yosys/passes/sat/sat.cc

1478 lines
49 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] Temporal Induction by Incremental SAT Solving
// Niklas Een and Niklas Sörensson (2003)
// http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.8161
#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/consteval.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/satgen.h"
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
#include <errno.h>
#include <string.h>
namespace {
struct SatHelper
{
RTLIL::Design *design;
RTLIL::Module *module;
ezDefaultSAT ez;
SigMap sigmap;
CellTypes ct;
SatGen satgen;
// additional constraints
std::vector<std::pair<std::string, std::string>> sets, prove, prove_x, sets_init;
std::map<int, std::vector<std::pair<std::string, std::string>>> sets_at;
std::map<int, std::vector<std::string>> unsets_at;
bool prove_asserts;
// undef constraints
bool enable_undef, set_init_def, set_init_undef, set_init_zero, ignore_unknown_cells;
std::vector<std::string> sets_def, sets_any_undef, sets_all_undef;
std::map<int, std::vector<std::string>> sets_def_at, sets_any_undef_at, sets_all_undef_at;
// model variables
std::vector<std::string> shows;
SigPool show_signal_pool;
SigSet<RTLIL::Cell*> show_drivers;
int max_timestep, timeout;
bool gotTimeout;
SatHelper(RTLIL::Design *design, RTLIL::Module *module, bool enable_undef) :
design(design), module(module), sigmap(module), ct(design), satgen(&ez, &sigmap)
{
this->enable_undef = enable_undef;
satgen.model_undef = enable_undef;
set_init_def = false;
set_init_undef = false;
set_init_zero = false;
ignore_unknown_cells = false;
max_timestep = -1;
timeout = 0;
gotTimeout = false;
}
void check_undef_enabled(const RTLIL::SigSpec &sig)
{
if (enable_undef)
return;
std::vector<RTLIL::SigBit> sigbits = sig.to_sigbit_vector();
for (size_t i = 0; i < sigbits.size(); i++)
if (sigbits[i].wire == NULL && sigbits[i].data == RTLIL::State::Sx)
log_cmd_error("Bit %d of %s is undef but option -enable_undef is missing!\n", int(i), log_signal(sig));
}
void setup_init()
{
log ("\nSetting up initial state:\n");
RTLIL::SigSpec big_lhs, big_rhs;
for (auto &it : module->wires)
{
if (it.second->attributes.count("\\init") == 0)
continue;
RTLIL::SigSpec lhs = sigmap(it.second);
RTLIL::SigSpec rhs = it.second->attributes.at("\\init");
log_assert(lhs.size() == rhs.size());
RTLIL::SigSpec removed_bits;
for (int i = 0; i < lhs.size(); i++) {
RTLIL::SigSpec bit = lhs.extract(i, 1);
if (!satgen.initial_state.check_all(bit)) {
removed_bits.append(bit);
lhs.remove(i, 1);
rhs.remove(i, 1);
i--;
}
}
lhs.optimize();
rhs.optimize();
removed_bits.optimize();
if (removed_bits.size())
log("Warning: ignoring initial value on non-register: %s\n", log_signal(removed_bits));
if (lhs.size()) {
log("Import set-constraint from init attribute: %s = %s\n", log_signal(lhs), log_signal(rhs));
big_lhs.remove2(lhs, &big_rhs);
big_lhs.append(lhs);
big_rhs.append(rhs);
}
}
for (auto &s : sets_init)
{
RTLIL::SigSpec lhs, rhs;
if (!RTLIL::SigSpec::parse_sel(lhs, design, module, s.first))
log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
if (!RTLIL::SigSpec::parse_rhs(lhs, rhs, module, s.second))
log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
show_signal_pool.add(sigmap(lhs));
show_signal_pool.add(sigmap(rhs));
if (lhs.size() != rhs.size())
log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
s.first.c_str(), log_signal(lhs), lhs.size(), s.second.c_str(), log_signal(rhs), rhs.size());
log("Import set-constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
big_lhs.remove2(lhs, &big_rhs);
big_lhs.append(lhs);
big_rhs.append(rhs);
}
if (!satgen.initial_state.check_all(big_lhs)) {
RTLIL::SigSpec rem = satgen.initial_state.remove(big_lhs);
rem.optimize();
log_cmd_error("Found -set-init bits that are not part of the initial_state: %s\n", log_signal(rem));
}
if (set_init_def) {
RTLIL::SigSpec rem = satgen.initial_state.export_all();
std::vector<int> undef_rem = satgen.importUndefSigSpec(rem, 1);
ez.assume(ez.NOT(ez.expression(ezSAT::OpOr, undef_rem)));
}
if (set_init_undef) {
RTLIL::SigSpec rem = satgen.initial_state.export_all();
rem.remove(big_lhs);
big_lhs.append(rem);
big_rhs.append(RTLIL::SigSpec(RTLIL::State::Sx, rem.size()));
}
if (set_init_zero) {
RTLIL::SigSpec rem = satgen.initial_state.export_all();
rem.remove(big_lhs);
big_lhs.append(rem);
big_rhs.append(RTLIL::SigSpec(RTLIL::State::S0, rem.size()));
}
if (big_lhs.size() == 0) {
log("No constraints for initial state found.\n\n");
return;
}
log("Final constraint equation: %s = %s\n\n", log_signal(big_lhs), log_signal(big_rhs));
check_undef_enabled(big_lhs), check_undef_enabled(big_rhs);
ez.assume(satgen.signals_eq(big_lhs, big_rhs, 1));
}
void setup(int timestep = -1)
{
if (timestep > 0)
log ("\nSetting up time step %d:\n", timestep);
else
log ("\nSetting up SAT problem:\n");
if (timestep > max_timestep)
max_timestep = timestep;
RTLIL::SigSpec big_lhs, big_rhs;
for (auto &s : sets)
{
RTLIL::SigSpec lhs, rhs;
if (!RTLIL::SigSpec::parse_sel(lhs, design, module, s.first))
log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
if (!RTLIL::SigSpec::parse_rhs(lhs, rhs, module, s.second))
log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
show_signal_pool.add(sigmap(lhs));
