yosys/passes/cmds/abstract.cc

492 lines
17 KiB
C++

#include "kernel/yosys.h"
#include "kernel/celltypes.h"
#include "kernel/ff.h"
#include "kernel/ffinit.h"
#include <variant>
#include <charconv>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct EnableLogic {
SigBit bit;
bool pol;
};
enum SliceIndices {
RtlilSlice,
HdlSlice,
};
struct Slice {
SliceIndices indices;
int first;
int last;
Slice(SliceIndices indices, const std::string &slice) :
indices(indices)
{
if (slice.empty())
syntax_error(slice);
auto sep = slice.find(':');
const char *first_begin, *first_end, *last_begin, *last_end;
if (sep == std::string::npos) {
first_begin = last_begin = slice.c_str();
first_end = last_end = slice.c_str() + slice.length();
} else {
first_begin = slice.c_str();
first_end = first_begin + sep;
last_begin = first_end + 1;
last_end = slice.c_str() + slice.length();
}
first = parse_index(first_begin, first_end, slice);
last = parse_index(last_begin, last_end, slice);
}
static int parse_index(const char *begin, const char *end, const std::string &slice) {
int value;
auto result = std::from_chars(begin, end, value, 10);
if (result.ptr != end || result.ptr == begin)
syntax_error(slice);
return value;
}
static void syntax_error(const std::string &slice) {
log_cmd_error("Invalid slice '%s', expected '<first>:<last>' or '<single>'", slice.c_str());
}
std::string to_string() const {
const char *option = indices == RtlilSlice ? "-rawslice" : "-slice";
if (first == last)
return stringf("%s %d", option, first);
else
return stringf("%s %d:%d", option, first, last);
}
int wire_offset(RTLIL::Wire *wire, int index) const {
int rtl_offset = indices == RtlilSlice ? index : wire->from_hdl_index(index);
if (rtl_offset < 0 || rtl_offset >= wire->width) {
log_error("Slice %s is out of bounds for wire %s in module %s", to_string().c_str(), log_id(wire), log_id(wire->module));
}
return rtl_offset;
}
std::pair<int, int> wire_range(RTLIL::Wire *wire) const {
int rtl_first = wire_offset(wire, first);
int rtl_last = wire_offset(wire, last);
if (rtl_first > rtl_last)
std::swap(rtl_first, rtl_last);
return {rtl_first, rtl_last + 1};
}
};
void emit_mux_anyseq(Module* mod, const SigSpec& mux_input, const SigSpec& mux_output, EnableLogic enable) {
auto anyseq = mod->Anyseq(NEW_ID, mux_input.size());
if (enable.bit == (enable.pol ? State::S1 : State::S0)) {
mod->connect(mux_output, anyseq);
}
SigSpec mux_a, mux_b;
if (enable.pol) {
mux_a = mux_input;
mux_b = anyseq;
} else {
mux_a = anyseq;
mux_b = mux_input;
}
(void)mod->addMux(NEW_ID,
mux_a,
mux_b,
enable.bit,
mux_output);
}
bool abstract_state_port(FfData& ff, SigSpec& port_sig, std::set<int> offsets, EnableLogic enable) {
Wire* abstracted = ff.module->addWire(NEW_ID, offsets.size());
SigSpec mux_input;
int abstracted_idx = 0;
for (int d_idx = 0; d_idx < ff.width; d_idx++) {
if (offsets.count(d_idx)) {
mux_input.append(port_sig[d_idx]);
port_sig[d_idx].wire = abstracted;
port_sig[d_idx].offset = abstracted_idx;
log_assert(abstracted_idx < abstracted->width);
abstracted_idx++;
}
}
emit_mux_anyseq(ff.module, mux_input, abstracted, enable);
(void)ff.emit();
return true;
}
using SelReason=std::variant<Wire*, Cell*>;
dict<SigBit, std::vector<SelReason>> gather_selected_reps(Module* mod, const std::vector<Slice> &slices, SigMap& sigmap) {
dict<SigBit, std::vector<SelReason>> selected_reps;
if (slices.empty()) {
// Collect reps for all wire bits of selected wires
for (auto wire : mod->selected_wires())
for (auto bit : sigmap(wire))
selected_reps.insert(bit).first->second.push_back(wire);
// Collect reps for all output wire bits of selected cells
for (auto cell : mod->selected_cells())
for (auto conn : cell->connections())
if (cell->output(conn.first))
for (auto bit : conn.second.bits())
selected_reps.insert(sigmap(bit)).first->second.push_back(cell);
} else {
if (mod->selected_wires().size() != 1 || !mod->selected_cells().empty())
log_error("Slices are only supported for single-wire selections\n");
