yosys/techlibs/common/simlib.v

2998 lines
72 KiB
Verilog

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* The Simulation Library.
*
* This Verilog library contains simple simulation models for the internal
* cells ($not, ...) generated by the frontends and used in most passes.
*
* This library can be used to verify the internal netlists as generated
* by the different frontends and passes.
*
* Note that memory can only be simulated when all $memrd and $memwr cells
* have been merged to stand-alone $mem cells (this is what the "memory_collect"
* pass is doing).
*
*/
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $not (A, Y)
//-
//- A bit-wise inverter. This corresponds to the Verilog unary prefix '~' operator.
//-
module \$not (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = ~$signed(A);
end else begin:BLOCK2
assign Y = ~A;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $pos (A, Y)
//-
//- A buffer. This corresponds to the Verilog unary prefix '+' operator.
//-
module \$pos (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = $signed(A);
end else begin:BLOCK2
assign Y = A;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $buf (A, Y)
//-
//- A simple coarse-grain buffer cell type.
//-
module \$buf (A, Y);
parameter WIDTH = 0;
input [WIDTH-1:0] A;
output [WIDTH-1:0] Y;
assign Y = A;
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $neg (A, Y)
//-
//- An arithmetic inverter. This corresponds to the Verilog unary prefix '-' operator.
//-
module \$neg (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = -$signed(A);
end else begin:BLOCK2
assign Y = -A;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $and (A, B, Y)
//-
//- A bit-wise AND. This corresponds to the Verilog '&' operator.
//-
module \$and (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) & $signed(B);
end else begin:BLOCK2
assign Y = A & B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $or (A, B, Y)
//-
//- A bit-wise OR. This corresponds to the Verilog '|' operator.
//-
module \$or (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) | $signed(B);
end else begin:BLOCK2
assign Y = A | B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $xor (A, B, Y)
//-
//- A bit-wise XOR. This corresponds to the Verilog '^' operator.
//-
module \$xor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) ^ $signed(B);
end else begin:BLOCK2
assign Y = A ^ B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $xnor (A, B, Y)
//-
//- A bit-wise XNOR. This corresponds to the Verilog '~^' operator.
//-
module \$xnor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) ~^ $signed(B);
end else begin:BLOCK2
assign Y = A ~^ B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $reduce_and (A, Y)
//-
//- An AND reduction. This corresponds to the Verilog unary prefix '&' operator.
//-
module \$reduce_and (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = &$signed(A);
end else begin:BLOCK2
assign Y = &A;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $reduce_or (A, Y)
//-
//- An OR reduction. This corresponds to the Verilog unary prefix '|' operator.
//-
module \$reduce_or (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = |$signed(A);
end else begin:BLOCK2
assign Y = |A;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $reduce_xor (A, Y)
//-
//- A XOR reduction. This corresponds to the Verilog unary prefix '^' operator.
//-
module \$reduce_xor (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = ^$signed(A);
end else begin:BLOCK2
assign Y = ^A;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $reduce_xnor (A, Y)
//-
//- A XNOR reduction. This corresponds to the Verilog unary prefix '~^' operator.
//-
module \$reduce_xnor (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = ~^$signed(A);
end else begin:BLOCK2
assign Y = ~^A;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $reduce_bool (A, Y)
//-
//- An OR reduction. This cell type is used instead of $reduce_or when a signal is
//- implicitly converted to a boolean signal, e.g. for operands of '&&' and '||'.
//-
module \$reduce_bool (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = !(!$signed(A));
end else begin:BLOCK2
assign Y = !(!A);
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $shl (A, B, Y)
//-
//- A logical shift-left operation. This corresponds to the Verilog '<<' operator.
//-
module \$shl (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = $signed(A) << B;
end else begin:BLOCK2
assign Y = A << B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $shr (A, B, Y)
//-
//- A logical shift-right operation. This corresponds to the Verilog '>>' operator.
//-
module \$shr (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = $signed(A) >> B;
end else begin:BLOCK2
assign Y = A >> B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $sshl (A, B, Y)
//-
//- An arithmatic shift-left operation.
//- This corresponds to the Verilog '<<<' operator.
//-
module \$sshl (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = $signed(A) <<< B;
end else begin:BLOCK2
assign Y = A <<< B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $sshr (A, B, Y)
//-
//- An arithmatic shift-right operation.
//- This corresponds to the Verilog '>>>' operator.
