yosys/passes/memory/memory_libmap.cc

2265 lines
74 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2021 Marcelina Kościelnicka <mwk@0x04.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "memlib.h"
#include <ctype.h>
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/mem.h"
#include "kernel/qcsat.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
using namespace MemLibrary;
#define FACTOR_MUX 0.5
#define FACTOR_DEMUX 0.5
#define FACTOR_EMU 2
struct PassOptions {
bool no_auto_distributed;
bool no_auto_block;
bool no_auto_huge;
double logic_cost_rom;
double logic_cost_ram;
};
struct WrPortConfig {
// Index of the read port this port is merged with, or -1 if none.
int rd_port;
// Index of the PortGroup in the Ram.
int port_group;
int port_variant;
const PortVariant *def;
// Emulate priority logic for this list of (source) write port indices.
std::vector<int> emu_prio;
// If true, this port needs to end up with uniform byte enables to work correctly.
bool force_uniform;
WrPortConfig() : rd_port(-1), force_uniform(false) {}
};
struct RdPortConfig {
// Index of the write port this port is merged with, or -1 if none.
int wr_port;
// Index of the PortGroup in the Ram.
int port_group;
int port_variant;
const PortVariant *def;
// If true, this is a sync port mapped into async mem, make an output
// register. Mutually exclusive with the following options.
bool emu_sync;
// Emulate the EN / ARST / SRST / init value circuitry.
bool emu_en;
bool emu_arst;
bool emu_srst;
bool emu_init;
// Emulate EN-SRST priority.
bool emu_srst_en_prio;
// If true, use clk_en as rd_en.
bool rd_en_to_clk_en;
// Emulate transparency logic for this list of (source) write port indices.
std::vector<int> emu_trans;
RdPortConfig() : wr_port(-1), emu_sync(false), emu_en(false), emu_arst(false), emu_srst(false), emu_init(false), emu_srst_en_prio(false), rd_en_to_clk_en(false) {}
};
// The named clock and clock polarity assignments.
struct SharedClockConfig {
bool used;
SigBit clk;
// For anyedge clocks.
bool polarity;
// For non-anyedge clocks.
bool invert;
};
struct MemConfig {
// Reference to the library ram definition
const Ram *def;
// Port assignments, indexed by Mem port index.
std::vector<WrPortConfig> wr_ports;
std::vector<RdPortConfig> rd_ports;
std::vector<SharedClockConfig> shared_clocks;
// Emulate read-first write-read behavior using soft logic.
bool emu_read_first;
// This many low bits of (target) address are always-0 on all ports.
int base_width_log2;
int unit_width_log2;
std::vector<int> swizzle;
int hard_wide_mask;
int emu_wide_mask;
// How many times the base memory block will need to be duplicated to get more
// data bits.
int repl_d;
// How many times the whole memory array will need to be duplicated to cover
// all read ports required.
int repl_port;
// Emulation score — how much circuitry we need to add for priority / transparency /
// reset / initial value emulation.
int score_emu;
// Mux score — how much circuitry we need to add to manually decode whatever address
// bits are not decoded by the memory array itself, for reads.
int score_mux;
// Demux score — how much circuitry we need to add to manually decode whatever address
// bits are not decoded by the memory array itself, for writes.
int score_demux;
double cost;
MemConfig() : emu_read_first(false) {}
};
typedef std::vector<MemConfig> MemConfigs;
struct MapWorker {
Module *module;
ModWalker modwalker;
SigMap sigmap;
SigMap sigmap_xmux;
FfInitVals initvals;
MapWorker(Module *module) : module(module), modwalker(module->design, module), sigmap(module), sigmap_xmux(module), initvals(&sigmap, module) {
for (auto cell : module->cells())
{
if (cell->type == ID($mux))
{
RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort(ID::A));
RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort(ID::B));
if (sig_a.is_fully_undef())
sigmap_xmux.add(cell->getPort(ID::Y), sig_b);
else if (sig_b.is_fully_undef())
sigmap_xmux.add(cell->getPort(ID::Y), sig_a);
}
}
}
};
struct SwizzleBit {
bool valid;
int mux_idx;
int addr;
int bit;
};
struct Swizzle {
int addr_shift;
int addr_start;
int addr_end;
std::vector<int> addr_mux_bits;
std::vector<std::vector<SwizzleBit>> bits;
};
struct MemMapping {
MapWorker &worker;
QuickConeSat qcsat;
Mem &mem;
const Library &lib;
const PassOptions &opts;
std::vector<MemConfig> cfgs;
bool logic_ok;
double logic_cost;
RamKind kind;
std::string style;
dict<int, int> wr_en_cache;
dict<std::pair<int, int>, bool> wr_implies_rd_cache;
dict<std::pair<int, int>, bool> wr_excludes_rd_cache;
dict<std::pair<int, int>, bool> wr_excludes_srst_cache;
std::string rejected_cfg_debug_msgs;
MemMapping(MapWorker &worker, Mem &mem, const Library &lib, const PassOptions &opts) : worker(worker), qcsat(worker.modwalker), mem(mem), lib(lib), opts(opts) {
determine_style();
logic_ok = determine_logic_ok();
if (GetSize(mem.wr_ports) == 0)
logic_cost = mem.width * mem.size * opts.logic_cost_rom;
else
logic_cost = mem.width * mem.size * opts.logic_cost_ram;
if (kind == RamKind::Logic)
return;
for (int i = 0; i < GetSize(lib.rams); i++) {
auto &rdef = lib.rams[i];
if (!check_ram_kind(rdef))
continue;
if (!check_ram_style(rdef))
continue;
if (!check_init(rdef))
continue;
if (rdef.prune_rom && mem.wr_ports.empty()) {
log_debug("memory %s.%s: rejecting mapping to %s: ROM mapping disabled (prune_rom set)\n", log_id(mem.module->name), log_id(mem.memid), log_id(rdef.id));
continue;
}
MemConfig cfg;
cfg.def = &rdef;
for (auto &cdef: rdef.shared_clocks) {
(void)cdef;
SharedClockConfig clk;
clk.used = false;
cfg.shared_clocks.push_back(clk);
}
cfgs.push_back(cfg);
}
assign_wr_ports();
assign_rd_ports();
handle_trans();
// If we got this far, the memory is mappable. The following two can require emulating
// some functionality, but cannot cause the mapping to fail.
handle_priority();
handle_rd_rst();
score_emu_ports();
// Now it is just a matter of picking geometry.
handle_geom();
dump_configs(0);
prune_post_geom();
dump_configs(1);
}
bool addr_compatible(int wpidx, int rpidx) {
auto &wport = mem.wr_ports[wpidx];
auto &rport = mem.rd_ports[rpidx];
int max_wide_log2 = std::max(rport.wide_log2, wport.wide_log2);
SigSpec raddr = rport.addr.extract_end(max_wide_log2);
SigSpec waddr = wport.addr.extract_end(max_wide_log2);
int abits = std::max(GetSize(raddr), GetSize(waddr));
raddr.extend_u0(abits);
waddr.extend_u0(abits);
return worker.sigmap_xmux(raddr) == worker.sigmap_xmux(waddr);
}
int get_wr_en(int wpidx) {
auto it = wr_en_cache.find(wpidx);
if (it != wr_en_cache.end())
return it->second;
int res = qcsat.ez->expression(qcsat.ez->OpOr, qcsat.importSig(mem.wr_ports[wpidx].en));
wr_en_cache.insert({wpidx, res});
return res;
}
bool get_wr_implies_rd(int wpidx, int rpidx) {
auto key = std::make_pair(wpidx, rpidx);
auto it = wr_implies_rd_cache.find(key);
if (it != wr_implies_rd_cache.end())
return it->second;
int wr_en = get_wr_en(wpidx);
int rd_en = qcsat.importSigBit(mem.rd_ports[rpidx].en[0]);
qcsat.prepare();
bool res = !qcsat.ez->solve(wr_en, qcsat.ez->NOT(rd_en));
wr_implies_rd_cache.insert({key, res});
return res;
}
bool get_wr_excludes_rd(int wpidx, int rpidx) {
auto key = std::make_pair(wpidx, rpidx);
auto it = wr_excludes_rd_cache.find(key);
if (it != wr_excludes_rd_cache.end())
return it->second;
int wr_en = get_wr_en(wpidx);
int rd_en = qcsat.importSigBit(mem.rd_ports[rpidx].en[0]);
qcsat.prepare();
bool res = !qcsat.ez->solve(wr_en, rd_en);
wr_excludes_rd_cache.insert({key, res});
return res;
}
bool get_wr_excludes_srst(int wpidx, int rpidx) {
auto key = std::make_pair(wpidx, rpidx);
auto it = wr_excludes_srst_cache.find(key);
if (it != wr_excludes_srst_cache.end())
return it->second;
int wr_en = get_wr_en(wpidx);
int srst = qcsat.importSigBit(mem.rd_ports[rpidx].srst);
if (mem.rd_ports[rpidx].ce_over_srst) {
int rd_en = qcsat.importSigBit(mem.rd_ports[rpidx].en[0]);
srst = qcsat.ez->AND(srst, rd_en);
}
qcsat.prepare();
bool res = !qcsat.ez->solve(wr_en, srst);
wr_excludes_srst_cache.insert({key, res});
return res;
}
void dump_configs(int stage);
void dump_config(MemConfig &cfg);
void determine_style();
bool determine_logic_ok();
bool check_ram_kind(const Ram &ram);
bool check_ram_style(const Ram &ram);
bool check_init(const Ram &ram);
void assign_wr_ports();
void assign_rd_ports();
void handle_trans();
void handle_priority();
void handle_rd_rst();
void score_emu_ports();
void handle_geom();
void prune_post_geom();
void emit_port(const MemConfig &cfg, std::vector<Cell*> &cells, const PortVariant &pdef, const char *name, int wpidx, int rpidx, const std::vector<int> &hw_addr_swizzle);
void emit(const MemConfig &cfg);
void log_reject(std::string message){
if(ys_debug(1)) {
rejected_cfg_debug_msgs += message;
rejected_cfg_debug_msgs += "\n";
}
}
void log_reject(const Ram &ram, std::string message) {
if(ys_debug(1)) {
rejected_cfg_debug_msgs += stringf("can't map to to %s: ", log_id(ram.id));
rejected_cfg_debug_msgs += message;
rejected_cfg_debug_msgs += "\n";
}
}
void log_reject(const Ram &ram, const PortGroup &pg, std::string message) {
if(ys_debug(1)) {