show_signal_pool.add(sigmap(rhs));
if (lhs.size() != rhs.size())
log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
s.first.c_str(), log_signal(lhs), lhs.size(), s.second.c_str(), log_signal(rhs), rhs.size());
log("Import set-constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
big_lhs.remove2(lhs, &big_rhs);
big_lhs.append(lhs);
big_rhs.append(rhs);
}
for (auto &s : sets_at[timestep])
{
RTLIL::SigSpec lhs, rhs;
if (!RTLIL::SigSpec::parse_sel(lhs, design, module, s.first))
log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
if (!RTLIL::SigSpec::parse_rhs(lhs, rhs, module, s.second))
log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
show_signal_pool.add(sigmap(lhs));
show_signal_pool.add(sigmap(rhs));
if (lhs.size() != rhs.size())
log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
s.first.c_str(), log_signal(lhs), lhs.size(), s.second.c_str(), log_signal(rhs), rhs.size());
log("Import set-constraint for this timestep: %s = %s\n", log_signal(lhs), log_signal(rhs));
big_lhs.remove2(lhs, &big_rhs);
big_lhs.append(lhs);
big_rhs.append(rhs);
}
for (auto &s : unsets_at[timestep])
{
RTLIL::SigSpec lhs;
if (!RTLIL::SigSpec::parse_sel(lhs, design, module, s))
log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.c_str());
show_signal_pool.add(sigmap(lhs));
log("Import unset-constraint for this timestep: %s\n", log_signal(lhs));
big_lhs.remove2(lhs, &big_rhs);
}
log("Final constraint equation: %s = %s\n", log_signal(big_lhs), log_signal(big_rhs));
check_undef_enabled(big_lhs), check_undef_enabled(big_rhs);
ez.assume(satgen.signals_eq(big_lhs, big_rhs, timestep));
// 0 = sets_def
// 1 = sets_any_undef
// 2 = sets_all_undef
std::set<RTLIL::SigSpec> sets_def_undef[3];
for (auto &s : sets_def) {
RTLIL::SigSpec sig;
if (!RTLIL::SigSpec::parse_sel(sig, design, module, s))
log_cmd_error("Failed to parse set-def expression `%s'.\n", s.c_str());
sets_def_undef[0].insert(sig);
}
for (auto &s : sets_any_undef) {
RTLIL::SigSpec sig;
if (!RTLIL::SigSpec::parse_sel(sig, design, module, s))
log_cmd_error("Failed to parse set-def expression `%s'.\n", s.c_str());
sets_def_undef[1].insert(sig);
}
for (auto &s : sets_all_undef) {
RTLIL::SigSpec sig;
if (!RTLIL::SigSpec::parse_sel(sig, design, module, s))
log_cmd_error("Failed to parse set-def expression `%s'.\n", s.c_str());
sets_def_undef[2].insert(sig);
}
for (auto &s : sets_def_at[timestep]) {
RTLIL::SigSpec sig;
if (!RTLIL::SigSpec::parse_sel(sig, design, module, s))
log_cmd_error("Failed to parse set-def expression `%s'.\n", s.c_str());
sets_def_undef[0].insert(sig);
sets_def_undef[1].erase(sig);
sets_def_undef[2].erase(sig);
}
for (auto &s : sets_any_undef_at[timestep]) {
RTLIL::SigSpec sig;
if (!RTLIL::SigSpec::parse_sel(sig, design, module, s))
log_cmd_error("Failed to parse set-def expression `%s'.\n", s.c_str());
sets_def_undef[0].erase(sig);
sets_def_undef[1].insert(sig);
sets_def_undef[2].erase(sig);
}
for (auto &s : sets_all_undef_at[timestep]) {
RTLIL::SigSpec sig;
if (!RTLIL::SigSpec::parse_sel(sig, design, module, s))
log_cmd_error("Failed to parse set-def expression `%s'.\n", s.c_str());
sets_def_undef[0].erase(sig);
sets_def_undef[1].erase(sig);
sets_def_undef[2].insert(sig);
}
for (int t = 0; t < 3; t++)
for (auto &sig : sets_def_undef[t]) {
log("Import %s constraint for this timestep: %s\n", t == 0 ? "def" : t == 1 ? "any_undef" : "all_undef", log_signal(sig));
std::vector<int> undef_sig = satgen.importUndefSigSpec(sig, timestep);
if (t == 0)
ez.assume(ez.NOT(ez.expression(ezSAT::OpOr, undef_sig)));
if (t == 1)
ez.assume(ez.expression(ezSAT::OpOr, undef_sig));
if (t == 2)
ez.assume(ez.expression(ezSAT::OpAnd, undef_sig));
}
int import_cell_counter = 0;
for (auto &c : module->cells)
if (design->selected(module, c.second)) {
// log("Import cell: %s\n", RTLIL::id2cstr(c.first));
if (satgen.importCell(c.second, timestep)) {
for (auto &p : c.second->connections)
if (ct.cell_output(c.second->type, p.first))
show_drivers.insert(sigmap(p.second), c.second);
import_cell_counter++;
} else if (ignore_unknown_cells)
log("Warning: Failed to import cell %s (type %s) to SAT database.\n", RTLIL::id2cstr(c.first), RTLIL::id2cstr(c.second->type));
else
log_error("Failed to import cell %s (type %s) to SAT database.\n", RTLIL::id2cstr(c.first), RTLIL::id2cstr(c.second->type));
}
log("Imported %d cells to SAT database.\n", import_cell_counter);
}
int setup_proof(int timestep = -1)
{
assert(prove.size() || prove_x.size() || prove_asserts);
RTLIL::SigSpec big_lhs, big_rhs;
std::vector<int> prove_bits;
if (prove.size() > 0)
{
for (auto &s : prove)
{
RTLIL::SigSpec lhs, rhs;
if (!RTLIL::SigSpec::parse_sel(lhs, design, module, s.first))
log_cmd_error("Failed to parse lhs proof expression `%s'.\n", s.first.c_str());
if (!RTLIL::SigSpec::parse_rhs(lhs, rhs, module, s.second))
log_cmd_error("Failed to parse rhs proof expression `%s'.\n", s.second.c_str());
show_signal_pool.add(sigmap(lhs));
show_signal_pool.add(sigmap(rhs));
if (lhs.size() != rhs.size())
log_cmd_error("Proof expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
s.first.c_str(), log_signal(lhs), lhs.size(), s.second.c_str(), log_signal(rhs), rhs.size());
log("Import proof-constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
