yosys/passes/sat/expose.cc

676 lines
20 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/sigtools.h"
#include "kernel/rtlil.h"
#include "kernel/log.h"
struct dff_map_info_t {
RTLIL::SigSpec sig_d, sig_clk, sig_arst;
bool clk_polarity, arst_polarity;
RTLIL::Const arst_value;
std::vector<std::string> cells;
};
struct dff_map_bit_info_t {
RTLIL::SigBit bit_d, bit_clk, bit_arst;
bool clk_polarity, arst_polarity;
RTLIL::State arst_value;
RTLIL::Cell *cell;
};
static bool consider_wire(RTLIL::Wire *wire, std::map<std::string, dff_map_info_t> &dff_dq_map)
{
if (wire->name[0] == '$' || dff_dq_map.count(wire->name))
return false;
if (wire->port_input)
return false;
return true;
}
static bool consider_cell(RTLIL::Design *design, std::set<std::string> &dff_cells, RTLIL::Cell *cell)
{
if (cell->name[0] == '$' || dff_cells.count(cell->name))
return false;
if (cell->type.at(0) == '\\' && !design->modules.count(cell->type))
return false;
return true;
}
static bool compare_wires(RTLIL::Wire *wire1, RTLIL::Wire *wire2)
{
log_assert(wire1->name == wire2->name);
if (wire1->width != wire2->width)
return false;
return true;
}
static bool compare_cells(RTLIL::Cell *cell1, RTLIL::Cell *cell2)
{
log_assert(cell1->name == cell2->name);
if (cell1->type != cell2->type)
return false;
if (cell1->parameters != cell2->parameters)
return false;
return true;
}
static void find_dff_wires(std::set<std::string> &dff_wires, RTLIL::Module *module)
{
CellTypes ct;
ct.setup_internals_mem();
ct.setup_stdcells_mem();
SigMap sigmap(module);
SigPool dffsignals;
for (auto &it : module->cells) {
if (ct.cell_known(it.second->type) && it.second->has("\\Q"))
dffsignals.add(sigmap(it.second->get("\\Q")));
}
for (auto &it : module->wires) {
if (dffsignals.check_any(it.second))
dff_wires.insert(it.first);
}
}
static void create_dff_dq_map(std::map<std::string, dff_map_info_t> &map, RTLIL::Design *design, RTLIL::Module *module)
{
std::map<RTLIL::SigBit, dff_map_bit_info_t> bit_info;
SigMap sigmap(module);
for (auto &it : module->cells)
{
if (!design->selected(module, it.second))
continue;
dff_map_bit_info_t info;
info.bit_d = RTLIL::State::Sm;
info.bit_clk = RTLIL::State::Sm;
info.bit_arst = RTLIL::State::Sm;
info.clk_polarity = false;
info.arst_polarity = false;
info.arst_value = RTLIL::State::Sm;
info.cell = it.second;
if (info.cell->type == "$dff") {
info.bit_clk = sigmap(info.cell->get("\\CLK")).to_single_sigbit();
info.clk_polarity = info.cell->parameters.at("\\CLK_POLARITY").as_bool();
std::vector<RTLIL::SigBit> sig_d = sigmap(info.cell->get("\\D")).to_sigbit_vector();
std::vector<RTLIL::SigBit> sig_q = sigmap(info.cell->get("\\Q")).to_sigbit_vector();
for (size_t i = 0; i < sig_d.size(); i++) {
info.bit_d = sig_d.at(i);
bit_info[sig_q.at(i)] = info;
}
continue;
}
if (info.cell->type == "$adff") {
info.bit_clk = sigmap(info.cell->get("\\CLK")).to_single_sigbit();
info.bit_arst = sigmap(info.cell->get("\\ARST")).to_single_sigbit();
info.clk_polarity = info.cell->parameters.at("\\CLK_POLARITY").as_bool();
info.arst_polarity = info.cell->parameters.at("\\ARST_POLARITY").as_bool();
std::vector<RTLIL::SigBit> sig_d = sigmap(info.cell->get("\\D")).to_sigbit_vector();
std::vector<RTLIL::SigBit> sig_q = sigmap(info.cell->get("\\Q")).to_sigbit_vector();
std::vector<RTLIL::State> arst_value = info.cell->parameters.at("\\ARST_VALUE").bits;
for (size_t i = 0; i < sig_d.size(); i++) {
info.bit_d = sig_d.at(i);