//-
module \$sshr (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = $signed(A) >>> B;
end else begin:BLOCK2
assign Y = A >>> B;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$shift (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
if (B_SIGNED) begin:BLOCK2
assign Y = $signed(B) < 0 ? $signed(A) << -B : $signed(A) >> B;
end else begin:BLOCK3
assign Y = $signed(A) >> B;
end
end else begin:BLOCK4
if (B_SIGNED) begin:BLOCK5
assign Y = $signed(B) < 0 ? A << -B : A >> B;
end else begin:BLOCK6
assign Y = A >> B;
end
end
endgenerate
endmodule
// --------------------------------------------------------
module \$shiftx (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (Y_WIDTH > 0)
if (B_SIGNED) begin:BLOCK1
assign Y = A[$signed(B) +: Y_WIDTH];
end else begin:BLOCK2
assign Y = A[B +: Y_WIDTH];
end
endgenerate
endmodule
// --------------------------------------------------------
module \$fa (A, B, C, X, Y);
parameter WIDTH = 1;
input [WIDTH-1:0] A, B, C;
output [WIDTH-1:0] X, Y;
wire [WIDTH-1:0] t1, t2, t3;
assign t1 = A ^ B, t2 = A & B, t3 = C & t1;
assign Y = t1 ^ C, X = (t2 | t3) ^ (Y ^ Y);
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $lcu (P, G, CI, CO)
//-
//- Lookahead carry unit
//- A building block dedicated to fast computation of carry-bits used in binary
//- arithmetic operations. By replacing the ripple carry structure used in full-adder
//- blocks, the more significant bits of the sum can be expected to be computed more
//- quickly.
//- Typically created during `techmap` of $alu cells (see the "_90_alu" rule in
//- +/techmap.v).
module \$lcu (P, G, CI, CO);
parameter WIDTH = 1;
input [WIDTH-1:0] P; // Propagate
input [WIDTH-1:0] G; // Generate
input CI; // Carry-in
output reg [WIDTH-1:0] CO; // Carry-out
integer i;
always @* begin
CO = 'bx;
if (^{P, G, CI} !== 1'bx) begin
CO[0] = G[0] || (P[0] && CI);
for (i = 1; i < WIDTH; i = i+1)
CO[i] = G[i] || (P[i] && CO[i-1]);
end
end
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $alu (A, B, CI, BI, X, Y, CO)
//-
//- Arithmetic logic unit.
//- A building block supporting both binary addition/subtraction operations, and
//- indirectly, comparison operations.
//- Typically created by the `alumacc` pass, which transforms:
//- $add, $sub, $lt, $le, $ge, $gt, $eq, $eqx, $ne, $nex
//- cells into this $alu cell.
//-
module \$alu (A, B, CI, BI, X, Y, CO);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A; // Input operand
input [B_WIDTH-1:0] B; // Input operand
output [Y_WIDTH-1:0] X; // A xor B (sign-extended, optional B inversion,
// used in combination with
// reduction-AND for $eq/$ne ops)
output [Y_WIDTH-1:0] Y; // Sum
input CI; // Carry-in (set for $sub)
input BI; // Invert-B (set for $sub)
output [Y_WIDTH-1:0] CO; // Carry-out
wire [Y_WIDTH-1:0] AA, BB;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign AA = $signed(A), BB = BI ? ~$signed(B) : $signed(B);
end else begin:BLOCK2
assign AA = $unsigned(A), BB = BI ? ~$unsigned(B) : $unsigned(B);
end
endgenerate
// this is 'x' if Y and CO should be all 'x', and '0' otherwise
wire y_co_undef = ^{A, A, B, B, CI, CI, BI, BI};
assign X = AA ^ BB;
// Full adder
assign Y = (AA + BB + CI) ^ {Y_WIDTH{y_co_undef}};
function get_carry;
input a, b, c;
get_carry = (a&b) | (a&c) | (b&c);
endfunction
genvar i;
generate
assign CO[0] = get_carry(AA[0], BB[0], CI) ^ y_co_undef;
for (i = 1; i < Y_WIDTH; i = i+1) begin:BLOCK3
assign CO[i] = get_carry(AA[i], BB[i], CO[i-1]) ^ y_co_undef;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $lt (A, B, Y)
//-
//- A less-than comparison between inputs 'A' and 'B'.
//- This corresponds to the Verilog '<' operator.
//-
module \$lt (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) < $signed(B);
end else begin:BLOCK2
assign Y = A < B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $le (A, B, Y)
//-
//- A less-than-or-equal-to comparison between inputs 'A' and 'B'.
//- This corresponds to the Verilog '<=' operator.