rejected_cfg_debug_msgs += stringf("can't map to port group [");
bool first = true;
for (std::string portname : pg.names){
if (!first) rejected_cfg_debug_msgs += ", ";
rejected_cfg_debug_msgs += portname;
first = false;
}
rejected_cfg_debug_msgs += stringf("] of %s: ", log_id(ram.id));
rejected_cfg_debug_msgs += message;
rejected_cfg_debug_msgs += "\n";
}
}
void log_reject(const Ram &ram, const PortGroup &pg, int pvi, std::string message) {
if(ys_debug(1)) {
rejected_cfg_debug_msgs += stringf("can't map to option selection [");
bool first = true;
for(auto opt : pg.variants[pvi].options){
if (!first) rejected_cfg_debug_msgs += ", ";
rejected_cfg_debug_msgs += opt.first;
rejected_cfg_debug_msgs += stringf(" = %s", log_const(opt.second));
first = false;
}
rejected_cfg_debug_msgs += "] of port group [";
first = true;
for (std::string portname : pg.names){
if (!first) rejected_cfg_debug_msgs += ", ";
rejected_cfg_debug_msgs += portname;
first = false;
}
rejected_cfg_debug_msgs += stringf("] of %s: ", log_id(ram.id));
rejected_cfg_debug_msgs += message;
rejected_cfg_debug_msgs += "\n";
}
}
};
void MemMapping::dump_configs(int stage) {
const char *stage_name;
switch (stage) {
case 0:
stage_name = "post-geometry";
break;
case 1:
stage_name = "after post-geometry prune";
break;
default:
abort();
}
log_debug("Memory %s.%s mapping candidates (%s):\n", log_id(mem.module->name), log_id(mem.memid), stage_name);
if (logic_ok) {
log_debug("- logic fallback\n");
log_debug(" - cost: %f\n", logic_cost);
}
for (auto &cfg: cfgs) {
dump_config(cfg);
}
}
void MemMapping::dump_config(MemConfig &cfg) {
log_debug("- %s:\n", log_id(cfg.def->id));
for (auto &it: cfg.def->options)
log_debug(" - option %s %s\n", it.first.c_str(), log_const(it.second));
log_debug(" - emulation score: %d\n", cfg.score_emu);
log_debug(" - replicates (for ports): %d\n", cfg.repl_port);
log_debug(" - replicates (for data): %d\n", cfg.repl_d);
log_debug(" - mux score: %d\n", cfg.score_mux);
log_debug(" - demux score: %d\n", cfg.score_demux);
log_debug(" - cost: %f\n", cfg.cost);
std::stringstream os;
for (int x: cfg.def->dbits)
os << " " << x;
std::string dbits_s = os.str();
log_debug(" - abits %d dbits%s\n", cfg.def->abits, dbits_s.c_str());
if (cfg.def->byte != 0)
log_debug(" - byte width %d\n", cfg.def->byte);
log_debug(" - chosen base width %d\n", cfg.def->dbits[cfg.base_width_log2]);
os.str("");
for (int x: cfg.swizzle)
if (x == -1)
os << " -";
else
os << " " << x;
std::string swizzle_s = os.str();
log_debug(" - swizzle%s\n", swizzle_s.c_str());
os.str("");
for (int i = 0; (1 << i) <= cfg.hard_wide_mask; i++)
if (cfg.hard_wide_mask & 1 << i)
os << " " << i;
std::string wide_s = os.str();
if (cfg.hard_wide_mask)
log_debug(" - hard wide bits%s\n", wide_s.c_str());
if (cfg.emu_read_first)
log_debug(" - emulate read-first behavior\n");
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
auto &pcfg = cfg.wr_ports[i];
if (pcfg.rd_port == -1)
log_debug(" - write port %d: port group %s\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str());
else
log_debug(" - write port %d: port group %s (shared with read port %d)\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str(), pcfg.rd_port);
for (auto &it: pcfg.def->options)
log_debug(" - option %s %s\n", it.first.c_str(), log_const(it.second));
if (cfg.def->width_mode == WidthMode::PerPort) {
std::stringstream os;
for (int i = pcfg.def->min_wr_wide_log2; i <= pcfg.def->max_wr_wide_log2; i++)
os << " " << cfg.def->dbits[i];
std::string widths_s = os.str();
const char *note = "";
if (pcfg.rd_port != -1)
note = pcfg.def->width_tied ? " (tied)" : " (independent)";
log_debug(" - widths%s%s\n", widths_s.c_str(), note);
}
for (auto i: pcfg.emu_prio)
log_debug(" - emulate priority over write port %d\n", i);
}
for (int i = 0; i < GetSize(mem.rd_ports); i++) {
auto &pcfg = cfg.rd_ports[i];
if (pcfg.wr_port == -1)
log_debug(" - read port %d: port group %s\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str());
else
log_debug(" - read port %d: port group %s (shared with write port %d)\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str(), pcfg.wr_port);
for (auto &it: pcfg.def->options)
log_debug(" - option %s %s\n", it.first.c_str(), log_const(it.second));
if (cfg.def->width_mode == WidthMode::PerPort) {
std::stringstream os;
for (int i = pcfg.def->min_rd_wide_log2; i <= pcfg.def->max_rd_wide_log2; i++)
os << " " << cfg.def->dbits[i];
std::string widths_s = os.str();
const char *note = "";
if (pcfg.wr_port != -1)
note = pcfg.def->width_tied ? " (tied)" : " (independent)";
log_debug(" - widths%s%s\n", widths_s.c_str(), note);
}
if (pcfg.emu_sync)
log_debug(" - emulate data register\n");
if (pcfg.emu_en)
log_debug(" - emulate clock enable\n");
if (pcfg.emu_arst)
log_debug(" - emulate async reset\n");
if (pcfg.emu_srst)
log_debug(" - emulate sync reset\n");
if (pcfg.emu_init)
log_debug(" - emulate init value\n");
if (pcfg.emu_srst_en_prio)
log_debug(" - emulate sync reset / enable priority\n");
for (auto i: pcfg.emu_trans)
log_debug(" - emulate transparency with write port %d\n", i);
}
}
std::pair<bool, Const> search_for_attribute(Mem mem, IdString attr) {
// priority of attributes:
// 1. attributes on memory itself
// 2. attributes on a read or write port
// 3. attributes on data signal of a read or write port
// 4. attributes on address signal of a read or write port
if (mem.has_attribute(attr))
return std::make_pair(true, mem.attributes.at(attr));
for (auto &port: mem.rd_ports)
if (port.has_attribute(attr))
return std::make_pair(true, port.attributes.at(attr));
for (auto &port: mem.wr_ports)
if (port.has_attribute(attr))
return std::make_pair(true, port.attributes.at(attr));
for (auto &port: mem.rd_ports)
for (SigBit bit: port.data)
if (bit.is_wire() && bit.wire->has_attribute(attr))
return std::make_pair(true, bit.wire->attributes.at(attr));
for (auto &port: mem.wr_ports)
for (SigBit bit: port.data)
if (bit.is_wire() && bit.wire->has_attribute(attr))
return std::make_pair(true, bit.wire->attributes.at(attr));
for (auto &port: mem.rd_ports)
for (SigBit bit: port.addr)
if (bit.is_wire() && bit.wire->has_attribute(attr))
return std::make_pair(true, bit.wire->attributes.at(attr));
for (auto &port: mem.wr_ports)
for (SigBit bit: port.addr)
if (bit.is_wire() && bit.wire->has_attribute(attr))
return std::make_pair(true, bit.wire->attributes.at(attr));
return std::make_pair(false, Const());
}
// Go through memory attributes to determine user-requested mapping style.
void MemMapping::determine_style() {
kind = RamKind::Auto;
style = "";
auto find_attr = search_for_attribute(mem, ID::lram);
if (find_attr.first && find_attr.second.as_bool()) {
kind = RamKind::Huge;
log("found attribute 'lram' on memory %s.%s, forced mapping to huge RAM\n", log_id(mem.module->name), log_id(mem.memid));
return;
}
for (auto attr: {ID::ram_block, ID::rom_block, ID::ram_style, ID::rom_style, ID::ramstyle, ID::romstyle, ID::syn_ramstyle, ID::syn_romstyle}) {
find_attr = search_for_attribute(mem, attr);
if (find_attr.first) {
Const val = find_attr.second;
if (val == 1) {
kind = RamKind::NotLogic;
log("found attribute '%s = 1' on memory %s.%s, disabled mapping to FF\n", log_id(attr), log_id(mem.module->name), log_id(mem.memid));
return;
}
std::string val_s = val.decode_string();
for (auto &c: val_s)
c = std::tolower(c);
// Handled in memory_dff.
if (val_s == "no_rw_check")
continue;
if (val_s == "auto") {
// Nothing.
} else if (val_s == "logic" || val_s == "registers") {
kind = RamKind::Logic;
log("found attribute '%s = %s' on memory %s.%s, forced mapping to FF\n", log_id(attr), val_s.c_str(), log_id(mem.module->name), log_id(mem.memid));
} else if (val_s == "distributed") {
kind = RamKind::Distributed;
log("found attribute '%s = %s' on memory %s.%s, forced mapping to distributed RAM\n", log_id(attr), val_s.c_str(), log_id(mem.module->name), log_id(mem.memid));
} else if (val_s == "block" || val_s == "block_ram" || val_s == "ebr") {
kind = RamKind::Block;
log("found attribute '%s = %s' on memory %s.%s, forced mapping to block RAM\n", log_id(attr), val_s.c_str(), log_id(mem.module->name), log_id(mem.memid));
} else if (val_s == "huge" || val_s == "ultra") {
kind = RamKind::Huge;
log("found attribute '%s = %s' on memory %s.%s, forced mapping to huge RAM\n", log_id(attr), val_s.c_str(), log_id(mem.module->name), log_id(mem.memid));
} else {
kind = RamKind::NotLogic;
style = val_s;
log("found attribute '%s = %s' on memory %s.%s, forced mapping to %s RAM\n", log_id(attr), val_s.c_str(), log_id(mem.module->name), log_id(mem.memid), val_s.c_str());
}
return;
}
}
for (auto attr: {ID::logic_block, ID::no_ram}){
find_attr = search_for_attribute(mem, attr);
if (find_attr.first && find_attr.second.as_bool())
kind = RamKind::Logic;
}
}
// Determine whether the memory can be mapped entirely to soft logic.
bool MemMapping::determine_logic_ok() {
if (kind != RamKind::Auto && kind != RamKind::Logic) {
log_reject("can't map to logic: RAM kind conflicts with attribute");
return false;
}
// Memory is mappable entirely to soft logic iff all its write ports are in the same clock domain.