info.arst_value = arst_value.at(i);
bit_info[sig_q.at(i)] = info;
}
continue;
}
if (info.cell->type == "$_DFF_N_" || info.cell->type == "$_DFF_P_") {
info.bit_clk = sigmap(info.cell->get("\\C")).to_single_sigbit();
info.clk_polarity = info.cell->type == "$_DFF_P_";
info.bit_d = sigmap(info.cell->get("\\D")).to_single_sigbit();
bit_info[sigmap(info.cell->get("\\Q")).to_single_sigbit()] = info;
continue;
}
if (info.cell->type.size() == 10 && info.cell->type.substr(0, 6) == "$_DFF_") {
info.bit_clk = sigmap(info.cell->get("\\C")).to_single_sigbit();
info.bit_arst = sigmap(info.cell->get("\\R")).to_single_sigbit();
info.clk_polarity = info.cell->type[6] == 'P';
info.arst_polarity = info.cell->type[7] == 'P';
info.arst_value = info.cell->type[0] == '1' ? RTLIL::State::S1 : RTLIL::State::S0;
info.bit_d = sigmap(info.cell->get("\\D")).to_single_sigbit();
bit_info[sigmap(info.cell->get("\\Q")).to_single_sigbit()] = info;
continue;
}
}
std::map<std::string, dff_map_info_t> empty_dq_map;
for (auto &it : module->wires)
{
if (!consider_wire(it.second, empty_dq_map))
continue;
std::vector<RTLIL::SigBit> bits_q = sigmap(it.second).to_sigbit_vector();
std::vector<RTLIL::SigBit> bits_d;
std::vector<RTLIL::State> arst_value;
std::set<RTLIL::Cell*> cells;
if (bits_q.empty() || !bit_info.count(bits_q.front()))
continue;
dff_map_bit_info_t ref_info = bit_info.at(bits_q.front());
for (auto &bit : bits_q) {
if (!bit_info.count(bit))
break;
dff_map_bit_info_t info = bit_info.at(bit);
if (info.bit_clk != ref_info.bit_clk)
break;
if (info.bit_arst != ref_info.bit_arst)
break;
if (info.clk_polarity != ref_info.clk_polarity)
break;
if (info.arst_polarity != ref_info.arst_polarity)
break;
bits_d.push_back(info.bit_d);
arst_value.push_back(info.arst_value);
cells.insert(info.cell);
}
if (bits_d.size() != bits_q.size())
continue;
dff_map_info_t info;
info.sig_d = bits_d;
info.sig_clk = ref_info.bit_clk;
info.sig_arst = ref_info.bit_arst;
info.clk_polarity = ref_info.clk_polarity;
info.arst_polarity = ref_info.arst_polarity;
info.arst_value = arst_value;
for (auto it : cells)
info.cells.push_back(it->name);
map[it.first] = info;
}
}
static void add_new_wire(RTLIL::Module *module, RTLIL::Wire *wire)
{
if (module->count_id(wire->name))
log_error("Attempting to create wire %s, but a wire of this name exists already! Hint: Try another value for -sep.\n", RTLIL::id2cstr(wire->name));
module->add(wire);
}
struct ExposePass : public Pass {
ExposePass() : Pass("expose", "convert internal signals to module ports") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" expose [options] [selection]\n");
log("\n");
log("This command exposes all selected internal signals of a module as additional\n");
log("outputs.\n");
log("\n");
log(" -dff\n");
log(" only consider wires that are directly driven by register cell.\n");
log("\n");
log(" -cut\n");
log(" when exposing a wire, create an input/output pair and cut the internal\n");
log(" signal path at that wire.\n");
log("\n");
log(" -shared\n");
log(" only expose those signals that are shared ammong the selected modules.\n");
log(" this is useful for preparing modules for equivialence checking.\n");
log("\n");
log(" -evert\n");
log(" also turn connections to instances of other modules to additional\n");
log(" inputs and outputs and remove the module instances.\n");
log("\n");
log(" -evert-dff\n");
log(" turn flip-flops to sets of inputs and outputs.\n");