//-
module \$le (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) <= $signed(B);
end else begin:BLOCK2
assign Y = A <= B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $eq (A, B, Y)
//-
//- An equality comparison between inputs 'A' and 'B'.
//- This corresponds to the Verilog '==' operator.
//-
module \$eq (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) == $signed(B);
end else begin:BLOCK2
assign Y = A == B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $ne (A, B, Y)
//-
//- An inequality comparison between inputs 'A' and 'B'.
//- This corresponds to the Verilog '!=' operator.
//-
module \$ne (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) != $signed(B);
end else begin:BLOCK2
assign Y = A != B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $eqx (A, B, Y)
//-
//- An exact equality comparison between inputs 'A' and 'B'.
//- This corresponds to the Verilog '===' operator.
//- Unlike equality comparison that can give 'x' as output,
//- an exact equality comparison will strictly give '0' or '1' as output.
//-
module \$eqx (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) === $signed(B);
end else begin:BLOCK2
assign Y = A === B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $nex (A, B, Y)
//-
//- An exact inequality comparison between inputs 'A' and 'B'.
//- This corresponds to the Verilog '!==' operator.
//- Unlike inequality comparison that can give 'x' as output,
//- an exact inequality comparison will strictly give '0' or '1' as output.
//-
module \$nex (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) !== $signed(B);
end else begin:BLOCK2
assign Y = A !== B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $ge (A, B, Y)
//-
//- A greater-than-or-equal-to comparison between inputs 'A' and 'B'.
//- This corresponds to the Verilog '>=' operator.
//-
module \$ge (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) >= $signed(B);
end else begin:BLOCK2
assign Y = A >= B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $gt (A, B, Y)
//-
//- A greater-than comparison between inputs 'A' and 'B'.
//- This corresponds to the Verilog '>' operator.
//-
module \$gt (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) > $signed(B);
end else begin:BLOCK2
assign Y = A > B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $add (A, B, Y)
//-
//- Addition of inputs 'A' and 'B'. This corresponds to the Verilog '+' operator.
//-
module \$add (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) + $signed(B);
end else begin:BLOCK2
assign Y = A + B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $sub (A, B, Y)
//-
//- Subtraction between inputs 'A' and 'B'.
//- This corresponds to the Verilog '-' operator.
//-
module \$sub (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) - $signed(B);
end else begin:BLOCK2
assign Y = A - B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $mul (A, B, Y)
//-
//- Multiplication of inputs 'A' and 'B'.
//- This corresponds to the Verilog '*' operator.
//-
module \$mul (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) * $signed(B);
end else begin:BLOCK2
assign Y = A * B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $macc (A, B, Y)
//-
//- Multiply and accumulate.
//- A building block for summing any number of negated and unnegated signals
//- and arithmetic products of pairs of signals. Cell port A concatenates pairs
//- of signals to be multiplied together. When the second signal in a pair is zero
//- length, a constant 1 is used instead as the second factor. Cell port B
//- concatenates 1-bit-wide signals to also be summed, such as "carry in" in adders.
//- Typically created by the `alumacc` pass, which transforms $add and $mul
//- into $macc cells.
module \$macc (A, B, Y);
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
// CONFIG determines the layout of A, as explained below
parameter CONFIG = 4'b0000;
parameter CONFIG_WIDTH = 4;
// In the terms used for this cell, there's mixed meanings for the term "port". To disambiguate:
// A cell port is for example the A input (it is constructed in C++ as cell->setPort(ID::A, ...))
// Multiplier ports are pairs of multiplier inputs ("factors").
// If the second signal in such a pair is zero length, no multiplication is necessary, and the first signal is just added to the sum.
input [A_WIDTH-1:0] A; // Cell port A is the concatenation of all arithmetic ports
input [B_WIDTH-1:0] B; // Cell port B is the concatenation of single-bit unsigned signals to be also added to the sum
output reg [Y_WIDTH-1:0] Y; // Output sum
// Xilinx XSIM does not like $clog2() below..
function integer my_clog2;
input integer v;
begin
if (v > 0)
v = v - 1;
my_clog2 = 0;
while (v) begin
v = v >> 1;
my_clog2 = my_clog2 + 1;
end
end
endfunction
// Bits that a factor's length field in CONFIG per factor in cell port A
localparam integer num_bits = CONFIG[3:0] > 0 ? CONFIG[3:0] : 1;
// Number of multiplier ports
localparam integer num_ports = (CONFIG_WIDTH-4) / (2 + 2*num_bits);
// Minium bit width of an induction variable to iterate over all bits of cell port A
localparam integer num_abits = my_clog2(A_WIDTH) > 0 ? my_clog2(A_WIDTH) : 1;
// In this pseudocode, u(foo) means an unsigned int that's foo bits long.