if (mem.wr_ports.empty())
return true;
for (auto &port: mem.wr_ports) {
if (!port.clk_enable){
log_reject("can't map to logic: unclocked port");
return false;
}
if (port.clk != mem.wr_ports[0].clk) {
log_reject("can't map to logic: ports have different write clock domains");
return false;
}
if (port.clk_polarity != mem.wr_ports[0].clk_polarity) {
log_reject("can't map to logic: ports have different write clock polarity");
return false;
}
}
return true;
}
// Apply RAM kind restrictions (logic/distributed/block/huge), if any.
bool MemMapping::check_ram_kind(const Ram &ram) {
if (style != "")
return true;
if (ram.kind == kind)
return true;
if (kind == RamKind::Auto || kind == RamKind::NotLogic) {
if (ram.kind == RamKind::Distributed && opts.no_auto_distributed) {
log_reject(ram, "option -no-auto-distributed given");
return false;
}
if (ram.kind == RamKind::Block && opts.no_auto_block) {
log_reject(ram, "option -no-auto-block given");
return false;
}
if (ram.kind == RamKind::Huge && opts.no_auto_huge) {
log_reject(ram, "option -no-auto-huge given");
return false;
}
return true;
}
log_reject(ram, "RAM kind conflicts with attribute");
return false;
}
// Apply specific RAM style restrictions, if any.
bool MemMapping::check_ram_style(const Ram &ram) {
if (style == "")
return true;
for (auto &s: ram.style)
if (s == style)
return true;
log_reject(ram, "RAM style conflicts with attribute");
return false;
}
// Handle memory initializer restrictions, if any.
bool MemMapping::check_init(const Ram &ram) {
bool has_nonx = false;
bool has_one = false;
for (auto &init: mem.inits) {
if (init.data.is_fully_undef())
continue;
has_nonx = true;
for (auto bit: init.data)
if (bit == State::S1)
has_one = true;
}
switch (ram.init) {
case MemoryInitKind::None:
if(has_nonx) log_reject(ram, "does not support initialization");
return !has_nonx;
case MemoryInitKind::Zero:
if(has_one) log_reject(ram, "does not support non-zero initialization");
return !has_one;
default:
return true;
}
}
bool apply_clock(MemConfig &cfg, const PortVariant &def, SigBit clk, bool clk_polarity) {
if (def.clk_shared == -1)
return true;
auto &cdef = cfg.def->shared_clocks[def.clk_shared];
auto &ccfg = cfg.shared_clocks[def.clk_shared];
if (cdef.anyedge) {
if (!ccfg.used) {
ccfg.used = true;
ccfg.clk = clk;
ccfg.polarity = clk_polarity;
return true;
} else {
return ccfg.clk == clk && ccfg.polarity == clk_polarity;
}
} else {
bool invert = clk_polarity ^ (def.clk_pol == ClkPolKind::Posedge);
if (!ccfg.used) {
ccfg.used = true;
ccfg.clk = clk;
ccfg.invert = invert;
return true;
} else {
return ccfg.clk == clk && ccfg.invert == invert;
}
}
}
// Perform write port assignment, validating clock options as we go.
void MemMapping::assign_wr_ports() {
log_reject(stringf("Assigning write ports... (candidate configs: %zu)", (size_t) cfgs.size()));
for (auto &port: mem.wr_ports) {
if (!port.clk_enable) {
// Async write ports not supported.
cfgs.clear();
log_reject("can't map at all: async write port");
return;
}
MemConfigs new_cfgs;
for (auto &cfg: cfgs) {
for (int pgi = 0; pgi < GetSize(cfg.def->port_groups); pgi++) {
auto &pg = cfg.def->port_groups[pgi];
// Make sure the target port group still has a free port.
int used = 0;
for (auto &oport: cfg.wr_ports)
if (oport.port_group == pgi)
used++;
if (used >= GetSize(pg.names)) {
log_reject(*cfg.def, pg, "not enough unassigned ports remaining");
continue;
}
for (int pvi = 0; pvi < GetSize(pg.variants); pvi++) {
auto &def = pg.variants[pvi];
// Make sure the target is a write port.
if (def.kind == PortKind::Ar || def.kind == PortKind::Sr) {
log_reject(*cfg.def, pg, pvi, "not a write port");
continue;
}
MemConfig new_cfg = cfg;
WrPortConfig pcfg;
pcfg.rd_port = -1;
pcfg.port_group = pgi;
pcfg.port_variant = pvi;
pcfg.def = &def;
if (!apply_clock(new_cfg, def, port.clk, port.clk_polarity)) {
log_reject(*cfg.def, pg, pvi, "incompatible clock polarity");
continue;
}
new_cfg.wr_ports.push_back(pcfg);
new_cfgs.push_back(new_cfg);
}
}
}
cfgs = new_cfgs;
}
}
// Perform read port assignment, validating clock and rden options as we go.
void MemMapping::assign_rd_ports() {
log_reject(stringf("Assigning read ports... (candidate configs: %zu)", (size_t) cfgs.size()));
for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
auto &port = mem.rd_ports[pidx];
MemConfigs new_cfgs;
for (auto &cfg: cfgs) {
// First pass: read port not shared with a write port.
for (int pgi = 0; pgi < GetSize(cfg.def->port_groups); pgi++) {
auto &pg = cfg.def->port_groups[pgi];
// Make sure the target port group has a port not used up by write ports.
// Overuse by other read ports is not a problem — this will just result
// in memory duplication.
int used = 0;
for (auto &oport: cfg.wr_ports)
if (oport.port_group == pgi)
used++;
if (used >= GetSize(pg.names)) {
log_reject(*cfg.def, pg, "not enough unassigned ports remaining");
continue;
}
for (int pvi = 0; pvi < GetSize(pg.variants); pvi++) {
auto &def = pg.variants[pvi];
// Make sure the target is a read port.
if (def.kind == PortKind::Sw) {
log_reject(*cfg.def, pg, pvi, "not a read port");
continue;
}
// If mapping an async port, accept only async defs.
if (!port.clk_enable) {
if (def.kind == PortKind::Sr || def.kind == PortKind::Srsw) {
log_reject(*cfg.def, pg, pvi, "not an asynchronous read port");
continue;
}
}
MemConfig new_cfg = cfg;
RdPortConfig pcfg;
pcfg.wr_port = -1;
pcfg.port_group = pgi;
pcfg.port_variant = pvi;
pcfg.def = &def;
if (def.kind == PortKind::Sr || def.kind == PortKind::Srsw) {
pcfg.emu_sync = false;
if (!apply_clock(new_cfg, def, port.clk, port.clk_polarity)) {
log_reject(*cfg.def, pg, pvi, "incompatible clock polarity");
continue;
}
// Decide if rden is usable.
if (port.en != State::S1) {
if (def.clk_en) {
pcfg.rd_en_to_clk_en = true;
} else {
pcfg.emu_en = !def.rd_en;
}
}
} else {
pcfg.emu_sync = port.clk_enable;
}
new_cfg.rd_ports.push_back(pcfg);
new_cfgs.push_back(new_cfg);
}
}
// Second pass: read port shared with a write port.
for (int wpidx = 0; wpidx < GetSize(mem.wr_ports); wpidx++) {
auto &wport = mem.wr_ports[wpidx];
auto &wpcfg = cfg.wr_ports[wpidx];
auto &def = *wpcfg.def;
// Make sure the write port is not yet shared.
if (wpcfg.rd_port != -1) {
log_reject(stringf("can't share write port %d: already shared by a different read port", wpidx));
continue;
}
// Make sure the target is a read port.
if (def.kind == PortKind::Sw) {
log_reject(stringf("can't share write port %d: not a read-write port", wpidx));
continue;
}
// Validate address compatibility.
if (!addr_compatible(wpidx, pidx)) {
log_reject(stringf("can't share write port %d: addresses are not compatible", wpidx));
continue;
}
// Validate clock compatibility, if needed.
if (def.kind == PortKind::Srsw) {
if (!port.clk_enable) {
log_reject(stringf("can't share write port %d: incompatible enable", wpidx));
continue;
}
if (port.clk != wport.clk) {
log_reject(stringf("can't share write port %d: different clock signal", wpidx));
continue;
}
if (port.clk_polarity != wport.clk_polarity) {
log_reject(stringf("can't share write port %d: incompatible clock polarity", wpidx));
continue;
}
}
// Okay, let's fill it in.
MemConfig new_cfg = cfg;
new_cfg.wr_ports[wpidx].rd_port = pidx;
RdPortConfig pcfg;
pcfg.wr_port = wpidx;
pcfg.port_group = wpcfg.port_group;
pcfg.port_variant = wpcfg.port_variant;
pcfg.def = wpcfg.def;
pcfg.emu_sync = port.clk_enable && def.kind == PortKind::Arsw;
// For srsw, check rden capability.
if (def.kind == PortKind::Srsw) {
bool trans = port.transparency_mask[wpidx];
bool col_x = port.collision_x_mask[wpidx];
if (def.rdwr == RdWrKind::NoChange) {
if (!get_wr_excludes_rd(wpidx, pidx)) {
if (!trans && !col_x) {
log_reject(stringf("can't share write port %d: conflict in simultaneous read and write operations", wpidx));
continue;
}
if (trans)
pcfg.emu_trans.push_back(wpidx);
new_cfg.wr_ports[wpidx].force_uniform = true;
}
if (port.en != State::S1) {
if (def.clk_en) {
pcfg.rd_en_to_clk_en = true;
} else {
pcfg.emu_en = !def.rd_en;
}
}
} else {
if (!col_x && !trans && def.rdwr != RdWrKind::Old) {
log_reject(stringf("can't share write port %d: simultaneous read and write operations should result in new value but port reads old", wpidx));
continue;
}
if (trans) {
if (def.rdwr != RdWrKind::New && def.rdwr != RdWrKind::NewOnly)
pcfg.emu_trans.push_back(wpidx);
}
if (def.rdwr == RdWrKind::NewOnly) {
if (!get_wr_excludes_rd(wpidx, pidx))
new_cfg.wr_ports[wpidx].force_uniform = true;
}
if (port.en != State::S1) {
if (def.clk_en) {
if (get_wr_implies_rd(wpidx, pidx)) {
pcfg.rd_en_to_clk_en = true;
} else {
pcfg.emu_en = !def.rd_en;
}
} else {
pcfg.emu_en = !def.rd_en;
}
}
}
}
new_cfg.rd_ports.push_back(pcfg);
new_cfgs.push_back(new_cfg);
}
}
cfgs = new_cfgs;
}
}
// Validate transparency restrictions, determine where to add soft transparency logic.
void MemMapping::handle_trans() {
log_reject(stringf("Handling transparency... (candidate configs: %zu)", (size_t) cfgs.size()));
if (mem.emulate_read_first_ok()) {
MemConfigs new_cfgs;
for (auto &cfg: cfgs) {
new_cfgs.push_back(cfg);
bool ok = true;
// Using this trick will break read-write port sharing.
for (auto &pcfg: cfg.rd_ports)
if (pcfg.wr_port != -1)
ok = false;
if (ok) {
cfg.emu_read_first = true;
new_cfgs.push_back(cfg);
}
}
cfgs = new_cfgs;
}
for (int rpidx = 0; rpidx < GetSize(mem.rd_ports); rpidx++) {
auto &rport = mem.rd_ports[rpidx];
if (!rport.clk_enable)
continue;
for (int wpidx = 0; wpidx < GetSize(mem.wr_ports); wpidx++) {
auto &wport = mem.wr_ports[wpidx];
if (!wport.clk_enable)
continue;
if (rport.clk != wport.clk)
continue;
if (rport.clk_polarity != wport.clk_polarity)
continue;
// If we got this far, we have a transparency restriction
// to uphold.