auto wire = mod->selected_wires()[0];
for (auto slice : slices) {
auto [begin, end] = slice.wire_range(wire);
for (int i = begin; i < end; i++) {
selected_reps.insert(sigmap(SigBit(wire, i))).first->second.push_back(wire);
}
}
}
return selected_reps;
}
void explain_selections(const std::vector<SelReason>& reasons) {
for (std::variant<Wire*, Cell*> reason : reasons) {
if (Cell** cell_reason = std::get_if<Cell*>(&reason))
log_debug("\tcell %s\n", (*cell_reason)->name.c_str());
else if (Wire** wire_reason = std::get_if<Wire*>(&reason))
log_debug("\twire %s\n", (*wire_reason)->name.c_str());
else
log_assert(false && "insane reason variant\n");
}
}
unsigned int abstract_state(Module* mod, EnableLogic enable, const std::vector<Slice> &slices) {
CellTypes ct;
ct.setup_internals_ff();
SigMap sigmap(mod);
dict<SigBit, std::vector<SelReason>> selected_reps = gather_selected_reps(mod, slices, sigmap);
unsigned int changed = 0;
std::vector<FfData> ffs;
// Abstract flop inputs if they're driving a selected output rep
for (auto cell : mod->cells()) {
if (!ct.cell_types.count(cell->type))
continue;
FfData ff(nullptr, cell);
if (ff.has_sr)
log_cmd_error("SR not supported\n");
ffs.push_back(ff);
}
for (auto ff : ffs) {
// A bit inefficient
std::set<int> offsets_to_abstract;
for (int i = 0; i < GetSize(ff.sig_q); i++) {
SigBit bit = ff.sig_q[i];
if (selected_reps.count(sigmap(bit))) {
log_debug("Abstracting state for %s.Q[%i] in module %s due to selections:\n", log_id(ff.cell), i, log_id(mod));
explain_selections(selected_reps.at(sigmap(bit)));
offsets_to_abstract.insert(i);
}
}
if (offsets_to_abstract.empty())
continue;
// Normalize to simpler FF
ff.unmap_ce();
ff.unmap_srst();
if (ff.has_arst)
ff.arst_to_aload();
bool cell_changed = false;
if (ff.has_aload)
cell_changed = abstract_state_port(ff, ff.sig_ad, offsets_to_abstract, enable);
cell_changed |= abstract_state_port(ff, ff.sig_d, offsets_to_abstract, enable);
changed += cell_changed;
}
return changed;
}
bool abstract_value_cell_port(Module* mod, Cell* cell, std::set<int> offsets, IdString port_name, EnableLogic enable) {
Wire* to_abstract = mod->addWire(NEW_ID, offsets.size());
SigSpec mux_input;
SigSpec mux_output;
const SigSpec& old_port = cell->getPort(port_name);
SigSpec new_port = old_port;
int to_abstract_idx = 0;
for (int port_idx = 0; port_idx < old_port.size(); port_idx++) {
if (offsets.count(port_idx)) {
mux_output.append(old_port[port_idx]);
SigBit in_bit {to_abstract, to_abstract_idx};
new_port.replace(port_idx, in_bit);
mux_input.append(in_bit);
log_assert(to_abstract_idx < to_abstract->width);
to_abstract_idx++;
}
}
cell->setPort(port_name, new_port);
emit_mux_anyseq(mod, mux_input, mux_output, enable);
return true;
}
bool abstract_value_mod_port(Module* mod, Wire* wire, std::set<int> offsets, EnableLogic enable) {
Wire* to_abstract = mod->addWire(NEW_ID, wire);
to_abstract->port_input = true;
to_abstract->port_id = wire->port_id;
wire->port_input = false;
wire->port_id = 0;
mod->swap_names(wire, to_abstract);
SigSpec mux_input;
SigSpec mux_output;
SigSpec direct_lhs;
SigSpec direct_rhs;
for (int port_idx = 0; port_idx < wire->width; port_idx++) {
if (offsets.count(port_idx)) {
mux_output.append(SigBit(wire, port_idx));
mux_input.append(SigBit(to_abstract, port_idx));
} else {
direct_lhs.append(SigBit(wire, port_idx));
direct_rhs.append(SigBit(to_abstract, port_idx));
}
}
mod->connections_.push_back(SigSig(direct_lhs, direct_rhs));
emit_mux_anyseq(mod, mux_input, mux_output, enable);
return true;
}
unsigned int abstract_value(Module* mod, EnableLogic enable, const std::vector<Slice> &slices) {
SigMap sigmap(mod);
dict<SigBit, std::vector<SelReason>> selected_reps = gather_selected_reps(mod, slices, sigmap);
unsigned int changed = 0;
std::vector<Cell*> cells_snapshot = mod->cells();
for (auto cell : cells_snapshot) {
for (auto conn : cell->connections())
if (cell->output(conn.first)) {
std::set<int> offsets_to_abstract;
for (int i = 0; i < conn.second.size(); i++) {