// The CONFIG parameter carries the following information:
// struct CONFIG {
// u4 num_bits;
// struct port_field {
// bool is_signed;
// bool is_subtract;
// u(num_bits) factor1_len;
// u(num_bits) factor2_len;
// }[num_ports];
// };
// The A cell port carries the following information:
// struct A {
// u(CONFIG.port_field[0].factor1_len) port0factor1;
// u(CONFIG.port_field[0].factor2_len) port0factor2;
// u(CONFIG.port_field[1].factor1_len) port1factor1;
// u(CONFIG.port_field[1].factor2_len) port1factor2;
// ...
// };
// and log(sizeof(A)) is num_abits.
// No factor1 may have a zero length.
// A factor2 having a zero length implies factor2 is replaced with a constant 1.
// Additionally, B is an array of 1-bit-wide unsigned integers to also be summed up.
// Finally, we have:
// Y = port0factor1 * port0factor2 + port1factor1 * port1factor2 + ...
// * B[0] + B[1] + ...
function [2*num_ports*num_abits-1:0] get_port_offsets;
input [CONFIG_WIDTH-1:0] cfg;
integer i, cursor;
begin
cursor = 0;
get_port_offsets = 0;
for (i = 0; i < num_ports; i = i+1) begin
get_port_offsets[(2*i + 0)*num_abits +: num_abits] = cursor;
cursor = cursor + cfg[4 + i*(2 + 2*num_bits) + 2 +: num_bits];
get_port_offsets[(2*i + 1)*num_abits +: num_abits] = cursor;
cursor = cursor + cfg[4 + i*(2 + 2*num_bits) + 2 + num_bits +: num_bits];
end
end
endfunction
localparam [2*num_ports*num_abits-1:0] port_offsets = get_port_offsets(CONFIG);
`define PORT_IS_SIGNED (0 + CONFIG[4 + i*(2 + 2*num_bits)])
`define PORT_DO_SUBTRACT (0 + CONFIG[4 + i*(2 + 2*num_bits) + 1])
`define PORT_SIZE_A (0 + CONFIG[4 + i*(2 + 2*num_bits) + 2 +: num_bits])
`define PORT_SIZE_B (0 + CONFIG[4 + i*(2 + 2*num_bits) + 2 + num_bits +: num_bits])
`define PORT_OFFSET_A (0 + port_offsets[2*i*num_abits +: num_abits])
`define PORT_OFFSET_B (0 + port_offsets[2*i*num_abits + num_abits +: num_abits])
integer i, j;
reg [Y_WIDTH-1:0] tmp_a, tmp_b;
always @* begin
Y = 0;
for (i = 0; i < num_ports; i = i+1)
begin
tmp_a = 0;
tmp_b = 0;
for (j = 0; j < `PORT_SIZE_A; j = j+1)
tmp_a[j] = A[`PORT_OFFSET_A + j];
if (`PORT_IS_SIGNED && `PORT_SIZE_A > 0)
for (j = `PORT_SIZE_A; j < Y_WIDTH; j = j+1)
tmp_a[j] = tmp_a[`PORT_SIZE_A-1];
for (j = 0; j < `PORT_SIZE_B; j = j+1)
tmp_b[j] = A[`PORT_OFFSET_B + j];
if (`PORT_IS_SIGNED && `PORT_SIZE_B > 0)
for (j = `PORT_SIZE_B; j < Y_WIDTH; j = j+1)
tmp_b[j] = tmp_b[`PORT_SIZE_B-1];
if (`PORT_SIZE_B > 0)
tmp_a = tmp_a * tmp_b;
if (`PORT_DO_SUBTRACT)
Y = Y - tmp_a;
else
Y = Y + tmp_a;
end
for (i = 0; i < B_WIDTH; i = i+1) begin
Y = Y + B[i];
end
end
`undef PORT_IS_SIGNED
`undef PORT_DO_SUBTRACT
`undef PORT_SIZE_A
`undef PORT_SIZE_B
`undef PORT_OFFSET_A
`undef PORT_OFFSET_B
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $div (A, B, Y)
//-
//- Division with truncated result (rounded towards 0).
//-
module \$div (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) / $signed(B);
end else begin:BLOCK2
assign Y = A / B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $mod (A, B, Y)
//-
//- Modulo/remainder of division with truncated result (rounded towards 0).