log("\n");
log(" -sep <separator>\n");
log(" when creating new wire/port names, the original object name is suffixed\n");
log(" with this separator (default: '.') and the port name or a type\n");
log(" designator for the exposed signal.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
bool flag_shared = false;
bool flag_evert = false;
bool flag_dff = false;
bool flag_cut = false;
bool flag_evert_dff = false;
std::string sep = ".";
log_header("Executing EXPOSE pass (exposing internal signals as outputs).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-shared") {
flag_shared = true;
continue;
}
if (args[argidx] == "-evert") {
flag_evert = true;
continue;
}
if (args[argidx] == "-dff") {
flag_dff = true;
continue;
}
if (args[argidx] == "-cut") {
flag_cut = true;
continue;
}
if (args[argidx] == "-evert-dff") {
flag_evert_dff = true;
continue;
}
if (args[argidx] == "-sep" && argidx+1 < args.size()) {
sep = args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
CellTypes ct(design);
std::map<RTLIL::Module*, std::map<std::string, dff_map_info_t>> dff_dq_maps;
std::map<RTLIL::Module*, std::set<std::string>> dff_cells;
if (flag_evert_dff)
{
RTLIL::Module *first_module = NULL;
std::set<std::string> shared_dff_wires;
for (auto &mod_it : design->modules)
{
if (!design->selected(mod_it.second))
continue;
create_dff_dq_map(dff_dq_maps[mod_it.second], design, mod_it.second);
if (!flag_shared)
continue;
if (first_module == NULL) {
for (auto &it : dff_dq_maps[mod_it.second])
shared_dff_wires.insert(it.first);
first_module = mod_it.second;
} else {
std::set<std::string> new_shared_dff_wires;
for (auto &it : shared_dff_wires) {
if (!dff_dq_maps[mod_it.second].count(it))
continue;
if (!compare_wires(first_module->wires.at(it), mod_it.second->wires.at(it)))
continue;
new_shared_dff_wires.insert(it);
}
shared_dff_wires.swap(new_shared_dff_wires);
}
}
if (flag_shared)
for (auto &map_it : dff_dq_maps)
{
std::map<std::string, dff_map_info_t> new_map;
for (auto &it : map_it.second)
if (shared_dff_wires.count(it.first))
new_map[it.first] = it.second;
map_it.second.swap(new_map);
}
for (auto &it1 : dff_dq_maps)
for (auto &it2 : it1.second)
for (auto &it3 : it2.second.cells)
dff_cells[it1.first].insert(it3);
}
std::set<std::string> shared_wires, shared_cells;
std::set<std::string> used_names;
if (flag_shared)
{
RTLIL::Module *first_module = NULL;
for (auto &mod_it : design->modules)
{
RTLIL::Module *module = mod_it.second;
if (!design->selected(module))
continue;
std::set<std::string> dff_wires;
if (flag_dff)
find_dff_wires(dff_wires, module);
if (first_module == NULL)
{
for (auto &it : module->wires)
if (design->selected(module, it.second) && consider_wire(it.second, dff_dq_maps[module]))
if (!flag_dff || dff_wires.count(it.first))
shared_wires.insert(it.first);
if (flag_evert)
for (auto &it : module->cells)
if (design->selected(module, it.second) && consider_cell(design, dff_cells[module], it.second))
shared_cells.insert(it.first);
first_module = module;
}
else
{
std::vector<std::string> delete_shared_wires, delete_shared_cells;
for (auto &it : shared_wires)
{
RTLIL::Wire *wire;
if (module->wires.count(it) == 0)
goto delete_shared_wire;
wire = module->wires.at(it);
if (!design->selected(module, wire))
goto delete_shared_wire;
if (!consider_wire(wire, dff_dq_maps[module]))
goto delete_shared_wire;
if (!compare_wires(first_module->wires.at(it), wire))
goto delete_shared_wire;