MemConfigs new_cfgs;
for (auto &cfg: cfgs) {
auto &rpcfg = cfg.rd_ports[rpidx];
auto &wpcfg = cfg.wr_ports[wpidx];
// The transparency relation for shared ports already handled while assigning them.
if (rpcfg.wr_port == wpidx) {
new_cfgs.push_back(cfg);
continue;
}
if (rport.collision_x_mask[wpidx] && !cfg.emu_read_first) {
new_cfgs.push_back(cfg);
continue;
}
bool transparent = rport.transparency_mask[wpidx] || cfg.emu_read_first;
if (rpcfg.emu_sync) {
// For async read port, just add the transparency logic
// if necessary.
if (transparent)
rpcfg.emu_trans.push_back(wpidx);
new_cfgs.push_back(cfg);
} else {
// Otherwise, split through the relevant wrtrans caps.
// For non-transparent ports, the cap needs to be present.
// For transparent ports, we can emulate transparency
// even without a direct cap.
bool found = false;
for (auto &tdef: wpcfg.def->wrtrans) {
// Check if the target matches.
if (tdef.target_kind == WrTransTargetKind::Group && rpcfg.port_group != tdef.target_group) {
log_reject(*cfg.def, stringf("transparency with target port group %d not supported", tdef.target_group));
continue;
}
// Check if the transparency kind is acceptable.
if (transparent) {
if (tdef.kind == WrTransKind::Old) {
log_reject(*cfg.def, stringf("target %d has wrong transparency kind: new value required", tdef.target_group));
continue;
}
} else {
if (tdef.kind != WrTransKind::Old) {
log_reject(*cfg.def, stringf("target %d has wrong transparency kind: old value required", tdef.target_group));
continue;
}
}
// Okay, we can use this cap.
new_cfgs.push_back(cfg);
found = true;
break;
}
if (!found && transparent) {
// If the port pair is transparent, but no cap was
// found, use emulation.
rpcfg.emu_trans.push_back(wpidx);
new_cfgs.push_back(cfg);
}
}
}
cfgs = new_cfgs;
}
}
}
// Determine where to add soft priority logic.
void MemMapping::handle_priority() {
for (int p1idx = 0; p1idx < GetSize(mem.wr_ports); p1idx++) {
for (int p2idx = 0; p2idx < GetSize(mem.wr_ports); p2idx++) {
auto &port2 = mem.wr_ports[p2idx];
if (!port2.priority_mask[p1idx])
continue;
for (auto &cfg: cfgs) {
auto &p1cfg = cfg.wr_ports[p1idx];
auto &p2cfg = cfg.wr_ports[p2idx];
bool found = false;
for (auto &pgi: p2cfg.def->wrprio) {
if (pgi == p1cfg.port_group) {
found = true;
break;
}
}
// If no cap was found, emulate.
if (!found)
p2cfg.emu_prio.push_back(p1idx);
}
}
}
}
bool is_all_zero(const Const &val) {
for (auto bit: val.bits)
if (bit == State::S1)
return false;
return true;
}
// Determine where to add soft init value / reset logic.
void MemMapping::handle_rd_rst() {
for (auto &cfg: cfgs) {
for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
auto &port = mem.rd_ports[pidx];
auto &pcfg = cfg.rd_ports[pidx];
// Only sync ports are relevant.
// If emulated by async port or we already emulate CE, init will be
// included for free.
if (!port.clk_enable || pcfg.emu_sync || pcfg.emu_en)
continue;
switch (pcfg.def->rdinitval) {
case ResetValKind::None:
pcfg.emu_init = !port.init_value.is_fully_undef();
break;
case ResetValKind::Zero:
pcfg.emu_init = !is_all_zero(port.init_value);
break;
default:
break;
}
Const init_val = port.init_value;
if (port.arst != State::S0) {
switch (pcfg.def->rdarstval) {
case ResetValKind::None:
pcfg.emu_arst = true;
break;
case ResetValKind::Zero:
pcfg.emu_arst = !is_all_zero(port.arst_value);
break;
case ResetValKind::Init:
if (init_val.is_fully_undef())
init_val = port.arst_value;
pcfg.emu_arst = init_val != port.arst_value;
break;
default:
break;
}
}
if (port.srst != State::S0) {
switch (pcfg.def->rdsrstval) {
case ResetValKind::None:
pcfg.emu_srst = true;
break;
case ResetValKind::Zero:
pcfg.emu_srst = !is_all_zero(port.srst_value);
break;
case ResetValKind::Init:
if (init_val.is_fully_undef())
init_val = port.srst_value;
pcfg.emu_srst = init_val != port.srst_value;
break;
default:
break;
}
if (!pcfg.emu_srst && pcfg.def->rdsrst_block_wr && pcfg.wr_port != -1) {
if (!get_wr_excludes_srst(pcfg.wr_port, pidx))
pcfg.emu_srst = true;
}
if (!pcfg.emu_srst && port.en != State::S1) {
if (port.ce_over_srst) {
switch (pcfg.def->rdsrstmode) {
case SrstKind::Ungated:
pcfg.emu_srst_en_prio = true;
break;
case SrstKind::GatedClkEn:
pcfg.emu_srst_en_prio = !pcfg.rd_en_to_clk_en;
break;
case SrstKind::GatedRdEn:
break;
default:
log_assert(0);
}
} else {
switch (pcfg.def->rdsrstmode) {
case SrstKind::Ungated:
break;
case SrstKind::GatedClkEn:
if (pcfg.rd_en_to_clk_en) {
if (pcfg.def->rd_en) {
pcfg.rd_en_to_clk_en = false;
} else {
pcfg.emu_srst_en_prio = true;
}
}
break;
case SrstKind::GatedRdEn:
pcfg.emu_srst_en_prio = true;
break;
default:
log_assert(0);
}
}
}
} else {
if (pcfg.def->rd_en && pcfg.def->rdwr == RdWrKind::NoChange && pcfg.wr_port != -1) {
pcfg.rd_en_to_clk_en = false;
}
}
}
}
}
void MemMapping::score_emu_ports() {
for (auto &cfg: cfgs) {
std::vector<int> port_usage_wr(cfg.def->port_groups.size());
std::vector<int> port_usage_rd(cfg.def->port_groups.size());
int score = 0;
// 3 points for every write port if we need to do read-first emulation.
if (cfg.emu_read_first)
score += 3 * GetSize(cfg.wr_ports);
for (auto &pcfg: cfg.wr_ports) {
// 1 point for every priority relation we need to fix up.
// This is just a gate for every distinct wren pair.
score += GetSize(pcfg.emu_prio);
port_usage_wr[pcfg.port_group]++;
}
for (auto &pcfg: cfg.rd_ports) {
// 3 points for every soft transparency logic instance. This involves
// registers and other major mess.
score += 3 * GetSize(pcfg.emu_trans);
// 3 points for CE soft logic. Likewise involves registers.
// If we already do this, subsumes any init/srst/arst emulation.
if (pcfg.emu_en)
score += 3;
// 2 points for soft init value / reset logic: involves single bit
// register and some muxes.
if (pcfg.emu_init)
score += 2;
if (pcfg.emu_arst)
score += 2;
if (pcfg.emu_srst)
score += 2;
// 1 point for wrong srst/en priority (fixed with a single gate).
if (pcfg.emu_srst_en_prio)
score++;
// 1 point for every non-shared read port used, as a tiebreaker
// to prefer single-port configs.
if (pcfg.wr_port == -1) {
score++;
port_usage_rd[pcfg.port_group]++;
}
}
cfg.score_emu = score;
int repl_port = 1;
for (int i = 0; i < GetSize(cfg.def->port_groups); i++) {
int space = GetSize(cfg.def->port_groups[i].names) - port_usage_wr[i];
log_assert(space >= 0);
if (port_usage_rd[i] > 0) {
log_assert(space > 0);
int usage = port_usage_rd[i];
int cur = (usage + space - 1) / space;
if (cur > repl_port)
repl_port = cur;
}
}
cfg.repl_port = repl_port;
}
}
void MemMapping::handle_geom() {
std::vector<int> wren_size;
for (auto &port: mem.wr_ports) {
SigSpec en = port.en;
en.sort_and_unify();
wren_size.push_back(GetSize(en));
}
for (auto &cfg: cfgs) {
// First, create a set of "byte boundaries": the bit positions in source memory word
// that have write enable different from the previous bit in any write port.
// Bit 0 is considered to be a byte boundary as well.