//-
//- Invariant: $div(A, B) * B + $mod(A, B) == A
//-
module \$mod (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) % $signed(B);
end else begin:BLOCK2
assign Y = A % B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $divfloor (A, B, Y)
//-
//- Division with floored result (rounded towards negative infinity).
//-
module \$divfloor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
localparam WIDTH =
A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
wire [WIDTH:0] A_buf, B_buf, N_buf;
assign A_buf = $signed(A);
assign B_buf = $signed(B);
assign N_buf = (A[A_WIDTH-1] == B[B_WIDTH-1]) || A == 0 ? A_buf : $signed(A_buf - (B[B_WIDTH-1] ? B_buf+1 : B_buf-1));
assign Y = $signed(N_buf) / $signed(B_buf);
end else begin:BLOCK2
assign Y = A / B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $modfloor (A, B, Y)
//-
//- Modulo/remainder of division with floored result (rounded towards negative infinity).
//-
//- Invariant: $divfloor(A, B) * B + $modfloor(A, B) == A
//-
module \$modfloor (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
localparam WIDTH = B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
wire [WIDTH-1:0] B_buf, Y_trunc;
assign B_buf = $signed(B);
assign Y_trunc = $signed(A) % $signed(B);
// flooring mod is the same as truncating mod for positive division results (A and B have
// the same sign), as well as when there's no remainder.
// For all other cases, they behave as `floor - trunc = B`
assign Y = (A[A_WIDTH-1] == B[B_WIDTH-1]) || Y_trunc == 0 ? Y_trunc : $signed(B_buf) + $signed(Y_trunc);
end else begin:BLOCK2
// no difference between truncating and flooring for unsigned
assign Y = A % B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $pow (A, B, Y)
//-
//- Exponentiation of an input (Y = A ** B).
//- This corresponds to the Verilog '**' operator.
//-
`ifndef SIMLIB_NOPOW
module \$pow (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) ** $signed(B);
end else if (A_SIGNED) begin:BLOCK2
assign Y = $signed(A) ** B;
end else if (B_SIGNED) begin:BLOCK3
assign Y = A ** $signed(B);
end else begin:BLOCK4
assign Y = A ** B;
end
endgenerate
endmodule
`endif
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $logic_not (A, Y)
//-
//- A logical inverter. This corresponds to the Verilog unary prefix '!' operator.
//-
module \$logic_not (A, Y);
parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED) begin:BLOCK1
assign Y = !$signed(A);
end else begin:BLOCK2
assign Y = !A;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $logic_and (A, B, Y)
//-
//- A logical AND. This corresponds to the Verilog '&&' operator.
//-
module \$logic_and (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) && $signed(B);
end else begin:BLOCK2
assign Y = A && B;
end
endgenerate
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $logic_or (A, B, Y)
//-
//- A logical OR. This corresponds to the Verilog '||' operator.
//-
module \$logic_or (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
generate
if (A_SIGNED && B_SIGNED) begin:BLOCK1
assign Y = $signed(A) || $signed(B);
end else begin:BLOCK2
assign Y = A || B;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$slice (A, Y);
parameter OFFSET = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;
input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:0] Y;
assign Y = A >> OFFSET;
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $concat (A, B, Y)
//-
//- Concatenation of inputs into a single output ( Y = {B, A} ).
//-
module \$concat (A, B, Y);
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [A_WIDTH+B_WIDTH-1:0] Y;
assign Y = {B, A};
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $mux (A, B, S, Y)
//-
//- Multiplexer i.e selecting between two inputs based on select signal.