if (flag_dff && !dff_wires.count(it))
goto delete_shared_wire;
if (0)
delete_shared_wire:
delete_shared_wires.push_back(it);
}
if (flag_evert)
for (auto &it : shared_cells)
{
RTLIL::Cell *cell;
if (module->cells.count(it) == 0)
goto delete_shared_cell;
cell = module->cells.at(it);
if (!design->selected(module, cell))
goto delete_shared_cell;
if (!consider_cell(design, dff_cells[module], cell))
goto delete_shared_cell;
if (!compare_cells(first_module->cells.at(it), cell))
goto delete_shared_cell;
if (0)
delete_shared_cell:
delete_shared_cells.push_back(it);
}
for (auto &it : delete_shared_wires)
shared_wires.erase(it);
for (auto &it : delete_shared_cells)
shared_cells.erase(it);
}
}
}
for (auto &mod_it : design->modules)
{
RTLIL::Module *module = mod_it.second;
if (!design->selected(module))
continue;
std::set<std::string> dff_wires;
if (flag_dff && !flag_shared)
find_dff_wires(dff_wires, module);
SigMap sigmap(module);
SigMap out_to_in_map;
std::vector<RTLIL::Wire*> new_wires;
for (auto &it : module->wires)
{
if (flag_shared) {
if (shared_wires.count(it.first) == 0)
continue;
} else {
if (!design->selected(module, it.second) || !consider_wire(it.second, dff_dq_maps[module]))
continue;
if (flag_dff && !dff_wires.count(it.first))
continue;
}
if (!it.second->port_output) {
it.second->port_output = true;
log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(it.second->name));
}
if (flag_cut) {
RTLIL::Wire *in_wire = new RTLIL::Wire;
in_wire->name = it.second->name + sep + "i";
in_wire->width = it.second->width;
in_wire->port_input = true;
out_to_in_map.add(sigmap(it.second), in_wire);
new_wires.push_back(in_wire);
}
}
if (flag_cut)
{
for (auto it : new_wires)
add_new_wire(module, it);
for (auto &it : module->cells) {
if (!ct.cell_known(it.second->type))
continue;
for (auto &conn : it.second->connections_)
if (ct.cell_input(it.second->type, conn.first))
conn.second = out_to_in_map(sigmap(conn.second));
}
for (auto &conn : module->connections_)
conn.second = out_to_in_map(sigmap(conn.second));
}
std::set<RTLIL::SigBit> set_q_bits;
for (auto &dq : dff_dq_maps[module])
{
if (!module->wires.count(dq.first))
continue;
RTLIL::Wire *wire = module->wires.at(dq.first);
std::set<RTLIL::SigBit> wire_bits_set = sigmap(wire).to_sigbit_set();
std::vector<RTLIL::SigBit> wire_bits_vec = sigmap(wire).to_sigbit_vector();
dff_map_info_t &info = dq.second;
RTLIL::Wire *wire_dummy_q = new RTLIL::Wire;
wire_dummy_q->name = NEW_ID;
wire_dummy_q->width = 0;
add_new_wire(module, wire_dummy_q);
for (auto &cell_name : info.cells) {
RTLIL::Cell *cell = module->cells.at(cell_name);
std::vector<RTLIL::SigBit> cell_q_bits = sigmap(cell->get("\\Q")).to_sigbit_vector();
for (auto &bit : cell_q_bits)
if (wire_bits_set.count(bit))
bit = RTLIL::SigBit(wire_dummy_q, wire_dummy_q->width++);
cell->set("\\Q", cell_q_bits);
}
RTLIL::Wire *wire_q = new RTLIL::Wire;
wire_q->name = wire->name + sep + "q";
wire_q->width = wire->width;
wire_q->port_input = true;
log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_q->name));
add_new_wire(module, wire_q);
RTLIL::SigSig connect_q;
for (size_t i = 0; i < wire_bits_vec.size(); i++) {
if (set_q_bits.count(wire_bits_vec[i]))
continue;
connect_q.first.append(wire_bits_vec[i]);
connect_q.second.append(RTLIL::SigBit(wire_q, i));
set_q_bits.insert(wire_bits_vec[i]);
}
module->connect(connect_q);
RTLIL::Wire *wire_d = new RTLIL::Wire;
wire_d->name = wire->name + sep + "d";