if (selected_reps.count(sigmap(conn.second[i]))) {
log_debug("Abstracting value for %s.%s[%i] in module %s due to selections:\n",
log_id(cell), log_id(conn.first), i, log_id(mod));
explain_selections(selected_reps.at(sigmap(conn.second[i])));
offsets_to_abstract.insert(i);
}
}
if (offsets_to_abstract.empty())
continue;
changed += abstract_value_cell_port(mod, cell, offsets_to_abstract, conn.first, enable);
}
}
std::vector<Wire*> wires_snapshot = mod->wires();
for (auto wire : wires_snapshot)
if (wire->port_input) {
std::set<int> offsets_to_abstract;
for (auto bit : SigSpec(wire))
if (selected_reps.count(sigmap(bit))) {
log_debug("Abstracting value for module input port bit %s in module %s due to selections:\n",
log_signal(bit), log_id(mod));
explain_selections(selected_reps.at(sigmap(bit)));
offsets_to_abstract.insert(bit.offset);
}
if (offsets_to_abstract.empty())
continue;
changed += abstract_value_mod_port(mod, wire, offsets_to_abstract, enable);
}
return changed;
}
unsigned int abstract_init(Module* mod, const std::vector<Slice> &slices) {
unsigned int changed = 0;
FfInitVals initvals;
SigMap sigmap(mod);
dict<SigBit, std::vector<SelReason>> selected_reps = gather_selected_reps(mod, slices, sigmap);
initvals.set(&sigmap, mod);
for (auto bit : selected_reps) {
log_debug("Removing init bit on %s due to selections:\n", log_signal(bit.first));
explain_selections(bit.second);
initvals.remove_init(bit.first);
changed++;
}
return changed;
}
struct AbstractPass : public Pass {
AbstractPass() : Pass("abstract", "replace signals with abstract values during formal verification") { }
void help() override {
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abstract [mode] [options] [selection]\n");
log("\n");
log("Perform abstraction of signals within the design. Abstraction replaces a signal\n");
log("with an unconstrained abstract value that can take an arbitrary concrete value\n");
log("during formal verification. The mode and options control when a signal should\n");
log("be abstracted and how it should affect FFs present in the design.\n");
log("\n");
log("Modes:");
log("\n");
log(" -state\n");
log(" The selected FFs will be modified to load a new abstract value on every\n");
log(" active clock edge, async reset or async load. This is independent of any\n");
log(" clock enable that may be present on the FF cell. Conditional abstraction\n");
log(" is supported with the -enable/-enabeln options. If present, the condition\n");
log(" is sampled at the same time as the FF would smaple the correspnding data\n");
log(" or async-data input whose value will be replaced with an abstract value.\n");
log("\n");
log(" The selection can be used to specify which state bits to abstract. For\n");
log(" each selected wire, any state bits that the wire is driven by will be\n");
log(" abstracted. For a selected FF cell, all of its state is abstracted.\n");
log(" Individual bits of a single wire can be abtracted using the -slice and\n");
log(" -rtlilslice options.\n");
log("\n");
log(" -init\n");
log(" The selected FFs will be modified to have an abstract initial value.\n");
log(" The -enable/-enablen options are not supported in this mode.\n");
log(" \n");
log(" The selection is used in the same way as it is for the -state mode.\n");
log("\n");
log(" -value\n");
log(" The drivers of the selected signals will be replaced with an abstract\n");
log(" value. In this mode, the abstract value can change at any time and is\n");
log(" not synchronized to any clock or other signal. Conditional abstraction\n");
log(" is supported with the -enable/-enablen options. The condition will\n");
log(" combinationally select between the original driver and the abstract\n");
log(" value.\n");
log("\n");
log(" The selection can be used to specify which output bits of which drivers\n");
log(" to abtract. For a selected cell, all its output bits will be abstracted.\n");
log(" For a selected wire, every output bit that is driving the wire will be\n");