big_lhs.remove2(lhs, &big_rhs);
big_lhs.append(lhs);
big_rhs.append(rhs);
}
log("Final proof equation: %s = %s\n", log_signal(big_lhs), log_signal(big_rhs));
check_undef_enabled(big_lhs), check_undef_enabled(big_rhs);
prove_bits.push_back(satgen.signals_eq(big_lhs, big_rhs, timestep));
}
if (prove_x.size() > 0)
{
for (auto &s : prove_x)
{
RTLIL::SigSpec lhs, rhs;
if (!RTLIL::SigSpec::parse_sel(lhs, design, module, s.first))
log_cmd_error("Failed to parse lhs proof-x expression `%s'.\n", s.first.c_str());
if (!RTLIL::SigSpec::parse_rhs(lhs, rhs, module, s.second))
log_cmd_error("Failed to parse rhs proof-x expression `%s'.\n", s.second.c_str());
show_signal_pool.add(sigmap(lhs));
show_signal_pool.add(sigmap(rhs));
if (lhs.size() != rhs.size())
log_cmd_error("Proof-x expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
s.first.c_str(), log_signal(lhs), lhs.size(), s.second.c_str(), log_signal(rhs), rhs.size());
log("Import proof-x-constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
big_lhs.remove2(lhs, &big_rhs);
big_lhs.append(lhs);
big_rhs.append(rhs);
}
log("Final proof-x equation: %s = %s\n", log_signal(big_lhs), log_signal(big_rhs));
std::vector<int> value_lhs = satgen.importDefSigSpec(big_lhs, timestep);
std::vector<int> value_rhs = satgen.importDefSigSpec(big_rhs, timestep);
std::vector<int> undef_lhs = satgen.importUndefSigSpec(big_lhs, timestep);
std::vector<int> undef_rhs = satgen.importUndefSigSpec(big_rhs, timestep);
for (size_t i = 0; i < value_lhs.size(); i++)
prove_bits.push_back(ez.OR(undef_lhs.at(i), ez.AND(ez.NOT(undef_rhs.at(i)), ez.NOT(ez.XOR(value_lhs.at(i), value_rhs.at(i))))));
}
if (prove_asserts) {
RTLIL::SigSpec asserts_a, asserts_en;
satgen.getAsserts(asserts_a, asserts_en, timestep);
asserts_a.expand();
asserts_en.expand();
for (size_t i = 0; i < asserts_a.chunks().size(); i++)
log("Import proof for assert: %s when %s.\n", log_signal(asserts_a.chunks()[i]), log_signal(asserts_en.chunks()[i]));
prove_bits.push_back(satgen.importAsserts(timestep));
}
return ez.expression(ezSAT::OpAnd, prove_bits);
}
void force_unique_state(int timestep_from, int timestep_to)
{
RTLIL::SigSpec state_signals = satgen.initial_state.export_all();
for (int i = timestep_from; i < timestep_to; i++)
ez.assume(ez.NOT(satgen.signals_eq(state_signals, state_signals, i, timestep_to)));
}
bool solve(const std::vector<int> &assumptions)
{
log_assert(gotTimeout == false);
ez.setSolverTimeout(timeout);
bool success = ez.solve(modelExpressions, modelValues, assumptions);
if (ez.getSolverTimoutStatus())
gotTimeout = true;
return success;
}
bool solve(int a = 0, int b = 0, int c = 0, int d = 0, int e = 0, int f = 0)
{
log_assert(gotTimeout == false);
ez.setSolverTimeout(timeout);
bool success = ez.solve(modelExpressions, modelValues, a, b, c, d, e, f);
if (ez.getSolverTimoutStatus())
gotTimeout = true;
return success;
}
struct ModelBlockInfo {
int timestep, offset, width;
std::string description;
bool operator < (const ModelBlockInfo &other) const {
if (timestep != other.timestep)
return timestep < other.timestep;
if (description != other.description)
return description < other.description;
if (offset != other.offset)
return offset < other.offset;
if (width != other.width)
return width < other.width;
return false;
}
};
std::vector<int> modelExpressions;
std::vector<bool> modelValues;
std::set<ModelBlockInfo> modelInfo;
void maximize_undefs()
{
log_assert(enable_undef);
std::vector<bool> backupValues;
while (1)
{
std::vector<int> must_undef, maybe_undef;
for (size_t i = 0; i < modelExpressions.size()/2; i++)
if (modelValues.at(modelExpressions.size()/2 + i))
must_undef.push_back(modelExpressions.at(modelExpressions.size()/2 + i));
else
maybe_undef.push_back(modelExpressions.at(modelExpressions.size()/2 + i));
backupValues.swap(modelValues);
if (!solve(ez.expression(ezSAT::OpAnd, must_undef), ez.expression(ezSAT::OpOr, maybe_undef)))
break;
}
backupValues.swap(modelValues);
}
void generate_model()
{
RTLIL::SigSpec modelSig;
modelExpressions.clear();
modelInfo.clear();
// Add "show" signals or alternatively the leaves on the input cone on all set and prove signals
if (shows.size() == 0)
{
SigPool queued_signals, handled_signals, final_signals;
queued_signals = show_signal_pool;
while (queued_signals.size() > 0) {
RTLIL::SigSpec sig = queued_signals.export_one();
queued_signals.del(sig);
handled_signals.add(sig);
std::set<RTLIL::Cell*> drivers = show_drivers.find(sig);
if (drivers.size() == 0) {
final_signals.add(sig);
} else {
for (auto &d : drivers)
for (auto &p : d->connections) {
if (d->type == "$dff" && p.first == "\\CLK")
continue;
if (d->type.substr(0, 6) == "$_DFF_" && p.first == "\\C")
continue;
queued_signals.add(handled_signals.remove(sigmap(p.second)));
}
}
}
modelSig = final_signals.export_all();
// additionally add all set and prove signals directly
// (it improves user confidence if we write the constraints back ;-)
modelSig.append(show_signal_pool.export_all());
}
else
{
for (auto &s : shows) {
RTLIL::SigSpec sig;
if (!RTLIL::SigSpec::parse_sel(sig, design, module, s))
log_cmd_error("Failed to parse show expression `%s'.\n", s.c_str());
log("Import show expression: %s\n", log_signal(sig));
modelSig.append(sig);
}
}
modelSig.sort_and_unify();