//-
module \$mux (A, B, S, Y);
parameter WIDTH = 0;
input [WIDTH-1:0] A, B;
input S;
output [WIDTH-1:0] Y;
assign Y = S ? B : A;
endmodule
// --------------------------------------------------------
module \$bmux (A, S, Y);
parameter WIDTH = 0;
parameter S_WIDTH = 0;
input [(WIDTH << S_WIDTH)-1:0] A;
input [S_WIDTH-1:0] S;
output [WIDTH-1:0] Y;
wire [WIDTH-1:0] bm0_out, bm1_out;
generate
if (S_WIDTH > 1) begin:muxlogic
\$bmux #(.WIDTH(WIDTH), .S_WIDTH(S_WIDTH-1)) bm0 (.A(A[(WIDTH << (S_WIDTH - 1))-1:0]), .S(S[S_WIDTH-2:0]), .Y(bm0_out));
\$bmux #(.WIDTH(WIDTH), .S_WIDTH(S_WIDTH-1)) bm1 (.A(A[(WIDTH << S_WIDTH)-1:WIDTH << (S_WIDTH - 1)]), .S(S[S_WIDTH-2:0]), .Y(bm1_out));
assign Y = S[S_WIDTH-1] ? bm1_out : bm0_out;
end else if (S_WIDTH == 1) begin:simple
assign Y = S ? A[2*WIDTH-1:WIDTH] : A[WIDTH-1:0];
end else begin:passthru
assign Y = A;
end
endgenerate
endmodule
// --------------------------------------------------------
module \$pmux (A, B, S, Y);
parameter WIDTH = 0;
parameter S_WIDTH = 0;
input [WIDTH-1:0] A;
input [WIDTH*S_WIDTH-1:0] B;
input [S_WIDTH-1:0] S;
output reg [WIDTH-1:0] Y;
integer i;
reg found_active_sel_bit;
always @* begin
Y = A;
found_active_sel_bit = 0;
for (i = 0; i < S_WIDTH; i = i+1)
case (S[i])
1'b1: begin
Y = found_active_sel_bit ? 'bx : B >> (WIDTH*i);
found_active_sel_bit = 1;
end
1'b0: ;
1'bx: begin
Y = 'bx;
found_active_sel_bit = 'bx;
end
endcase
end
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $demux (A, S, Y)
//-
//- Demultiplexer i.e routing single input to several outputs based on select signal.
//- Unselected outputs are driven to zero.
//-
module \$demux (A, S, Y);
parameter WIDTH = 1;
parameter S_WIDTH = 1;
input [WIDTH-1:0] A;
input [S_WIDTH-1:0] S;
output [(WIDTH << S_WIDTH)-1:0] Y;
genvar i;
generate
for (i = 0; i < (1 << S_WIDTH); i = i + 1) begin:slices
assign Y[i*WIDTH+:WIDTH] = (S == i) ? A : 0;
end
endgenerate
endmodule
// --------------------------------------------------------
`ifndef SIMLIB_NOLUT
module \$lut (A, Y);
parameter WIDTH = 0;
parameter LUT = 0;
input [WIDTH-1:0] A;
output Y;
\$bmux #(.WIDTH(1), .S_WIDTH(WIDTH)) mux(.A(LUT[(1<<WIDTH)-1:0]), .S(A), .Y(Y));
endmodule
`endif
// --------------------------------------------------------
module \$sop (A, Y);
parameter WIDTH = 0;
parameter DEPTH = 0;
parameter TABLE = 0;
input [WIDTH-1:0] A;
output reg Y;
integer i, j;
reg match;
always @* begin
Y = 0;
for (i = 0; i < DEPTH; i=i+1) begin
match = 1;
for (j = 0; j < WIDTH; j=j+1) begin
if (TABLE[2*WIDTH*i + 2*j + 0] && A[j]) match = 0;
if (TABLE[2*WIDTH*i + 2*j + 1] && !A[j]) match = 0;
end
if (match) Y = 1;
end
end
endmodule
// --------------------------------------------------------
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
//-
//- $tribuf (A, EN, Y)
//-
//- A tri-state buffer.
//- This buffer conditionally drives the output with the value of the input
//- based on the enable signal.