log(" abstracted. Individual bits of a single wire can be abstracted using the\n");
log(" -slice and -rtlilslice options.\n");
log("\n");
log(" -enable <wire-name>\n");
log(" -enablen <wire-name>\n");
log(" Perform conditional abstraction with a named single bit wire as\n");
log(" condition. For -enable the wire is used as an active-high condition and\n");
log(" for -enablen as an active-low condition. See the description of the\n");
log(" -state and -value modes for details on how the condition affects the\n");
log(" abstractions performed by either mode. This option is not supported in\n");
log(" the -init mode.\n");
log("\n");
log(" -slice <lhs>:<rhs>\n");
log(" -slice <index>\n");
log(" -rtlilslice <lhs>:<rhs>\n");
log(" -rtlilslice <index>\n");
log(" Limit the abstraction to a slice of a single selected wire. The targeted\n");
log(" bits of the wire can be given as an inclusive range of indices or as a\n");
log(" single index. When using the -slice option, the indices are interpreted\n");
log(" following the source level declaration of the wire. This means the\n");
log(" -slice option will respect declarations with a non-zero-based index range\n");
log(" or with reversed bitorder. The -rtlilslice options will always use\n");
log(" zero-based indexing where index 0 corresponds to the least significant\n");
log(" bit of the wire.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
log_header(design, "Executing ABSTRACT pass.\n");
size_t argidx;
enum Mode {
None,
State,
Initial,
Value,
};
Mode mode = Mode::None;
enum Enable {
Always = -1,
ActiveLow = false, // ensuring we can use bool(enable)
ActiveHigh = true,
};
Enable enable = Enable::Always;
std::string enable_name;
std::vector<Slice> slices;
for (argidx = 1; argidx < args.size(); argidx++)
{
std::string arg = args[argidx];
if (arg == "-state") {
mode = State;
continue;
}
if (arg == "-init") {
mode = Initial;
continue;
}
if (arg == "-value") {
mode = Value;
continue;
}
if (arg == "-enable" && argidx + 1 < args.size()) {
if (enable != Enable::Always)
log_cmd_error("Multiple enable condition are not supported\n");
enable_name = args[++argidx];
enable = Enable::ActiveHigh;
continue;
}
if (arg == "-enablen" && argidx + 1 < args.size()) {
if (enable != Enable::Always)
log_cmd_error("Multiple enable condition are not supported\n");
enable_name = args[++argidx];
enable = Enable::ActiveLow;
continue;
}
if (arg == "-slice" && argidx + 1 < args.size()) {
slices.emplace_back(SliceIndices::HdlSlice, args[++argidx]);
continue;
}
if (arg == "-rtlilslice" && argidx + 1 < args.size()) {
slices.emplace_back(SliceIndices::RtlilSlice, args[++argidx]);
continue;
}
break;
}
extra_args(args, argidx, design);
if (enable != Enable::Always) {
if (mode == Mode::Initial)
log_cmd_error("Conditional initial value abstraction is not supported\n");
if (enable_name.empty())
log_cmd_error("Unspecified enable wire\n");
}
unsigned int changed = 0;
if ((mode == State) || (mode == Value)) {
for (auto mod : design->selected_modules()) {
EnableLogic enable_logic = { State::S1, true };
if (enable != Enable::Always) {
Wire *enable_wire = mod->wire("\\" + enable_name);
if (!enable_wire)
log_cmd_error("Enable wire %s not found in module %s\n", enable_name.c_str(), mod->name.c_str());
if (GetSize(enable_wire) != 1)
log_cmd_error("Enable wire %s must have width 1 but has width %d in module %s\n",
enable_name.c_str(), GetSize(enable_wire), mod->name.c_str());
enable_logic = { enable_wire, enable == Enable::ActiveHigh };
}
if (mode == State)
changed += abstract_state(mod, enable_logic, slices);
else
changed += abstract_value(mod, enable_logic, slices);
}
if (mode == State)
log("Abstracted %d stateful cells.\n", changed);
else
log("Abstracted %d driver ports.\n", changed);
} else if (mode == Initial) {
for (auto mod : design->selected_modules()) {
changed += abstract_init(mod, slices);
}
log("Abstracted %d init bits.\n", changed);
} else {
log_cmd_error("No mode selected, see help message\n");
}
}
} AbstractPass;
PRIVATE_NAMESPACE_END