// log("Model signals: %s\n", log_signal(modelSig));
std::vector<int> modelUndefExpressions;
for (auto &c : modelSig.chunks())
if (c.wire != NULL)
{
ModelBlockInfo info;
RTLIL::SigSpec chunksig = c;
info.width = chunksig.size();
info.description = log_signal(chunksig);
for (int timestep = -1; timestep <= max_timestep; timestep++)
{
if ((timestep == -1 && max_timestep > 0) || timestep == 0)
continue;
info.timestep = timestep;
info.offset = modelExpressions.size();
modelInfo.insert(info);
std::vector<int> vec = satgen.importSigSpec(chunksig, timestep);
modelExpressions.insert(modelExpressions.end(), vec.begin(), vec.end());
if (enable_undef) {
std::vector<int> undef_vec = satgen.importUndefSigSpec(chunksig, timestep);
modelUndefExpressions.insert(modelUndefExpressions.end(), undef_vec.begin(), undef_vec.end());
}
}
}
// Add initial state signals as collected by satgen
//
modelSig = satgen.initial_state.export_all();
for (auto &c : modelSig.chunks())
if (c.wire != NULL)
{
ModelBlockInfo info;
RTLIL::SigSpec chunksig = c;
info.timestep = 0;
info.offset = modelExpressions.size();
info.width = chunksig.size();
info.description = log_signal(chunksig);
modelInfo.insert(info);
std::vector<int> vec = satgen.importSigSpec(chunksig, 1);
modelExpressions.insert(modelExpressions.end(), vec.begin(), vec.end());
if (enable_undef) {
std::vector<int> undef_vec = satgen.importUndefSigSpec(chunksig, 1);
modelUndefExpressions.insert(modelUndefExpressions.end(), undef_vec.begin(), undef_vec.end());
}
}
modelExpressions.insert(modelExpressions.end(), modelUndefExpressions.begin(), modelUndefExpressions.end());
}
void print_model()
{
int maxModelName = 10;
int maxModelWidth = 10;
for (auto &info : modelInfo) {
maxModelName = std::max(maxModelName, int(info.description.size()));
maxModelWidth = std::max(maxModelWidth, info.width);
}
log("\n");
int last_timestep = -2;
for (auto &info : modelInfo)
{
RTLIL::Const value;
bool found_undef = false;
for (int i = 0; i < info.width; i++) {
value.bits.push_back(modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0);
if (enable_undef && modelValues.at(modelExpressions.size()/2 + info.offset + i))
value.bits.back() = RTLIL::State::Sx, found_undef = true;
}
if (info.timestep != last_timestep) {
const char *hline = "---------------------------------------------------------------------------------------------------"
"---------------------------------------------------------------------------------------------------"
"---------------------------------------------------------------------------------------------------";
if (last_timestep == -2) {
log(max_timestep > 0 ? " Time " : " ");
log("%-*s %10s %10s %*s\n", maxModelName+10, "Signal Name", "Dec", "Hex", maxModelWidth+5, "Bin");
}
log(max_timestep > 0 ? " ---- " : " ");
log("%*.*s %10.10s %10.10s %*.*s\n", maxModelName+10, maxModelName+10,
hline, hline, hline, maxModelWidth+5, maxModelWidth+5, hline);
last_timestep = info.timestep;
}
if (max_timestep > 0) {
if (info.timestep > 0)
log(" %4d ", info.timestep);
else
log(" init ");
} else
log(" ");
if (info.width <= 32 && !found_undef)
log("%-*s %10d %10x %*s\n", maxModelName+10, info.description.c_str(), value.as_int(), value.as_int(), maxModelWidth+5, value.as_string().c_str());
else
log("%-*s %10s %10s %*s\n", maxModelName+10, info.description.c_str(), "--", "--", maxModelWidth+5, value.as_string().c_str());
}
if (last_timestep == -2)
log(" no model variables selected for display.\n");
}
void dump_model_to_vcd(std::string vcd_file_name)
{
FILE *f = fopen(vcd_file_name.c_str(), "w");
if (!f)
log_cmd_error("Can't open output file `%s' for writing: %s\n", vcd_file_name.c_str(), strerror(errno));
log("Dumping SAT model to VCD file %s\n", vcd_file_name.c_str());
time_t timestamp;
struct tm* now;
char stime[128] = {};
time(&timestamp);
now = localtime(&timestamp);
strftime(stime, sizeof(stime), "%c", now);
std::string module_fname = "unknown";
auto apos = module->attributes.find("\\src");
if(apos != module->attributes.end())
module_fname = module->attributes["\\src"].decode_string();
fprintf(f, "$date\n");
fprintf(f, " %s\n", stime);
fprintf(f, "$end\n");
fprintf(f, "$version\n");
fprintf(f, " Generated by %s\n", yosys_version_str);
fprintf(f, "$end\n");
fprintf(f, "$comment\n");
fprintf(f, " Generated from SAT problem in module %s (declared at %s)\n",
module->name.c_str(), module_fname.c_str());
fprintf(f, "$end\n");
// VCD has some limits on internal (non-display) identifier names, so make legal ones
std::map<std::string, std::string> vcdnames;
fprintf(f, "$timescale 1ns\n"); // arbitrary time scale since actual clock period is unknown/unimportant
fprintf(f, "$scope module %s $end\n", module->name.c_str());
for (auto &info : modelInfo)
{
if (vcdnames.find(info.description) != vcdnames.end())
continue;
char namebuf[16];
snprintf(namebuf, sizeof(namebuf), "v%d", static_cast<int>(vcdnames.size()));
vcdnames[info.description] = namebuf;
// Even display identifiers can't use some special characters
std::string legal_desc = info.description.c_str();
for (auto &c : legal_desc) {
if(c == '$')
c = '_';
if(c == ':')
c = '_';
}
fprintf(f, "$var wire %d %s %s $end\n", info.width, namebuf, legal_desc.c_str());
// Need to look at first *two* cycles!