// Likewise, create a set of "word boundaries" that are like above, but only for write ports
// with the "force uniform" flag set.
std::vector<bool> byte_boundary(mem.width, false);
std::vector<bool> word_boundary(mem.width, false);
byte_boundary[0] = true;
for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) {
auto &port = mem.wr_ports[pidx];
auto &pcfg = cfg.wr_ports[pidx];
if (pcfg.force_uniform)
word_boundary[0] = true;
for (int sub = 0; sub < (1 << port.wide_log2); sub++) {
for (int i = 1; i < mem.width; i++) {
int pos = sub * mem.width + i;
if (port.en[pos] != port.en[pos-1]) {
byte_boundary[i] = true;
if (pcfg.force_uniform)
word_boundary[i] = true;
}
}
}
}
bool got_config = false;
int best_cost = 0;
int byte_width_log2 = 0;
for (int i = 0; i < GetSize(cfg.def->dbits); i++)
if (cfg.def->byte >= cfg.def->dbits[i])
byte_width_log2 = i;
if (cfg.def->byte == 0)
byte_width_log2 = GetSize(cfg.def->dbits) - 1;
pool<int> no_wide_bits;
// Determine which of the source address bits involved in wide ports
// are "uniform". Bits are considered uniform if, when a port is widened through
// them, the write enables are the same for both values of the bit.
int max_wr_wide_log2 = 0;
for (auto &port: mem.wr_ports)
if (port.wide_log2 > max_wr_wide_log2)
max_wr_wide_log2 = port.wide_log2;
int max_wide_log2 = max_wr_wide_log2;
for (auto &port: mem.rd_ports)
if (port.wide_log2 > max_wide_log2)
max_wide_log2 = port.wide_log2;
int wide_nu_start = max_wide_log2;
int wide_nu_end = max_wr_wide_log2;
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
auto &port = mem.wr_ports[i];
auto &pcfg = cfg.wr_ports[i];
for (int j = 0; j < port.wide_log2; j++) {
bool uniform = true;
// If write enables don't match, mark bit as non-uniform.
for (int k = 0; k < (1 << port.wide_log2); k += 2 << j)
if (port.en.extract(k * mem.width, mem.width << j) != port.en.extract((k + (1 << j)) * mem.width, mem.width << j))
uniform = false;
if (!uniform) {
if (pcfg.force_uniform) {
for (int k = j; k < port.wide_log2; k++)
no_wide_bits.insert(k);
}
if (j < wide_nu_start)
wide_nu_start = j;
break;
}
}
if (pcfg.def->width_tied && pcfg.rd_port != -1) {
// If:
//
// - the write port is merged with a read port
// - the read port is wider than the write port
// - read and write widths are tied
//
// then we will have to artificially widen the write
// port to the width of the read port, and emulate
// a narrower write path by use of write enables,
// which will definitely be non-uniform over the added
// bits.
auto &rport = mem.rd_ports[pcfg.rd_port];
if (rport.wide_log2 > port.wide_log2) {
if (port.wide_log2 < wide_nu_start)
wide_nu_start = port.wide_log2;
if (rport.wide_log2 > wide_nu_end)
wide_nu_end = rport.wide_log2;
if (pcfg.force_uniform) {
for (int k = port.wide_log2; k < rport.wide_log2; k++)
no_wide_bits.insert(k);
}
}
}
}
// Iterate over base widths.
for (int base_width_log2 = 0; base_width_log2 < GetSize(cfg.def->dbits); base_width_log2++) {
// Now, see how many data bits we actually have available.
// This is usually dbits[base_width_log2], but could be smaller if we
// ran afoul of a max width limitation. Configurations where this
// happens are not useful, unless we need it to satisfy a *minimum*
// width limitation.
int unit_width_log2 = base_width_log2;
for (auto &pcfg: cfg.wr_ports)
if (unit_width_log2 > pcfg.def->max_wr_wide_log2)
unit_width_log2 = pcfg.def->max_wr_wide_log2;
for (auto &pcfg: cfg.rd_ports)
if (unit_width_log2 > pcfg.def->max_rd_wide_log2)
unit_width_log2 = pcfg.def->max_rd_wide_log2;
if (unit_width_log2 != base_width_log2 && got_config)
break;
int unit_width = cfg.def->dbits[unit_width_log2];
// Also determine effective byte width (the granularity of write enables).
int effective_byte = cfg.def->byte;
if (effective_byte == 0 || effective_byte > unit_width)
effective_byte = unit_width;
if (mem.wr_ports.empty())
effective_byte = 1;
log_assert(unit_width % effective_byte == 0);
// Create the swizzle pattern.
std::vector<int> swizzle;
for (int i = 0; i < mem.width; i++) {
if (word_boundary[i])
while (GetSize(swizzle) % unit_width)
swizzle.push_back(-1);
else if (byte_boundary[i])
while (GetSize(swizzle) % effective_byte)
swizzle.push_back(-1);
swizzle.push_back(i);
}
if (word_boundary[0])
while (GetSize(swizzle) % unit_width)
swizzle.push_back(-1);
else
while (GetSize(swizzle) % effective_byte)
swizzle.push_back(-1);
// Now evaluate the configuration, then keep adding more hard wide bits
// and evaluating.
int hard_wide_mask = 0;
int hard_wide_num = 0;
bool byte_failed = false;
while (1) {
// Check if all min width constraints are satisfied.
// Only check these constraints for write ports with width below
// byte width — for other ports, we can emulate narrow width with
// a larger one.
bool min_width_ok = true;
int min_width_bit = wide_nu_start;
for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) {
auto &port = mem.wr_ports[pidx];
int w = base_width_log2;
for (int i = 0; i < port.wide_log2; i++)
if (hard_wide_mask & 1 << i)
w++;
if (w < cfg.wr_ports[pidx].def->min_wr_wide_log2 && w < byte_width_log2) {
min_width_ok = false;
if (min_width_bit > port.wide_log2)
min_width_bit = port.wide_log2;
}
}
if (min_width_ok) {
int emu_wide_bits = max_wide_log2 - hard_wide_num;
int mult_wide = 1 << emu_wide_bits;
int addrs = 1 << (cfg.def->abits - base_width_log2 + emu_wide_bits);
int min_addr = mem.start_offset / addrs;
int max_addr = (mem.start_offset + mem.size - 1) / addrs;
int mult_a = max_addr - min_addr + 1;
int bits = mult_a * mult_wide * GetSize(swizzle);
int repl = (bits + unit_width - 1) / unit_width;
int score_demux = 0;
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
auto &port = mem.wr_ports[i];
int w = emu_wide_bits;
for (int i = 0; i < port.wide_log2; i++)
if (!(hard_wide_mask & 1 << i))
w--;
if (w || mult_a != 1)
score_demux += (mult_a << w) * wren_size[i];
}
int score_mux = 0;
for (auto &port: mem.rd_ports) {
int w = emu_wide_bits;
for (int i = 0; i < port.wide_log2; i++)
if (!(hard_wide_mask & 1 << i))
w--;
score_mux += ((mult_a << w) - 1) * GetSize(port.data);
}
double cost = (cfg.def->cost - cfg.def->widthscale) * repl * cfg.repl_port;
cost += cfg.def->widthscale * mult_a * mult_wide * mem.width / unit_width * cfg.repl_port;
cost += score_mux * FACTOR_MUX;
cost += score_demux * FACTOR_DEMUX;
cost += cfg.score_emu * FACTOR_EMU;
if (!got_config || cost < best_cost) {
cfg.base_width_log2 = base_width_log2;
cfg.unit_width_log2 = unit_width_log2;
cfg.swizzle = swizzle;
cfg.hard_wide_mask = hard_wide_mask;
cfg.emu_wide_mask = ((1 << max_wide_log2) - 1) & ~hard_wide_mask;
cfg.repl_d = repl;
cfg.score_demux = score_demux;
cfg.score_mux = score_mux;
cfg.cost = cost;
best_cost = cost;
got_config = true;
}
}
if (cfg.def->width_mode != WidthMode::PerPort)
break;
// Now, pick the next bit to add to the hard wide mask.
next_hw:
int scan_from;
int scan_to;
bool retry = false;
if (!min_width_ok) {
// If we still haven't met the minimum width limits,
// add the highest one that will be useful for working
// towards all unmet limits.
scan_from = min_width_bit;
scan_to = 0;
// If the relevant write port is not wide, it's impossible.
} else if (byte_failed) {
// If we already failed with uniformly-written bits only,
// go with uniform bits that are only involved in reads.
scan_from = max_wide_log2;
scan_to = wide_nu_end;
} else if (base_width_log2 + hard_wide_num < byte_width_log2) {
// If we still need uniform bits, prefer the low ones.
scan_from = wide_nu_start;
scan_to = 0;
retry = true;
} else {
scan_from = max_wide_log2;
scan_to = 0;
}
int bit = scan_from - 1;
while (1) {
if (bit < scan_to) {
hw_bit_failed:
if (retry) {
byte_failed = true;
goto next_hw;
} else {
goto bw_done;
}
}
if (!(hard_wide_mask & 1 << bit) && !no_wide_bits.count(bit))
break;
bit--;
}
int new_hw_mask = hard_wide_mask | 1 << bit;
// Check if all max width constraints are satisfied.
for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) {
auto &port = mem.wr_ports[pidx];
int w = base_width_log2;
for (int i = 0; i < port.wide_log2; i++)
if (new_hw_mask & 1 << i)
w++;
if (w > cfg.wr_ports[pidx].def->max_wr_wide_log2) {
goto hw_bit_failed;
}
}
for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
auto &port = mem.rd_ports[pidx];
int w = base_width_log2;
for (int i = 0; i < port.wide_log2; i++)
if (new_hw_mask & 1 << i)
w++;
if (w > cfg.rd_ports[pidx].def->max_rd_wide_log2) {
goto hw_bit_failed;
}
}
// Bit ok, commit.