//-
module \$tribuf (A, EN, Y);
parameter WIDTH = 0;
input [WIDTH-1:0] A;
input EN;
output [WIDTH-1:0] Y;
assign Y = EN ? A : 'bz;
endmodule
// --------------------------------------------------------
module \$specify2 (EN, SRC, DST);
parameter FULL = 0;
parameter SRC_WIDTH = 1;
parameter DST_WIDTH = 1;
parameter SRC_DST_PEN = 0;
parameter SRC_DST_POL = 0;
parameter T_RISE_MIN = 0;
parameter T_RISE_TYP = 0;
parameter T_RISE_MAX = 0;
parameter T_FALL_MIN = 0;
parameter T_FALL_TYP = 0;
parameter T_FALL_MAX = 0;
input EN;
input [SRC_WIDTH-1:0] SRC;
input [DST_WIDTH-1:0] DST;
localparam SD = SRC_DST_PEN ? (SRC_DST_POL ? 1 : 2) : 0;
`ifdef SIMLIB_SPECIFY
specify
if (EN && SD==0 && !FULL) (SRC => DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && SD==0 && FULL) (SRC *> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && SD==1 && !FULL) (SRC +=> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && SD==1 && FULL) (SRC +*> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && SD==2 && !FULL) (SRC -=> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && SD==2 && FULL) (SRC -*> DST) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
endspecify
`endif
endmodule
// --------------------------------------------------------
module \$specify3 (EN, SRC, DST, DAT);
parameter FULL = 0;
parameter SRC_WIDTH = 1;
parameter DST_WIDTH = 1;
parameter EDGE_EN = 0;
parameter EDGE_POL = 0;
parameter SRC_DST_PEN = 0;
parameter SRC_DST_POL = 0;
parameter DAT_DST_PEN = 0;
parameter DAT_DST_POL = 0;
parameter T_RISE_MIN = 0;
parameter T_RISE_TYP = 0;
parameter T_RISE_MAX = 0;
parameter T_FALL_MIN = 0;
parameter T_FALL_TYP = 0;
parameter T_FALL_MAX = 0;
input EN;
input [SRC_WIDTH-1:0] SRC;
input [DST_WIDTH-1:0] DST, DAT;
localparam ED = EDGE_EN ? (EDGE_POL ? 1 : 2) : 0;
localparam SD = SRC_DST_PEN ? (SRC_DST_POL ? 1 : 2) : 0;
localparam DD = DAT_DST_PEN ? (DAT_DST_POL ? 1 : 2) : 0;
`ifdef SIMLIB_SPECIFY
specify
// DD=0
if (EN && DD==0 && SD==0 && ED==0 && !FULL) ( SRC => (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==0 && ED==0 && FULL) ( SRC *> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==0 && ED==1 && !FULL) (posedge SRC => (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==0 && ED==1 && FULL) (posedge SRC *> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==0 && ED==2 && !FULL) (negedge SRC => (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==0 && ED==2 && FULL) (negedge SRC *> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==1 && ED==0 && !FULL) ( SRC +=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==1 && ED==0 && FULL) ( SRC +*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==1 && ED==1 && !FULL) (posedge SRC +=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==1 && ED==1 && FULL) (posedge SRC +*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==1 && ED==2 && !FULL) (negedge SRC +=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==1 && ED==2 && FULL) (negedge SRC +*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==2 && ED==0 && !FULL) ( SRC -=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==2 && ED==0 && FULL) ( SRC -*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==2 && ED==1 && !FULL) (posedge SRC -=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==2 && ED==1 && FULL) (posedge SRC -*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==2 && ED==2 && !FULL) (negedge SRC -=> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==0 && SD==2 && ED==2 && FULL) (negedge SRC -*> (DST : DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
// DD=1
if (EN && DD==1 && SD==0 && ED==0 && !FULL) ( SRC => (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==0 && ED==0 && FULL) ( SRC *> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==0 && ED==1 && !FULL) (posedge SRC => (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==0 && ED==1 && FULL) (posedge SRC *> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==0 && ED==2 && !FULL) (negedge SRC => (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==0 && ED==2 && FULL) (negedge SRC *> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==1 && ED==0 && !FULL) ( SRC +=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==1 && ED==0 && FULL) ( SRC +*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==1 && ED==1 && !FULL) (posedge SRC +=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==1 && ED==1 && FULL) (posedge SRC +*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==1 && ED==2 && !FULL) (negedge SRC +=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==1 && ED==2 && FULL) (negedge SRC +*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==2 && ED==0 && !FULL) ( SRC -=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==2 && ED==0 && FULL) ( SRC -*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==2 && ED==1 && !FULL) (posedge SRC -=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==2 && ED==1 && FULL) (posedge SRC -*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==2 && ED==2 && !FULL) (negedge SRC -=> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==1 && SD==2 && ED==2 && FULL) (negedge SRC -*> (DST +: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