// We need to put a name on all variables but those without an initialization clause
// have no value at timestep 0
if(info.timestep > 1)
break;
}
fprintf(f, "$upscope $end\n");
fprintf(f, "$enddefinitions $end\n");
fprintf(f, "$dumpvars\n");
static const char bitvals[] = "01xzxx";
int last_timestep = -2;
for (auto &info : modelInfo)
{
RTLIL::Const value;
for (int i = 0; i < info.width; i++) {
value.bits.push_back(modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0);
if (enable_undef && modelValues.at(modelExpressions.size()/2 + info.offset + i))
value.bits.back() = RTLIL::State::Sx;
}
if (info.timestep != last_timestep) {
if(last_timestep == 0)
fprintf(f, "$end\n");
else
fprintf(f, "#%d\n", info.timestep);
last_timestep = info.timestep;
}
if(info.width == 1) {
fprintf(f, "%c%s\n", bitvals[value.bits[0]], vcdnames[info.description].c_str());
} else {
fprintf(f, "b");
for(int k=info.width-1; k >= 0; k --) //need to flip bit ordering for VCD
fprintf(f, "%c", bitvals[value.bits[k]]);
fprintf(f, " %s\n", vcdnames[info.description].c_str());
}
}
if (last_timestep == -2)
log(" no model variables selected for display.\n");
fclose(f);
}
void invalidate_model(bool max_undef)
{
std::vector<int> clause;
if (enable_undef) {
for (size_t i = 0; i < modelExpressions.size()/2; i++) {
int bit = modelExpressions.at(i), bit_undef = modelExpressions.at(modelExpressions.size()/2 + i);
bool val = modelValues.at(i), val_undef = modelValues.at(modelExpressions.size()/2 + i);
if (!max_undef || !val_undef)
clause.push_back(val_undef ? ez.NOT(bit_undef) : val ? ez.NOT(bit) : bit);
}
} else
for (size_t i = 0; i < modelExpressions.size(); i++)
clause.push_back(modelValues.at(i) ? ez.NOT(modelExpressions.at(i)) : modelExpressions.at(i));
ez.assume(ez.expression(ezSAT::OpOr, clause));
}
};
} /* namespace */
static void print_proof_failed()
{
log("\n");
log(" ______ ___ ___ _ _ _ _ \n");
log(" (_____ \\ / __) / __) (_) | | | |\n");
log(" _____) )___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |\n");
log(" | ____/ ___) _ \\ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|\n");
log(" | | | | | |_| | |_| || | | | / ___ | | || ____( (_| |_ \n");
log(" |_| |_| \\___/ \\___/ |_| |_| \\_____|_|\\_)_____)\\____|_|\n");
log("\n");
}
static void print_timeout()
{
log("\n");
log(" _____ _ _ _____ ____ _ _____\n");
log(" /__ __\\/ \\/ \\__/|/ __// _ \\/ \\ /\\/__ __\\\n");
log(" / \\ | || |\\/||| \\ | / \\|| | || / \\\n");
log(" | | | || | ||| /_ | \\_/|| \\_/| | |\n");
log(" \\_/ \\_/\\_/ \\|\\____\\\\____/\\____/ \\_/\n");
log("\n");
}
static void print_qed()
{
log("\n");
log(" /$$$$$$ /$$$$$$$$ /$$$$$$$ \n");
log(" /$$__ $$ | $$_____/ | $$__ $$ \n");
log(" | $$ \\ $$ | $$ | $$ \\ $$ \n");
log(" | $$ | $$ | $$$$$ | $$ | $$ \n");
log(" | $$ | $$ | $$__/ | $$ | $$ \n");
log(" | $$/$$ $$ | $$ | $$ | $$ \n");
log(" | $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$\n");
log(" \\____ $$$|__/|________/|__/|_______/|__/\n");
log(" \\__/ \n");
log("\n");
}
struct SatPass : public Pass {
SatPass() : Pass("sat", "solve a SAT problem in the circuit") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" sat [options] [selection]\n");
log("\n");
log("This command solves a SAT problem defined over the currently selected circuit\n");
log("and additional constraints passed as parameters.\n");
log("\n");
log(" -all\n");
log(" show all solutions to the problem (this can grow exponentially, use\n");
log(" -max <N> instead to get <N> solutions)\n");
log("\n");
log(" -max <N>\n");
log(" like -all, but limit number of solutions to <N>\n");
log("\n");
log(" -enable_undef\n");
log(" enable modeling of undef value (aka 'x-bits')\n");
log(" this option is implied by -set-def, -set-undef et. cetera\n");
log("\n");
log(" -max_undef\n");
log(" maximize the number of undef bits in solutions, giving a better\n");
log(" picture of which input bits are actually vital to the solution.\n");
log("\n");
log(" -set <signal> <value>\n");
log(" set the specified signal to the specified value.\n");
log("\n");
log(" -set-def <signal>\n");
log(" add a constraint that all bits of the given signal must be defined\n");
log("\n");
log(" -set-any-undef <signal>\n");
log(" add a constraint that at least one bit of the given signal is undefined\n");
log("\n");
log(" -set-all-undef <signal>\n");
log(" add a constraint that all bits of the given signal are undefined\n");
log("\n");
log(" -set-def-inputs\n");
log(" add -set-def constraints for all module inputs\n");
log("\n");
log(" -show <signal>\n");
log(" show the model for the specified signal. if no -show option is\n");
log(" passed then a set of signals to be shown is automatically selected.\n");
log("\n");
log(" -show-inputs, -show-outputs\n");
log(" add all module input (output) ports to the list of shown signals\n");
log("\n");
log(" -ignore_div_by_zero\n");
log(" ignore all solutions that involve a division by zero\n");
log("\n");
log(" -ignore_unknown_cells\n");
log(" ignore all cells that can not be matched to a SAT model\n");
log("\n");
log("The following options can be used to set up a sequential problem:\n");
log("\n");
log(" -seq <N>\n");
log(" set up a sequential problem with <N> time steps. The steps will\n");
log(" be numbered from 1 to N.\n");
log("\n");
log(" -set-at <N> <signal> <value>\n");
log(" -unset-at <N> <signal>\n");
log(" set or unset the specified signal to the specified value in the\n");
log(" given timestep. this has priority over a -set for the same signal.\n");
log("\n");
log(" -set-def-at <N> <signal>\n");
log(" -set-any-undef-at <N> <signal>\n");
log(" -set-all-undef-at <N> <signal>\n");
log(" add undef contraints in the given timestep.\n");