hard_wide_mask = new_hw_mask;
hard_wide_num++;
}
bw_done:;
}
log_assert(got_config);
}
}
void MemMapping::prune_post_geom() {
std::vector<bool> keep;
dict<std::string, int> rsrc;
for (int i = 0; i < GetSize(cfgs); i++) {
auto &cfg = cfgs[i];
std::string key = cfg.def->resource_name;
if (key.empty()) {
switch (cfg.def->kind) {
case RamKind::Distributed:
key = "[distributed]";
break;
case RamKind::Block:
key = "[block]";
break;
case RamKind::Huge:
key = "[huge]";
break;
default:
break;
}
}
auto it = rsrc.find(key);
if (it == rsrc.end()) {
rsrc[key] = i;
keep.push_back(true);
} else {
auto &ocfg = cfgs[it->second];
if (cfg.cost < ocfg.cost) {
keep[it->second] = false;
it->second = i;
keep.push_back(true);
} else {
keep.push_back(false);
}
}
}
MemConfigs new_cfgs;
for (int i = 0; i < GetSize(cfgs); i++)
if (keep[i])
new_cfgs.push_back(cfgs[i]);
cfgs = new_cfgs;
}
Swizzle gen_swizzle(const Mem &mem, const MemConfig &cfg, int sw_wide_log2, int hw_wide_log2) {
Swizzle res;
std::vector<int> emu_wide_bits;
std::vector<int> hard_wide_bits;
for (int i = 0; i < ceil_log2(mem.size); i++) {
if (cfg.emu_wide_mask & 1 << i)
emu_wide_bits.push_back(i);
else if (GetSize(hard_wide_bits) < hw_wide_log2 - cfg.base_width_log2)
hard_wide_bits.push_back(i);
}
for (int x : hard_wide_bits)
if (x >= sw_wide_log2)
res.addr_mux_bits.push_back(x);
for (int x : emu_wide_bits)
if (x >= sw_wide_log2)
res.addr_mux_bits.push_back(x);
res.addr_shift = cfg.def->abits - cfg.base_width_log2 + GetSize(emu_wide_bits);
res.addr_start = mem.start_offset & ~((1 << res.addr_shift) - 1);
res.addr_end = ((mem.start_offset + mem.size - 1) | ((1 << res.addr_shift) - 1)) + 1;
int hnum = (res.addr_end - res.addr_start) >> res.addr_shift;
int unit_width = cfg.def->dbits[cfg.unit_width_log2];
for (int rd = 0; rd < cfg.repl_d; rd++) {
std::vector<SwizzleBit> bits(cfg.def->dbits[hw_wide_log2]);
for (auto &bit: bits)
bit.valid = false;
res.bits.push_back(bits);
}
for (int hi = 0; hi < hnum; hi++) {
for (int ewi = 0; ewi < (1 << GetSize(emu_wide_bits)); ewi++) {
for (int hwi = 0; hwi < (1 << GetSize(hard_wide_bits)); hwi++) {
int mux_idx = 0;
int sub = 0;
int mib = 0;
int hbit_base = 0;
for (int i = 0; i < GetSize(hard_wide_bits); i++) {
if (hard_wide_bits[i] < sw_wide_log2) {
if (hwi & 1 << i)
sub |= 1 << hard_wide_bits[i];
} else {
if (hwi & 1 << i)
mux_idx |= 1 << mib;
mib++;
}
if (hwi & 1 << i)
hbit_base += cfg.def->dbits[i + cfg.base_width_log2];
}
for (int i = 0; i < GetSize(emu_wide_bits); i++) {
if (emu_wide_bits[i] < sw_wide_log2) {
if (ewi & 1 << i)
sub |= 1 << emu_wide_bits[i];
} else {
if (ewi & 1 << i)
mux_idx |= 1 << mib;
mib++;
}
}
mux_idx |= hi << mib;
int addr = res.addr_start + (hi << res.addr_shift);
for (int i = 0; i < GetSize(res.addr_mux_bits); i++)
if (mux_idx & 1 << i)
addr += 1 << res.addr_mux_bits[i];
for (int bit = 0; bit < GetSize(cfg.swizzle); bit++) {
if (cfg.swizzle[bit] == -1)
continue;
int rbit = bit + GetSize(cfg.swizzle) * (ewi + (hi << GetSize(emu_wide_bits)));
int rep = rbit / unit_width;
int hbit = hbit_base + rbit % unit_width;
auto &swz = res.bits[rep][hbit];
swz.valid = true;
swz.addr = addr;
swz.mux_idx = mux_idx;
swz.bit = cfg.swizzle[bit] + sub * mem.width;
}
}
}
}
return res;
}
void clean_undef(std::vector<State> &val) {
for (auto &bit : val)
if (bit != State::S1)
bit = State::S0;
}
std::vector<SigSpec> generate_demux(Mem &mem, int wpidx, const Swizzle &swz) {
auto &port = mem.wr_ports[wpidx];
std::vector<SigSpec> res;
int hi_bits = ceil_log2(swz.addr_end - swz.addr_start) - swz.addr_shift;
auto compressed = port.compress_en();
SigSpec sig_a = compressed.first;
SigSpec addr = port.addr;
if (GetSize(addr) > hi_bits + swz.addr_shift) {
int lo = mem.start_offset;
int hi = mem.start_offset + mem.size;
int bits = ceil_log2(hi);
for (int i = 0; i < bits; i++) {
int new_lo = lo;
if (lo & 1 << i)
new_lo -= 1 << i;
int new_hi = hi;
if (hi & 1 << i)
new_hi += 1 << i;
if (new_hi - new_lo > (1 << (hi_bits + swz.addr_shift)))
break;
lo = new_lo;
hi = new_hi;
}
SigSpec in_range = mem.module->And(NEW_ID, mem.module->Ge(NEW_ID, addr, lo), mem.module->Lt(NEW_ID, addr, hi));
sig_a = mem.module->Mux(NEW_ID, Const(State::S0, GetSize(sig_a)), sig_a, in_range);
}
addr.extend_u0(swz.addr_shift + hi_bits, false);
SigSpec sig_s;
for (int x : swz.addr_mux_bits)
sig_s.append(addr[x]);
for (int i = 0; i < hi_bits; i++)
sig_s.append(addr[swz.addr_shift + i]);
SigSpec sig_y;
if (GetSize(sig_s) == 0)
sig_y = sig_a;
else
sig_y = mem.module->Demux(NEW_ID, sig_a, sig_s);
for (int i = 0; i < ((swz.addr_end - swz.addr_start) >> swz.addr_shift); i++) {
for (int j = 0; j < (1 << GetSize(swz.addr_mux_bits)); j++) {
int hi = ((swz.addr_start >> swz.addr_shift) + i) & ((1 << hi_bits) - 1);
int pos = (hi << GetSize(swz.addr_mux_bits) | j) * GetSize(sig_a);
res.push_back(port.decompress_en(compressed.second, sig_y.extract(pos, GetSize(sig_a))));
}
}
return res;
}
std::vector<SigSpec> generate_mux(Mem &mem, int rpidx, const Swizzle &swz) {
auto &port = mem.rd_ports[rpidx];
std::vector<SigSpec> res;
int hi_bits = ceil_log2(swz.addr_end - swz.addr_start) - swz.addr_shift;
SigSpec sig_s;
SigSpec addr = port.addr;
addr.extend_u0(swz.addr_shift + hi_bits, false);
for (int x : swz.addr_mux_bits)
sig_s.append(addr[x]);
for (int i = 0; i < hi_bits; i++)
sig_s.append(addr[swz.addr_shift + i]);
if (GetSize(sig_s) == 0) {
return {port.data};
}
if (port.clk_enable) {
SigSpec new_sig_s = mem.module->addWire(NEW_ID, GetSize(sig_s));
mem.module->addDffe(NEW_ID, port.clk, port.en, sig_s, new_sig_s, port.clk_polarity);
sig_s = new_sig_s;
}
SigSpec sig_a = Const(State::Sx, GetSize(port.data) << hi_bits << GetSize(swz.addr_mux_bits));
for (int i = 0; i < ((swz.addr_end - swz.addr_start) >> swz.addr_shift); i++) {
for (int j = 0; j < (1 << GetSize(swz.addr_mux_bits)); j++) {
SigSpec sig = mem.module->addWire(NEW_ID, GetSize(port.data));
int hi = ((swz.addr_start >> swz.addr_shift) + i) & ((1 << hi_bits) - 1);
int pos = (hi << GetSize(swz.addr_mux_bits) | j) * GetSize(port.data);
for (int k = 0; k < GetSize(port.data); k++)
sig_a[pos + k] = sig[k];
res.push_back(sig);
}
}
mem.module->addBmux(NEW_ID, sig_a, sig_s, port.data);
return res;
}
void MemMapping::emit_port(const MemConfig &cfg, std::vector<Cell*> &cells, const PortVariant &pdef, const char *name, int wpidx, int rpidx, const std::vector<int> &hw_addr_swizzle) {
for (auto &it: pdef.options)
for (auto cell: cells)
cell->setParam(stringf("\\PORT_%s_OPTION_%s", name, it.first.c_str()), it.second);
SigSpec addr = Const(State::Sx, cfg.def->abits);
int wide_log2 = 0, wr_wide_log2 = 0, rd_wide_log2 = 0;
SigSpec clk = State::S0;
SigSpec clk_en = State::S0;
bool clk_pol = true;
if (wpidx != -1) {
auto &wport = mem.wr_ports[wpidx];
clk = wport.clk;
clk_pol = wport.clk_polarity;
addr = wport.addr;
wide_log2 = wr_wide_log2 = wport.wide_log2;
if (rpidx != -1) {
auto &rport = mem.rd_ports[rpidx];
auto &rpcfg = cfg.rd_ports[rpidx];
rd_wide_log2 = rport.wide_log2;
if (rd_wide_log2 > wr_wide_log2)
wide_log2 = rd_wide_log2;
else
addr = rport.addr;
if (pdef.clk_en) {
if (rpcfg.rd_en_to_clk_en) {
if (pdef.rdwr == RdWrKind::NoChange) {
clk_en = mem.module->Or(NEW_ID, rport.en, mem.module->ReduceOr(NEW_ID, wport.en));
} else {
clk_en = rport.en;
}
} else {
clk_en = State::S1;
}
}
} else {
if (pdef.clk_en)
clk_en = State::S1;
}
} else if (rpidx != -1) {
auto &rport = mem.rd_ports[rpidx];
auto &rpcfg = cfg.rd_ports[rpidx];
if (rport.clk_enable) {
clk = rport.clk;
clk_pol = rport.clk_polarity;
}
addr = rport.addr;
wide_log2 = rd_wide_log2 = rport.wide_log2;
if (pdef.clk_en) {
if (rpcfg.rd_en_to_clk_en)
clk_en = rport.en;
else
clk_en = State::S1;
}
}
addr = worker.sigmap_xmux(addr);
if (pdef.kind != PortKind::Ar) {
switch (pdef.clk_pol) {
case ClkPolKind::Posedge:
if (!clk_pol)
clk = mem.module->Not(NEW_ID, clk);
break;
case ClkPolKind::Negedge:
if (clk_pol)
clk = mem.module->Not(NEW_ID, clk);
break;
case ClkPolKind::Anyedge:
for (auto cell: cells)
cell->setParam(stringf("\\PORT_%s_CLK_POL", name), clk_pol);
}
for (auto cell: cells) {
cell->setPort(stringf("\\PORT_%s_CLK", name), clk);
if (pdef.clk_en)
cell->setPort(stringf("\\PORT_%s_CLK_EN", name), clk_en);
}
}
// Width determination.
if (pdef.width_tied) {
rd_wide_log2 = wr_wide_log2 = wide_log2;
}
int hw_wr_wide_log2 = cfg.base_width_log2;
for (int i = 0; i < wr_wide_log2; i++)
if (cfg.hard_wide_mask & (1 << i))
hw_wr_wide_log2++;
if (hw_wr_wide_log2 < pdef.min_wr_wide_log2)
hw_wr_wide_log2 = pdef.min_wr_wide_log2;
if (hw_wr_wide_log2 > pdef.max_wr_wide_log2)
hw_wr_wide_log2 = pdef.max_wr_wide_log2;
int hw_rd_wide_log2 = cfg.base_width_log2;
for (int i = 0; i < rd_wide_log2; i++)
if (cfg.hard_wide_mask & (1 << i))
hw_rd_wide_log2++;
if (hw_rd_wide_log2 < pdef.min_rd_wide_log2)
hw_rd_wide_log2 = pdef.min_rd_wide_log2;
if (hw_rd_wide_log2 > pdef.max_rd_wide_log2)
hw_rd_wide_log2 = pdef.max_rd_wide_log2;
if (pdef.width_tied) {
// For unused ports, pick max available width,
// in case narrow ports require disabling parity
// bits etc.
if (wpidx == -1 && rpidx == -1) {
hw_wr_wide_log2 = pdef.max_wr_wide_log2;
hw_rd_wide_log2 = pdef.max_rd_wide_log2;
}
} else {
if (wpidx == -1)
hw_wr_wide_log2 = pdef.max_wr_wide_log2;
if (rpidx == -1)
hw_rd_wide_log2 = pdef.max_rd_wide_log2;
}
if (cfg.def->width_mode == WidthMode::PerPort) {
for (auto cell: cells) {
if (pdef.width_tied) {
cell->setParam(stringf("\\PORT_%s_WIDTH", name), cfg.def->dbits[hw_wr_wide_log2]);
} else {
if (pdef.kind != PortKind::Ar && pdef.kind != PortKind::Sr)
cell->setParam(stringf("\\PORT_%s_WR_WIDTH", name), cfg.def->dbits[hw_wr_wide_log2]);
if (pdef.kind != PortKind::Sw)
cell->setParam(stringf("\\PORT_%s_RD_WIDTH", name), cfg.def->dbits[hw_rd_wide_log2]);
}
}
}
// Address determination.
