yosys/techlibs/common/simcells.v

328 lines
5.3 KiB
Verilog

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* The internal logic cell simulation library.
*
* This verilog library contains simple simulation models for the internal
* logic cells ($_INV_ , $_AND_ , ...) that are generated by the default technology
* mapper (see "stdcells.v" in this directory) and expected by the "abc" pass.
*
*/
module \$_INV_ (A, Y);
input A;
output Y;
assign Y = ~A;
endmodule
module \$_AND_ (A, B, Y);
input A, B;
output Y;
assign Y = A & B;
endmodule
module \$_OR_ (A, B, Y);
input A, B;
output Y;
assign Y = A | B;
endmodule
module \$_XOR_ (A, B, Y);
input A, B;
output Y;
assign Y = A ^ B;
endmodule
module \$_MUX_ (A, B, S, Y);
input A, B, S;
output Y;
assign Y = S ? B : A;
endmodule
module \$_SR_NN_ (S, R, Q);
input S, R;
output reg Q;
always @(negedge S, negedge R) begin
if (R == 0)
Q <= 0;
else if (S == 0)
Q <= 1;
end
endmodule
module \$_SR_NP_ (S, R, Q);
input S, R;
output reg Q;
always @(negedge S, posedge R) begin
if (R == 1)
Q <= 0;
else if (S == 0)
Q <= 1;
end
endmodule
module \$_SR_PN_ (S, R, Q);
input S, R;
output reg Q;
always @(posedge S, negedge R) begin
if (R == 0)
Q <= 0;
else if (S == 1)
Q <= 1;
end
endmodule
module \$_SR_PP_ (S, R, Q);
input S, R;
output reg Q;
always @(posedge S, posedge R) begin
if (R == 1)
Q <= 0;
else if (S == 1)
Q <= 1;
end
endmodule
module \$_DFF_N_ (D, Q, C);
input D, C;
output reg Q;
always @(negedge C) begin
Q <= D;
end
endmodule
module \$_DFF_P_ (D, Q, C);
input D, C;
output reg Q;
always @(posedge C) begin
Q <= D;
end
endmodule
module \$_DFF_NN0_ (D, Q, C, R);
input D, C, R;
output reg Q;
always @(negedge C or negedge R) begin
if (R == 0)
Q <= 0;
else
Q <= D;
end
endmodule
module \$_DFF_NN1_ (D, Q, C, R);
input D, C, R;
output reg Q;
always @(negedge C or negedge R) begin
if (R == 0)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFF_NP0_ (D, Q, C, R);
input D, C, R;
output reg Q;
always @(negedge C or posedge R) begin
if (R == 1)
Q <= 0;
else
Q <= D;
end
endmodule
module \$_DFF_NP1_ (D, Q, C, R);
input D, C, R;
output reg Q;
always @(negedge C or posedge R) begin
if (R == 1)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFF_PN0_ (D, Q, C, R);
input D, C, R;
output reg Q;
always @(posedge C or negedge R) begin
if (R == 0)
Q <= 0;
else
Q <= D;
end
endmodule
module \$_DFF_PN1_ (D, Q, C, R);
input D, C, R;
output reg Q;
always @(posedge C or negedge R) begin
if (R == 0)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFF_PP0_ (D, Q, C, R);
input D, C, R;
output reg Q;
always @(posedge C or posedge R) begin
if (R == 1)
Q <= 0;
else
Q <= D;
end
endmodule
module \$_DFF_PP1_ (D, Q, C, R);
input D, C, R;
output reg Q;
always @(posedge C or posedge R) begin
if (R == 1)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFFSR_NNN_ (C, S, R, D, Q);
input C, S, R, D;
output reg Q;
always @(negedge C, negedge S, negedge R) begin
if (R == 0)
Q <= 0;
else if (S == 0)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFFSR_NNP_ (C, S, R, D, Q);
input C, S, R, D;
output reg Q;
always @(negedge C, negedge S, posedge R) begin
if (R == 1)
Q <= 0;
else if (S == 0)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFFSR_NPN_ (C, S, R, D, Q);
input C, S, R, D;
output reg Q;
always @(negedge C, posedge S, negedge R) begin
if (R == 0)
Q <= 0;
else if (S == 1)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFFSR_NPP_ (C, S, R, D, Q);
input C, S, R, D;
output reg Q;
always @(negedge C, posedge S, posedge R) begin
if (R == 1)
Q <= 0;
else if (S == 1)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFFSR_PNN_ (C, S, R, D, Q);
input C, S, R, D;
output reg Q;
always @(posedge C, negedge S, negedge R) begin
if (R == 0)
Q <= 0;
else if (S == 0)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFFSR_PNP_ (C, S, R, D, Q);
input C, S, R, D;
output reg Q;
always @(posedge C, negedge S, posedge R) begin
if (R == 1)
Q <= 0;
else if (S == 0)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFFSR_PPN_ (C, S, R, D, Q);
input C, S, R, D;
output reg Q;
always @(posedge C, posedge S, negedge R) begin
if (R == 0)
Q <= 0;
else if (S == 1)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DFFSR_PPP_ (C, S, R, D, Q);
input C, S, R, D;
output reg Q;
always @(posedge C, posedge S, posedge R) begin
if (R == 1)
Q <= 0;
else if (S == 1)
Q <= 1;
else
Q <= D;
end
endmodule
module \$_DLATCH_N_ (E, D, Q);
input E, D;
output reg Q;
always @* begin
if (E == 0)
Q <= D;
end
endmodule
module \$_DLATCH_P_ (E, D, Q);
input E, D;
output reg Q;
always @* begin
if (E == 1)
Q <= D;
end
endmodule