log("\n");
log(" -set-init <signal> <value>\n");
log(" set the initial value for the register driving the signal to the value\n");
log("\n");
log(" -set-init-undef\n");
log(" set all initial states (not set using -set-init) to undef\n");
log("\n");
log(" -set-init-def\n");
log(" do not force a value for the initial state but do not allow undef\n");
log("\n");
log(" -set-init-zero\n");
log(" set all initial states (not set using -set-init) to zero\n");
log("\n");
log(" -dump_vcd <vcd-file-name>\n");
log(" dump SAT model (counter example in proof) to VCD file\n");
log("\n");
log(" -dump_cnf <cnf-file-name>\n");
log(" dump CNF of SAT problem (in DIMACS format). in temporal induction\n");
log(" proofs this is the CNF of the first induction step.\n");
log("\n");
log("The following additional options can be used to set up a proof. If also -seq\n");
log("is passed, a temporal induction proof is performed.\n");
log("\n");
log(" -tempinduct\n");
log(" Perform a temporal induction proof. In a temporalinduction proof it is\n");
log(" proven that the condition holds forever after the number of time steps\n");
log(" specified using -seq.\n");
log("\n");
log(" -tempinduct-def\n");
log(" Perform a temporal induction proof. Assume an initial state with all\n");
log(" registers set to defined values for the induction step.\n");
log("\n");
log(" -prove <signal> <value>\n");
log(" Attempt to proof that <signal> is always <value>.\n");
log("\n");
log(" -prove-x <signal> <value>\n");
log(" Like -prove, but an undef (x) bit in the lhs matches any value on\n");
log(" the right hand side. Useful for equivialence checking.\n");
log("\n");
log(" -prove-asserts\n");
log(" Prove that all asserts in the design hold.\n");
log("\n");
log(" -maxsteps <N>\n");
log(" Set a maximum length for the induction.\n");
log("\n");
log(" -initsteps <N>\n");
log(" Set initial length for the induction.\n");
log("\n");
log(" -timeout <N>\n");
log(" Maximum number of seconds a single SAT instance may take.\n");
log("\n");
log(" -verify\n");
log(" Return an error and stop the synthesis script if the proof fails.\n");
log("\n");
log(" -verify-no-timeout\n");
log(" Like -verify but do not return an error for timeouts.\n");
log("\n");
log(" -falsify\n");
log(" Return an error and stop the synthesis script if the proof succeeds.\n");
log("\n");
log(" -falsify-no-timeout\n");
log(" Like -falsify but do not return an error for timeouts.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
std::vector<std::pair<std::string, std::string>> sets, sets_init, prove, prove_x;
std::map<int, std::vector<std::pair<std::string, std::string>>> sets_at;
std::map<int, std::vector<std::string>> unsets_at, sets_def_at, sets_any_undef_at, sets_all_undef_at;
std::vector<std::string> shows, sets_def, sets_any_undef, sets_all_undef;
int loopcount = 0, seq_len = 0, maxsteps = 0, initsteps = 0, timeout = 0;
bool verify = false, fail_on_timeout = false, enable_undef = false, set_def_inputs = false;
bool ignore_div_by_zero = false, set_init_undef = false, set_init_zero = false, max_undef = false;
bool tempinduct = false, prove_asserts = false, show_inputs = false, show_outputs = false;
bool ignore_unknown_cells = false, falsify = false, tempinduct_def = false, set_init_def = false;
std::string vcd_file_name, cnf_file_name;
log_header("Executing SAT pass (solving SAT problems in the circuit).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-all") {
loopcount = -1;
continue;
}
if (args[argidx] == "-verify") {
fail_on_timeout = true;
verify = true;
continue;
}
if (args[argidx] == "-verify-no-timeout") {
verify = true;
continue;
}
if (args[argidx] == "-falsify") {
fail_on_timeout = true;
falsify = true;
continue;
}
if (args[argidx] == "-falsify-no-timeout") {
falsify = true;
continue;
}
if (args[argidx] == "-timeout" && argidx+1 < args.size()) {
timeout = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-max" && argidx+1 < args.size()) {
loopcount = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-maxsteps" && argidx+1 < args.size()) {
maxsteps = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-initsteps" && argidx+1 < args.size()) {
initsteps = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-ignore_div_by_zero") {
ignore_div_by_zero = true;
continue;
}
if (args[argidx] == "-enable_undef") {
enable_undef = true;
continue;
}
if (args[argidx] == "-max_undef") {
enable_undef = true;
max_undef = true;
continue;
}
if (args[argidx] == "-set-def-inputs") {
enable_undef = true;
set_def_inputs = true;
continue;
}
if (args[argidx] == "-set" && argidx+2 < args.size()) {
std::string lhs = args[++argidx];
std::string rhs = args[++argidx];
sets.push_back(std::pair<std::string, std::string>(lhs, rhs));
continue;
}
if (args[argidx] == "-set-def" && argidx+1 < args.size()) {
sets_def.push_back(args[++argidx]);
enable_undef = true;
continue;
}
if (args[argidx] == "-set-any-undef" && argidx+1 < args.size()) {
sets_any_undef.push_back(args[++argidx]);
enable_undef = true;
continue;
}
if (args[argidx] == "-set-all-undef" && argidx+1 < args.size()) {
sets_all_undef.push_back(args[++argidx]);
enable_undef = true;
continue;
}
if (args[argidx] == "-tempinduct") {
tempinduct = true;
continue;
}
if (args[argidx] == "-tempinduct-def") {
tempinduct = true;
tempinduct_def = true;
continue;
}
if (args[argidx] == "-prove" && argidx+2 < args.size()) {
std::string lhs = args[++argidx];
std::string rhs = args[++argidx];
prove.push_back(std::pair<std::string, std::string>(lhs, rhs));
continue;
}
if (args[argidx] == "-prove-x" && argidx+2 < args.size()) {
std::string lhs = args[++argidx];
std::string rhs = args[++argidx];