wire_d->width = wire->width;
wire_d->port_output = true;
log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_d->name));
add_new_wire(module, wire_d);
module->connect(RTLIL::SigSig(wire_d, info.sig_d));
RTLIL::Wire *wire_c = new RTLIL::Wire;
wire_c->name = wire->name + sep + "c";
wire_c->port_output = true;
log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_c->name));
add_new_wire(module, wire_c);
if (info.clk_polarity) {
module->connect(RTLIL::SigSig(wire_c, info.sig_clk));
} else {
RTLIL::Cell *c = module->addCell(NEW_ID, "$not");
c->parameters["\\A_SIGNED"] = 0;
c->parameters["\\A_WIDTH"] = 1;
c->parameters["\\Y_WIDTH"] = 1;
c->set("\\A", info.sig_clk);
c->set("\\Y", wire_c);
}
if (info.sig_arst != RTLIL::State::Sm)
{
RTLIL::Wire *wire_r = new RTLIL::Wire;
wire_r->name = wire->name + sep + "r";
wire_r->port_output = true;
log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_r->name));
add_new_wire(module, wire_r);
if (info.arst_polarity) {
module->connect(RTLIL::SigSig(wire_r, info.sig_arst));
} else {
RTLIL::Cell *c = module->addCell(NEW_ID, "$not");
c->parameters["\\A_SIGNED"] = 0;
c->parameters["\\A_WIDTH"] = 1;
c->parameters["\\Y_WIDTH"] = 1;
c->set("\\A", info.sig_arst);
c->set("\\Y", wire_r);
}
RTLIL::Wire *wire_v = new RTLIL::Wire;
wire_v->name = wire->name + sep + "v";
wire_v->width = wire->width;
wire_v->port_output = true;
log("New module port: %s/%s\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire_v->name));
add_new_wire(module, wire_v);
module->connect(RTLIL::SigSig(wire_v, info.arst_value));
}
}
if (flag_evert)
{
std::vector<RTLIL::Cell*> delete_cells;
for (auto &it : module->cells)
{
if (flag_shared) {
if (shared_cells.count(it.first) == 0)
continue;
} else {
if (!design->selected(module, it.second) || !consider_cell(design, dff_cells[module], it.second))
continue;
}
RTLIL::Cell *cell = it.second;
if (design->modules.count(cell->type))
{
RTLIL::Module *mod = design->modules.at(cell->type);
for (auto &it : mod->wires)
{
RTLIL::Wire *p = it.second;
if (!p->port_input && !p->port_output)
continue;
RTLIL::Wire *w = new RTLIL::Wire;
w->name = cell->name + sep + RTLIL::unescape_id(p->name);
w->width = p->width;
if (p->port_input)
w->port_output = true;
if (p->port_output)
w->port_input = true;
add_new_wire(module, w);
log("New module port: %s/%s (%s)\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(w->name), RTLIL::id2cstr(cell->type));
RTLIL::SigSpec sig;
if (cell->has(p->name))
sig = cell->get(p->name);
sig.extend(w->width);
if (w->port_input)
module->connect(RTLIL::SigSig(sig, w));
else
module->connect(RTLIL::SigSig(w, sig));
}
}
else
{
for (auto &it : cell->connections())
{
RTLIL::Wire *w = new RTLIL::Wire;
w->name = cell->name + sep + RTLIL::unescape_id(it.first);
w->width = it.second.size();
if (ct.cell_input(cell->type, it.first))
w->port_output = true;
if (ct.cell_output(cell->type, it.first))
w->port_input = true;
add_new_wire(module, w);
log("New module port: %s/%s (%s)\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(w->name), RTLIL::id2cstr(cell->type));
if (w->port_input)
module->connect(RTLIL::SigSig(it.second, w));
else
module->connect(RTLIL::SigSig(w, it.second));
}
}
delete_cells.push_back(cell);
}
for (auto cell : delete_cells) {
log("Removing cell: %s/%s (%s)\n", log_id(module), log_id(cell), log_id(cell->type));
module->remove(cell);
}
}
module->fixup_ports();
}
}
} ExposePass;