SigSpec hw_addr;
for (int x: hw_addr_swizzle) {
if (x == -1 || x >= GetSize(addr))
hw_addr.append(State::S0);
else
hw_addr.append(addr[x]);
}
for (int i = 0; i < hw_wr_wide_log2 && i < hw_rd_wide_log2; i++)
hw_addr[i] = State::S0;
for (auto cell: cells)
cell->setPort(stringf("\\PORT_%s_ADDR", name), hw_addr);
// Write part.
if (pdef.kind != PortKind::Ar && pdef.kind != PortKind::Sr) {
int width = cfg.def->dbits[hw_wr_wide_log2];
int effective_byte = cfg.def->byte;
if (effective_byte == 0 || effective_byte > width)
effective_byte = width;
if (wpidx != -1) {
auto &wport = mem.wr_ports[wpidx];
Swizzle port_swz = gen_swizzle(mem, cfg, wport.wide_log2, hw_wr_wide_log2);
std::vector<SigSpec> big_wren = generate_demux(mem, wpidx, port_swz);
for (int rd = 0; rd < cfg.repl_d; rd++) {
auto cell = cells[rd];
SigSpec hw_wdata;
SigSpec hw_wren;
for (auto &bit : port_swz.bits[rd]) {
if (!bit.valid) {
hw_wdata.append(State::Sx);
} else {
hw_wdata.append(wport.data[bit.bit]);
}
}
for (int i = 0; i < GetSize(port_swz.bits[rd]); i += effective_byte) {
auto &bit = port_swz.bits[rd][i];
if (!bit.valid) {
hw_wren.append(State::S0);
} else {
hw_wren.append(big_wren[bit.mux_idx][bit.bit]);
}
}
cell->setPort(stringf("\\PORT_%s_WR_DATA", name), hw_wdata);
if (pdef.wrbe_separate) {
// TODO make some use of it
SigSpec en = mem.module->ReduceOr(NEW_ID, hw_wren);
cell->setPort(stringf("\\PORT_%s_WR_EN", name), en);
cell->setPort(stringf("\\PORT_%s_WR_BE", name), hw_wren);
if (cfg.def->width_mode != WidthMode::Single)
cell->setParam(stringf("\\PORT_%s_WR_BE_WIDTH", name), GetSize(hw_wren));
} else {
cell->setPort(stringf("\\PORT_%s_WR_EN", name), hw_wren);
if (cfg.def->byte != 0 && cfg.def->width_mode != WidthMode::Single)
cell->setParam(stringf("\\PORT_%s_WR_EN_WIDTH", name), GetSize(hw_wren));
}
}
} else {
for (auto cell: cells) {
cell->setPort(stringf("\\PORT_%s_WR_DATA", name), Const(State::Sx, width));
SigSpec hw_wren = Const(State::S0, width / effective_byte);
if (pdef.wrbe_separate) {
cell->setPort(stringf("\\PORT_%s_WR_EN", name), State::S0);
cell->setPort(stringf("\\PORT_%s_WR_BE", name), hw_wren);
if (cfg.def->width_mode != WidthMode::Single)
cell->setParam(stringf("\\PORT_%s_WR_BE_WIDTH", name), GetSize(hw_wren));
} else {
cell->setPort(stringf("\\PORT_%s_WR_EN", name), hw_wren);
if (cfg.def->byte != 0 && cfg.def->width_mode != WidthMode::Single)
cell->setParam(stringf("\\PORT_%s_WR_EN_WIDTH", name), GetSize(hw_wren));
}
}
}
}
// Read part.
if (pdef.kind != PortKind::Sw) {
int width = cfg.def->dbits[hw_rd_wide_log2];
if (rpidx != -1) {
auto &rport = mem.rd_ports[rpidx];
auto &rpcfg = cfg.rd_ports[rpidx];
Swizzle port_swz = gen_swizzle(mem, cfg, rport.wide_log2, hw_rd_wide_log2);
std::vector<SigSpec> big_rdata = generate_mux(mem, rpidx, port_swz);
for (int rd = 0; rd < cfg.repl_d; rd++) {
auto cell = cells[rd];
if (pdef.kind == PortKind::Sr || pdef.kind == PortKind::Srsw) {
if (pdef.rd_en)
cell->setPort(stringf("\\PORT_%s_RD_EN", name), rpcfg.rd_en_to_clk_en ? State::S1 : rport.en);
if (pdef.rdarstval != ResetValKind::None)
cell->setPort(stringf("\\PORT_%s_RD_ARST", name), rport.arst);
if (pdef.rdsrstval != ResetValKind::None)
cell->setPort(stringf("\\PORT_%s_RD_SRST", name), rport.srst);
if (pdef.rdinitval == ResetValKind::Any || pdef.rdinitval == ResetValKind::NoUndef) {
Const val = rport.init_value;
if (pdef.rdarstval == ResetValKind::Init && rport.arst != State::S0) {
log_assert(val.is_fully_undef() || val == rport.arst_value);
val = rport.arst_value;
}
if (pdef.rdsrstval == ResetValKind::Init && rport.srst != State::S0) {
log_assert(val.is_fully_undef() || val == rport.srst_value);
val = rport.srst_value;
}
std::vector<State> hw_val;
for (auto &bit : port_swz.bits[rd]) {
if (!bit.valid) {
hw_val.push_back(State::Sx);
} else {
hw_val.push_back(val.bits[bit.bit]);
}
}
if (pdef.rdinitval == ResetValKind::NoUndef)
clean_undef(hw_val);
cell->setParam(stringf("\\PORT_%s_RD_INIT_VALUE", name), hw_val);
}
if (pdef.rdarstval == ResetValKind::Any || pdef.rdarstval == ResetValKind::NoUndef) {
std::vector<State> hw_val;
for (auto &bit : port_swz.bits[rd]) {
if (!bit.valid) {
hw_val.push_back(State::Sx);
} else {
hw_val.push_back(rport.arst_value.bits[bit.bit]);
}
}
if (pdef.rdarstval == ResetValKind::NoUndef)
clean_undef(hw_val);
cell->setParam(stringf("\\PORT_%s_RD_ARST_VALUE", name), hw_val);
}
if (pdef.rdsrstval == ResetValKind::Any || pdef.rdsrstval == ResetValKind::NoUndef) {
std::vector<State> hw_val;
for (auto &bit : port_swz.bits[rd]) {
if (!bit.valid) {
hw_val.push_back(State::Sx);
} else {
hw_val.push_back(rport.srst_value.bits[bit.bit]);
}
}
if (pdef.rdsrstval == ResetValKind::NoUndef)
clean_undef(hw_val);
cell->setParam(stringf("\\PORT_%s_RD_SRST_VALUE", name), hw_val);
}
}
SigSpec hw_rdata = mem.module->addWire(NEW_ID, width);
cell->setPort(stringf("\\PORT_%s_RD_DATA", name), hw_rdata);
SigSpec lhs;
SigSpec rhs;
for (int i = 0; i < GetSize(hw_rdata); i++) {
auto &bit = port_swz.bits[rd][i];
if (bit.valid) {
lhs.append(big_rdata[bit.mux_idx][bit.bit]);
rhs.append(hw_rdata[i]);
}
}
mem.module->connect(lhs, rhs);
}
} else {
for (auto cell: cells) {
if (pdef.kind == PortKind::Sr || pdef.kind == PortKind::Srsw) {
if (pdef.rd_en)
cell->setPort(stringf("\\PORT_%s_RD_EN", name), State::S0);
if (pdef.rdarstval != ResetValKind::None)
cell->setPort(stringf("\\PORT_%s_RD_ARST", name), State::S0);
if (pdef.rdsrstval != ResetValKind::None)
cell->setPort(stringf("\\PORT_%s_RD_SRST", name), State::S0);
if (pdef.rdinitval == ResetValKind::Any)
cell->setParam(stringf("\\PORT_%s_RD_INIT_VALUE", name), Const(State::Sx, width));
else if (pdef.rdinitval == ResetValKind::NoUndef)
cell->setParam(stringf("\\PORT_%s_RD_INIT_VALUE", name), Const(State::S0, width));
if (pdef.rdarstval == ResetValKind::Any)
cell->setParam(stringf("\\PORT_%s_RD_ARST_VALUE", name), Const(State::Sx, width));
else if (pdef.rdarstval == ResetValKind::NoUndef)
cell->setParam(stringf("\\PORT_%s_RD_ARST_VALUE", name), Const(State::S0, width));
if (pdef.rdsrstval == ResetValKind::Any)
cell->setParam(stringf("\\PORT_%s_RD_SRST_VALUE", name), Const(State::Sx, width));
else if (pdef.rdsrstval == ResetValKind::NoUndef)
cell->setParam(stringf("\\PORT_%s_RD_SRST_VALUE", name), Const(State::S0, width));
}
SigSpec hw_rdata = mem.module->addWire(NEW_ID, width);
cell->setPort(stringf("\\PORT_%s_RD_DATA", name), hw_rdata);
}
}
}
}
void MemMapping::emit(const MemConfig &cfg) {
log("mapping memory %s.%s via %s\n", log_id(mem.module->name), log_id(mem.memid), log_id(cfg.def->id));
// First, handle emulations.