prove_x.push_back(std::pair<std::string, std::string>(lhs, rhs));
enable_undef = true;
continue;
}
if (args[argidx] == "-prove-asserts") {
prove_asserts = true;
continue;
}
if (args[argidx] == "-seq" && argidx+1 < args.size()) {
seq_len = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-set-at" && argidx+3 < args.size()) {
int timestep = atoi(args[++argidx].c_str());
std::string lhs = args[++argidx];
std::string rhs = args[++argidx];
sets_at[timestep].push_back(std::pair<std::string, std::string>(lhs, rhs));
continue;
}
if (args[argidx] == "-unset-at" && argidx+2 < args.size()) {
int timestep = atoi(args[++argidx].c_str());
unsets_at[timestep].push_back(args[++argidx]);
continue;
}
if (args[argidx] == "-set-def-at" && argidx+2 < args.size()) {
int timestep = atoi(args[++argidx].c_str());
sets_def_at[timestep].push_back(args[++argidx]);
enable_undef = true;
continue;
}
if (args[argidx] == "-set-any-undef-at" && argidx+2 < args.size()) {
int timestep = atoi(args[++argidx].c_str());
sets_any_undef_at[timestep].push_back(args[++argidx]);
enable_undef = true;
continue;
}
if (args[argidx] == "-set-all-undef-at" && argidx+2 < args.size()) {
int timestep = atoi(args[++argidx].c_str());
sets_all_undef_at[timestep].push_back(args[++argidx]);
enable_undef = true;
continue;
}
if (args[argidx] == "-set-init" && argidx+2 < args.size()) {
std::string lhs = args[++argidx];
std::string rhs = args[++argidx];
sets_init.push_back(std::pair<std::string, std::string>(lhs, rhs));
continue;
}
if (args[argidx] == "-set-init-undef") {
set_init_undef = true;
enable_undef = true;
continue;
}
if (args[argidx] == "-set-init-def") {
set_init_def = true;
continue;
}
if (args[argidx] == "-set-init-zero") {
set_init_zero = true;
continue;
}
if (args[argidx] == "-show" && argidx+1 < args.size()) {
shows.push_back(args[++argidx]);
continue;
}
if (args[argidx] == "-show-inputs") {
show_inputs = true;
continue;
}
if (args[argidx] == "-show-outputs") {
show_outputs = true;
continue;
}
if (args[argidx] == "-ignore_unknown_cells") {
ignore_unknown_cells = true;
continue;
}
if (args[argidx] == "-dump_vcd" && argidx+1 < args.size()) {
vcd_file_name = args[++argidx];
continue;
}
if (args[argidx] == "-dump_cnf" && argidx+1 < args.size()) {
cnf_file_name = args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
RTLIL::Module *module = NULL;
for (auto &mod_it : design->modules)
if (design->selected(mod_it.second)) {
if (module)
log_cmd_error("Only one module must be selected for the SAT pass! (selected: %s and %s)\n",
RTLIL::id2cstr(module->name), RTLIL::id2cstr(mod_it.first));
module = mod_it.second;
}
if (module == NULL)
log_cmd_error("Can't perform SAT on an empty selection!\n");
if (!prove.size() && !prove_x.size() && !prove_asserts && tempinduct)
log_cmd_error("Got -tempinduct but nothing to prove!\n");
if (set_init_undef + set_init_zero + set_init_def > 1)
log_cmd_error("The options -set-init-undef, -set-init-def, and -set-init-zero are exclusive!\n");
if (set_def_inputs) {
for (auto &it : module->wires)
if (it.second->port_input)
sets_def.push_back(it.second->name);
}
if (show_inputs) {
for (auto &it : module->wires)
if (it.second->port_input)
shows.push_back(it.second->name);
}
if (show_outputs) {
for (auto &it : module->wires)
if (it.second->port_output)
shows.push_back(it.second->name);
}
if (tempinduct)
{
if (loopcount > 0 || max_undef)
log_cmd_error("The options -max, -all, and -max_undef are not supported for temporal induction proofs!\n");
SatHelper basecase(design, module, enable_undef);
SatHelper inductstep(design, module, enable_undef);
basecase.sets = sets;
basecase.prove = prove;
basecase.prove_x = prove_x;
basecase.prove_asserts = prove_asserts;
basecase.sets_at = sets_at;
basecase.unsets_at = unsets_at;
basecase.shows = shows;
basecase.timeout = timeout;
basecase.sets_def = sets_def;
basecase.sets_any_undef = sets_any_undef;
basecase.sets_all_undef = sets_all_undef;
basecase.sets_def_at = sets_def_at;
basecase.sets_any_undef_at = sets_any_undef_at;
basecase.sets_all_undef_at = sets_all_undef_at;
basecase.sets_init = sets_init;
basecase.set_init_def = set_init_def;
basecase.set_init_undef = set_init_undef;
basecase.set_init_zero = set_init_zero;
basecase.satgen.ignore_div_by_zero = ignore_div_by_zero;
basecase.ignore_unknown_cells = ignore_unknown_cells;
for (int timestep = 1; timestep <= seq_len; timestep++)
basecase.setup(timestep);
basecase.setup_init();
inductstep.sets = sets;
inductstep.prove = prove;
inductstep.prove_x = prove_x;
inductstep.prove_asserts = prove_asserts;
inductstep.shows = shows;
inductstep.timeout = timeout;
inductstep.sets_def = sets_def;
inductstep.sets_any_undef = sets_any_undef;
inductstep.sets_all_undef = sets_all_undef;
inductstep.satgen.ignore_div_by_zero = ignore_div_by_zero;
inductstep.ignore_unknown_cells = ignore_unknown_cells;
inductstep.setup(1);
inductstep.ez.assume(inductstep.setup_proof(1));
if (tempinduct_def) {
std::vector<int> undef_state = inductstep.satgen.importUndefSigSpec(inductstep.satgen.initial_state.export_all(), 1);
inductstep.ez.assume(inductstep.ez.NOT(inductstep.ez.expression(ezSAT::OpOr, undef_state)));
}
for (int inductlen = 1; inductlen <= maxsteps || maxsteps == 0; inductlen++)
{
log("\n** Trying induction with length %d **\n", inductlen);
// phase 1: proving base case
basecase.setup(seq_len + inductlen);
int property = basecase.setup_proof(seq_len + inductlen);
basecase.generate_model();
if (inductlen > 1)
basecase.force_unique_state(seq_len + 1, seq_len + inductlen);
log("\n[base case] Solving problem with %d variables and %d clauses..\n",
basecase.ez.numCnfVariables(), basecase.ez.numCnfClauses());
if (basecase.solve(basecase.ez.NOT(property))) {
