << "r";
std::string buffer_str = r_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
f << "s";
buffer_str = s_buffer.str();
buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
RTLIL::Module *holes_module = module->design->module(stringf("%s$holes", module->name.c_str()));
if (holes_module) {
std::stringstream a_buffer;
XAigerWriter writer(holes_module, true /* holes_mode */);
writer.write_aiger(a_buffer, false /*ascii_mode*/);
f << "a";
std::string buffer_str = a_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
}
}
f << "h";
std::string buffer_str = h_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
f << "i";
buffer_str = i_buffer.str();
buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
//f << "o";
//buffer_str = o_buffer.str();
//buffer_size_be = to_big_endian(buffer_str.size());
//f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
//f.write(buffer_str.data(), buffer_str.size());
f << stringf("Generated by %s\n", yosys_version_str);
module->design->scratchpad_set_int("write_xaiger.num_ands", and_map.size());
module->design->scratchpad_set_int("write_xaiger.num_wires", aig_map.size());
module->design->scratchpad_set_int("write_xaiger.num_inputs", input_bits.size());
module->design->scratchpad_set_int("write_xaiger.num_outputs", output_bits.size());
}
void write_map(std::ostream &f)
{
dict<int, string> input_lines;
dict<int, string> output_lines;
for (auto wire : module->wires())
{
SigSpec sig = sigmap(wire);
for (int i = 0; i < GetSize(wire); i++)
{
RTLIL::SigBit b(wire, i);
if (input_bits.count(b)) {
int a = aig_map.at(b);
log_assert((a & 1) == 0);
input_lines[a] += stringf("input %d %d %s\n", (a >> 1)-1, i, log_id(wire));
}
if (output_bits.count(b)) {
int o = ordered_outputs.at(b);
int init = 2;
output_lines[o] += stringf("output %d %d %s %d\n", o - GetSize(co_bits), i, log_id(wire), init);
continue;
}
}
}
input_lines.sort();
for (auto &it : input_lines)
f << it.second;
log_assert(input_lines.size() == input_bits.size());
int box_count = 0;
for (auto cell : box_list)
f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));
output_lines.sort();
for (auto &it : output_lines)
f << it.second;
log_assert(output_lines.size() == output_bits.size());
}
};
struct XAigerBackend : public Backend {
XAigerBackend() : Backend("xaiger", "write design to XAIGER file") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" write_xaiger [options] [filename]\n");
log("\n");
log("Write the top module (according to the (* top *) attribute or if only one module\n");
log("is currently selected) to an XAIGER file. Any non $_NOT_, $_AND_, $_ABC9_FF_, or");
log("non (* abc9_box_id *) cells will be converted into psuedo-inputs and\n");
log("pseudo-outputs. Whitebox contents will be taken from the '<module-name>$holes'\n");
log("module, if it exists.\n");
log("\n");
log(" -ascii\n");
log(" write ASCII version of AIGER format\n");
log("\n");
log(" -map <filename>\n");
log(" write an extra file with port and box symbols\n");
log("\n");
}
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
bool ascii_mode = false;
std::string map_filename;
log_header(design, "Executing XAIGER backend.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-ascii") {
ascii_mode = true;
continue;
}
if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) {
map_filename = args[++argidx];
continue;
}
break;
}
extra_args(f, filename, args, argidx, !ascii_mode);
Module *top_module = design->top_module();
if (top_module == nullptr)
log_error("Can't find top module in current design!\n");
if (!design->selected_whole_module(top_module))
log_cmd_error("Can't handle partially selected module %s!\n", log_id(top_module));
if (!top_module->processes.empty())
log_error("Found unmapped processes in module %s: unmapped processes are not supported in XAIGER backend!\n", log_id(top_module));
if (!top_module->memories.empty())
log_error("Found unmapped memories in module %s: unmapped memories are not supported in XAIGER backend!\n", log_id(top_module));
XAigerWriter writer(top_module);
writer.write_aiger(*f, ascii_mode);
if (!map_filename.empty()) {
std::ofstream mapf;
mapf.open(map_filename.c_str(), std::ofstream::trunc);
if (mapf.fail())
log_error("Can't open file `%s' for writing: %s\n", map_filename.c_str(), strerror(errno));
writer.write_map(mapf);
}
}
} XAigerBackend;
PRIVATE_NAMESPACE_END