if (cfg.emu_read_first)
mem.emulate_read_first(&worker.initvals);
for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
auto &pcfg = cfg.rd_ports[pidx];
auto &port = mem.rd_ports[pidx];
if (pcfg.emu_sync)
mem.extract_rdff(pidx, &worker.initvals);
else if (pcfg.emu_en)
mem.emulate_rden(pidx, &worker.initvals);
else {
if (pcfg.emu_srst_en_prio) {
if (port.ce_over_srst)
mem.emulate_rd_ce_over_srst(pidx);
else
mem.emulate_rd_srst_over_ce(pidx);
}
mem.emulate_reset(pidx, pcfg.emu_init, pcfg.emu_arst, pcfg.emu_srst, &worker.initvals);
}
}
for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) {
auto &pcfg = cfg.wr_ports[pidx];
for (int opidx: pcfg.emu_prio) {
mem.emulate_priority(opidx, pidx, &worker.initvals);
}
}
for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
auto &port = mem.rd_ports[pidx];
auto &pcfg = cfg.rd_ports[pidx];
for (int opidx: pcfg.emu_trans) {
// The port may no longer be transparent due to transparency being
// nuked as part of emu_sync or emu_prio.
if (port.transparency_mask[opidx])
mem.emulate_transparency(opidx, pidx, &worker.initvals);
}
}
// tgt (repl, port group, port) -> mem (wr port, rd port), where -1 means no port.
std::vector<std::vector<std::vector<std::pair<int, int>>>> ports(cfg.repl_port);
for (int i = 0; i < cfg.repl_port; i++)
ports[i].resize(cfg.def->port_groups.size());
for (int i = 0; i < GetSize(cfg.wr_ports); i++) {
auto &pcfg = cfg.wr_ports[i];
for (int j = 0; j < cfg.repl_port; j++) {
if (j == 0) {
ports[j][pcfg.port_group].push_back({i, pcfg.rd_port});
} else {
ports[j][pcfg.port_group].push_back({i, -1});
}
}
}
for (int i = 0; i < GetSize(cfg.rd_ports); i++) {
auto &pcfg = cfg.rd_ports[i];
if (pcfg.wr_port != -1)
continue;
auto &pg = cfg.def->port_groups[pcfg.port_group];
int j = 0;
while (GetSize(ports[j][pcfg.port_group]) >= GetSize(pg.names))
j++;
ports[j][pcfg.port_group].push_back({-1, i});
}
Swizzle init_swz = gen_swizzle(mem, cfg, 0, GetSize(cfg.def->dbits) - 1);
Const init_data = mem.get_init_data();
std::vector<int> hw_addr_swizzle;
for (int i = 0; i < cfg.base_width_log2; i++)
hw_addr_swizzle.push_back(-1);
for (int i = 0; i < init_swz.addr_shift; i++)
if (!(cfg.emu_wide_mask & 1 << i))
hw_addr_swizzle.push_back(i);
log_assert(GetSize(hw_addr_swizzle) == cfg.def->abits);
for (int rp = 0; rp < cfg.repl_port; rp++) {
std::vector<Cell *> cells;
for (int rd = 0; rd < cfg.repl_d; rd++) {
Cell *cell = mem.module->addCell(stringf("%s.%d.%d", mem.memid.c_str(), rp, rd), cfg.def->id);
if (cfg.def->width_mode == WidthMode::Global)
cell->setParam(ID::WIDTH, cfg.def->dbits[cfg.base_width_log2]);
if (cfg.def->widthscale) {
std::vector<State> val;
for (auto &bit: init_swz.bits[rd])
val.push_back(bit.valid ? State::S1 : State::S0);
cell->setParam(ID::BITS_USED, val);
}
for (auto &it: cfg.def->options)
cell->setParam(stringf("\\OPTION_%s", it.first.c_str()), it.second);
for (int i = 0; i < GetSize(cfg.def->shared_clocks); i++) {
auto &cdef = cfg.def->shared_clocks[i];
auto &ccfg = cfg.shared_clocks[i];
if (cdef.anyedge) {
cell->setParam(stringf("\\CLK_%s_POL", cdef.name.c_str()), ccfg.used ? ccfg.polarity : true);
cell->setPort(stringf("\\CLK_%s", cdef.name.c_str()), ccfg.used ? ccfg.clk : State::S0);
} else {
SigSpec sig = ccfg.used ? ccfg.clk : State::S0;
if (ccfg.used && ccfg.invert)
sig = mem.module->Not(NEW_ID, sig);
cell->setPort(stringf("\\CLK_%s", cdef.name.c_str()), sig);
}
}
if (cfg.def->init == MemoryInitKind::Any || cfg.def->init == MemoryInitKind::NoUndef) {
std::vector<State> initval;
for (int hwa = 0; hwa < (1 << cfg.def->abits); hwa += 1 << (GetSize(cfg.def->dbits) - 1)) {
for (auto &bit: init_swz.bits[rd]) {
if (!bit.valid) {
initval.push_back(State::Sx);
} else {
int addr = bit.addr;
for (int i = GetSize(cfg.def->dbits) - 1; i < cfg.def->abits; i++)
if (hwa & 1 << i)
addr += 1 << hw_addr_swizzle[i];
if (addr >= mem.start_offset && addr < mem.start_offset + mem.size)
initval.push_back(init_data.bits[(addr - mem.start_offset) * mem.width + bit.bit]);
else
initval.push_back(State::Sx);
}
}
}
if (cfg.def->init == MemoryInitKind::NoUndef)
clean_undef(initval);
cell->setParam(ID::INIT, initval);
}
cells.push_back(cell);
}
for (int pgi = 0; pgi < GetSize(cfg.def->port_groups); pgi++) {
auto &pg = cfg.def->port_groups[pgi];
for (int pi = 0; pi < GetSize(pg.names); pi++) {
bool used = pi < GetSize(ports[rp][pgi]);
bool used_r = false;
bool used_w = false;
if (used) {
auto &pd = ports[rp][pgi][pi];
const PortVariant *pdef;
if (pd.first != -1)
pdef = cfg.wr_ports[pd.first].def;
else
pdef = cfg.rd_ports[pd.second].def;
used_w = pd.first != -1;
used_r = pd.second != -1;
emit_port(cfg, cells, *pdef, pg.names[pi].c_str(), pd.first, pd.second, hw_addr_swizzle);
} else {
emit_port(cfg, cells, pg.variants[0], pg.names[pi].c_str(), -1, -1, hw_addr_swizzle);
}
if (pg.optional)
for (auto cell: cells)
cell->setParam(stringf("\\PORT_%s_USED", pg.names[pi].c_str()), used);
if (pg.optional_rw)
for (auto cell: cells) {
cell->setParam(stringf("\\PORT_%s_RD_USED", pg.names[pi].c_str()), used_r);
cell->setParam(stringf("\\PORT_%s_WR_USED", pg.names[pi].c_str()), used_w);
}
}
}
}
mem.remove();
}
struct MemoryLibMapPass : public Pass {
MemoryLibMapPass() : Pass("memory_libmap", "map memories to cells") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" memory_libmap -lib <library_file> [-D <condition>] [selection]\n");
log("\n");
log("This pass takes a description of available RAM cell types and maps\n");
log("all selected memories to one of them, or leaves them to be mapped to FFs.\n");
log("\n");
log(" -lib <library_file>\n");
log(" Selects a library file containing RAM cell definitions. This option\n");
log(" can be passed more than once to select multiple libraries.\n");
log(" See passes/memory/memlib.md for description of the library format.\n");
log("\n");
log(" -D <condition>\n");
log(" Enables a condition that can be checked within the library file\n");
log(" to eg. select between slightly different hardware variants.\n");
log(" This option can be passed any number of times.\n");
log("\n");
log(" -logic-cost-rom <num>\n");
log(" -logic-cost-ram <num>\n");
log(" Sets the cost of a single bit for memory lowered to soft logic.\n");
log("\n");
log(" -no-auto-distributed\n");
log(" -no-auto-block\n");
log(" -no-auto-huge\n");
log(" Disables automatic mapping of given kind of RAMs. Manual mapping\n");
log(" (using ram_style or other attributes) is still supported.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
std::vector<std::string> lib_files;
pool<std::string> defines;
PassOptions opts;
opts.no_auto_distributed = false;
opts.no_auto_block = false;
opts.no_auto_huge = false;
opts.logic_cost_ram = 1.0;
opts.logic_cost_rom = 1.0/16.0;
log_header(design, "Executing MEMORY_LIBMAP pass (mapping memories to cells).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-lib" && argidx+1 < args.size()) {
lib_files.push_back(args[++argidx]);
continue;
}
if (args[argidx] == "-D" && argidx+1 < args.size()) {
defines.insert(args[++argidx]);
continue;
}
if (args[argidx] == "-no-auto-distributed") {
opts.no_auto_distributed = true;
continue;
}
if (args[argidx] == "-no-auto-block") {
opts.no_auto_block = true;
continue;
}
if (args[argidx] == "-no-auto-huge") {
opts.no_auto_huge = true;
continue;
}
if (args[argidx] == "-logic-cost-rom" && argidx+1 < args.size()) {
opts.logic_cost_rom = strtod(args[++argidx].c_str(), nullptr);
continue;
}
if (args[argidx] == "-logic-cost-ram" && argidx+1 < args.size()) {
opts.logic_cost_ram = strtod(args[++argidx].c_str(), nullptr);
continue;
}
break;
}
extra_args(args, argidx, design);
Library lib = parse_library(lib_files, defines);
for (auto module : design->selected_modules()) {
MapWorker worker(module);
auto mems = Mem::get_selected_memories(module);
for (auto &mem : mems)
{
MemMapping map(worker, mem, lib, opts);
int idx = -1;
int best = map.logic_cost;
if (!map.logic_ok) {
if (map.cfgs.empty()) {
log_debug("Rejected candidates for mapping memory %s.%s:\n", log_id(module->name), log_id(mem.memid));
log_debug("%s", map.rejected_cfg_debug_msgs.c_str());
log_error("no valid mapping found for memory %s.%s\n", log_id(module->name), log_id(mem.memid));
}
idx = 0;
best = map.cfgs[0].cost;
}
for (int i = 0; i < GetSize(map.cfgs); i++) {
if (map.cfgs[i].cost < best) {
idx = i;
best = map.cfgs[i].cost;
}
}
if (idx == -1) {
log("using FF mapping for memory %s.%s\n", log_id(module->name), log_id(mem.memid));
} else {
map.emit(map.cfgs[idx]);
}
}
}
}
} MemoryLibMapPass;
PRIVATE_NAMESPACE_END