log("SAT temporal induction proof finished - model found for base case: FAIL!\n");
print_proof_failed();
basecase.print_model();
if(!vcd_file_name.empty())
basecase.dump_model_to_vcd(vcd_file_name);
goto tip_failed;
}
if (basecase.gotTimeout)
goto timeout;
log("Base case for induction length %d proven.\n", inductlen);
basecase.ez.assume(property);
// phase 2: proving induction step
inductstep.setup(inductlen + 1);
property = inductstep.setup_proof(inductlen + 1);
inductstep.generate_model();
if (inductlen > 1)
inductstep.force_unique_state(1, inductlen + 1);
if (inductlen < initsteps)
{
log("\n[induction step] Skipping problem with %d variables and %d clauses (below initsteps).\n",
inductstep.ez.numCnfVariables(), inductstep.ez.numCnfClauses());
inductstep.ez.assume(property);
}
else
{
if (!cnf_file_name.empty())
{
FILE *f = fopen(cnf_file_name.c_str(), "w");
if (!f)
log_cmd_error("Can't open output file `%s' for writing: %s\n", cnf_file_name.c_str(), strerror(errno));
log("Dumping CNF to file `%s'.\n", cnf_file_name.c_str());
cnf_file_name.clear();
inductstep.ez.printDIMACS(f, false);
fclose(f);
}
log("\n[induction step] Solving problem with %d variables and %d clauses..\n",
inductstep.ez.numCnfVariables(), inductstep.ez.numCnfClauses());
if (!inductstep.solve(inductstep.ez.NOT(property))) {
if (inductstep.gotTimeout)
goto timeout;
log("Induction step proven: SUCCESS!\n");
print_qed();
goto tip_success;
}
log("Induction step failed. Incrementing induction length.\n");
inductstep.ez.assume(property);
inductstep.print_model();
}
}
log("\nReached maximum number of time steps -> proof failed.\n");
print_proof_failed();
tip_failed:
if (verify) {
log("\n");
log_error("Called with -verify and proof did fail!\n");
}
if (0)
tip_success:
if (falsify) {
log("\n");
log_error("Called with -falsify and proof did succeed!\n");
}
}
else
{
if (maxsteps > 0)
log_cmd_error("The options -maxsteps is only supported for temporal induction proofs!\n");
SatHelper sathelper(design, module, enable_undef);
sathelper.sets = sets;
sathelper.prove = prove;
sathelper.prove_x = prove_x;
sathelper.prove_asserts = prove_asserts;
sathelper.sets_at = sets_at;
sathelper.unsets_at = unsets_at;
sathelper.shows = shows;
sathelper.timeout = timeout;
sathelper.sets_def = sets_def;
sathelper.sets_any_undef = sets_any_undef;
sathelper.sets_all_undef = sets_all_undef;
sathelper.sets_def_at = sets_def_at;
sathelper.sets_any_undef_at = sets_any_undef_at;
sathelper.sets_all_undef_at = sets_all_undef_at;
sathelper.sets_init = sets_init;
sathelper.set_init_def = set_init_def;
sathelper.set_init_undef = set_init_undef;
sathelper.set_init_zero = set_init_zero;
sathelper.satgen.ignore_div_by_zero = ignore_div_by_zero;
sathelper.ignore_unknown_cells = ignore_unknown_cells;
if (seq_len == 0) {
sathelper.setup();
if (sathelper.prove.size() || sathelper.prove_x.size() || sathelper.prove_asserts)
sathelper.ez.assume(sathelper.ez.NOT(sathelper.setup_proof()));
} else {
std::vector<int> prove_bits;
for (int timestep = 1; timestep <= seq_len; timestep++) {
sathelper.setup(timestep);
if (sathelper.prove.size() || sathelper.prove_x.size() || sathelper.prove_asserts)
prove_bits.push_back(sathelper.setup_proof(timestep));
}
if (sathelper.prove.size() || sathelper.prove_x.size() || sathelper.prove_asserts)
sathelper.ez.assume(sathelper.ez.NOT(sathelper.ez.expression(ezSAT::OpAnd, prove_bits)));
sathelper.setup_init();
}
sathelper.generate_model();
if (!cnf_file_name.empty())
{
FILE *f = fopen(cnf_file_name.c_str(), "w");
if (!f)
log_cmd_error("Can't open output file `%s' for writing: %s\n", cnf_file_name.c_str(), strerror(errno));
log("Dumping CNF to file `%s'.\n", cnf_file_name.c_str());
cnf_file_name.clear();
sathelper.ez.printDIMACS(f, false);
fclose(f);
}
int rerun_counter = 0;
rerun_solver:
log("\nSolving problem with %d variables and %d clauses..\n",
sathelper.ez.numCnfVariables(), sathelper.ez.numCnfClauses());
if (sathelper.solve())
{
if (max_undef) {
log("SAT model found. maximizing number of undefs.\n");
sathelper.maximize_undefs();
}
if (!prove.size() && !prove_x.size() && !prove_asserts) {
log("SAT solving finished - model found:\n");
} else {
log("SAT proof finished - model found: FAIL!\n");
print_proof_failed();
}
sathelper.print_model();
if(!vcd_file_name.empty())
sathelper.dump_model_to_vcd(vcd_file_name);
if (loopcount != 0) {
loopcount--, rerun_counter++;
sathelper.invalidate_model(max_undef);
goto rerun_solver;
}
if (!prove.size() && !prove_x.size() && !prove_asserts) {
if (falsify) {
log("\n");
log_error("Called with -falsify and found a model!\n");
}
} else {
if (verify) {
log("\n");
log_error("Called with -verify and proof did fail!\n");
}
}
}
else
{
if (sathelper.gotTimeout)
goto timeout;
if (rerun_counter)
log("SAT solving finished - no more models found (after %d distinct solutions).\n", rerun_counter);
else if (!prove.size() && !prove_x.size() && !prove_asserts) {
log("SAT solving finished - no model found.\n");
if (verify) {
log("\n");
log_error("Called with -verify and found no model!\n");
}
} else {
log("SAT proof finished - no model found: SUCCESS!\n");
print_qed();
if (falsify) {
log("\n");
log_error("Called with -falsify and proof did succeed!\n");
}
}
}
if (!prove.size() && !prove_x.size() && !prove_asserts) {
if (falsify && rerun_counter) {
log("\n");
log_error("Called with -falsify and found a model!\n");
}
} else {
if (verify && rerun_counter) {
log("\n");
log_error("Called with -verify and proof did fail!\n");
}
}
}
if (0) {
timeout:
log("Interrupted SAT solver: TIMEOUT!\n");
print_timeout();
if (fail_on_timeout)
log_error("Called with -verify and proof did time out!\n");
}
}
} SatPass;