// DD=2
if (EN && DD==2 && SD==0 && ED==0 && !FULL) ( SRC => (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==0 && ED==0 && FULL) ( SRC *> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==0 && ED==1 && !FULL) (posedge SRC => (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==0 && ED==1 && FULL) (posedge SRC *> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==0 && ED==2 && !FULL) (negedge SRC => (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==0 && ED==2 && FULL) (negedge SRC *> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==1 && ED==0 && !FULL) ( SRC +=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==1 && ED==0 && FULL) ( SRC +*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==1 && ED==1 && !FULL) (posedge SRC +=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==1 && ED==1 && FULL) (posedge SRC +*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==1 && ED==2 && !FULL) (negedge SRC +=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==1 && ED==2 && FULL) (negedge SRC +*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==2 && ED==0 && !FULL) ( SRC -=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==2 && ED==0 && FULL) ( SRC -*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==2 && ED==1 && !FULL) (posedge SRC -=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==2 && ED==1 && FULL) (posedge SRC -*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==2 && ED==2 && !FULL) (negedge SRC -=> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
if (EN && DD==2 && SD==2 && ED==2 && FULL) (negedge SRC -*> (DST -: DAT)) = (T_RISE_MIN:T_RISE_TYP:T_RISE_MAX, T_FALL_MIN:T_FALL_TYP:T_FALL_MAX);
endspecify
`endif
endmodule
// --------------------------------------------------------
module \$specrule (EN_SRC, EN_DST, SRC, DST);
parameter TYPE = "";
parameter T_LIMIT = 0;
parameter T_LIMIT2 = 0;
parameter SRC_WIDTH = 1;
parameter DST_WIDTH = 1;
parameter SRC_PEN = 0;
parameter SRC_POL = 0;
parameter DST_PEN = 0;
parameter DST_POL = 0;
input EN_SRC, EN_DST;
input [SRC_WIDTH-1:0] SRC;
input [DST_WIDTH-1:0] DST;
`ifdef SIMLIB_SPECIFY
specify
// TBD
endspecify
`endif
endmodule
// --------------------------------------------------------
module \$bweqx (A, B, Y);
parameter WIDTH = 0;
input [WIDTH-1:0] A, B;
output [WIDTH-1:0] Y;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin:slices
assign Y[i] = A[i] === B[i];
end
endgenerate
endmodule
// --------------------------------------------------------
module \$bwmux (A, B, S, Y);
parameter WIDTH = 0;
input [WIDTH-1:0] A, B;
input [WIDTH-1:0] S;
output [WIDTH-1:0] Y;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin:slices
assign Y[i] = S[i] ? B[i] : A[i];
end
endgenerate
endmodule
// --------------------------------------------------------
module \$assert (A, EN);
input A, EN;
`ifndef SIMLIB_NOCHECKS
always @* begin
if (A !== 1'b1 && EN === 1'b1) begin
$display("Assertion %m failed!");
$stop;
end
end
`endif
endmodule
// --------------------------------------------------------
module \$assume (A, EN);
input A, EN;
`ifndef SIMLIB_NOCHECKS
always @* begin
if (A !== 1'b1 && EN === 1'b1) begin
$display("Assumption %m failed!");
$stop;
end
end
`endif
endmodule
// --------------------------------------------------------
module \$live (A, EN);
input A, EN;
endmodule
// --------------------------------------------------------
module \$fair (A, EN);
input A, EN;
endmodule
// --------------------------------------------------------
module \$cover (A, EN);
input A, EN;
endmodule
// --------------------------------------------------------
module \$initstate (Y);
output reg Y = 1;
reg [3:0] cnt = 1;
reg trig = 0;
initial trig <= 1;
always @(cnt, trig) begin
Y <= |cnt;
cnt <= cnt + |cnt;
end
endmodule
// --------------------------------------------------------
module \$anyconst (Y);
parameter WIDTH = 0;
output [WIDTH-1:0] Y;
assign Y = 'bx;
endmodule
// --------------------------------------------------------
module \$anyseq (Y);
parameter WIDTH = 0;
output [WIDTH-1:0] Y;
assign Y = 'bx;
endmodule
// --------------------------------------------------------
`ifdef SIMLIB_FF
`ifndef SIMLIB_GLOBAL_CLOCK
`define SIMLIB_GLOBAL_CLOCK $global_clk
`endif
module \$anyinit (D, Q);
parameter WIDTH = 0;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
initial Q <= 'bx;
always @(`SIMLIB_GLOBAL_CLOCK) begin
Q <= D;
end
endmodule
`endif
// --------------------------------------------------------
module \$allconst (Y);
parameter WIDTH = 0;
output [WIDTH-1:0] Y;
assign Y = 'bx;
endmodule
// --------------------------------------------------------
module \$allseq (Y);
parameter WIDTH = 0;
output [WIDTH-1:0] Y;
assign Y = 'bx;
endmodule
// --------------------------------------------------------
module \$equiv (A, B, Y);
input A, B;
output Y;
assign Y = (A !== 1'bx && A !== B) ? 1'bx : A;
`ifndef SIMLIB_NOCHECKS
always @* begin
if (A !== 1'bx && A !== B) begin
$display("Equivalence failed!");
$stop;
end
end
`endif
endmodule
// --------------------------------------------------------
module \$print (EN, TRG, ARGS);
parameter PRIORITY = 0;
parameter FORMAT = "";
parameter ARGS_WIDTH = 0;
parameter TRG_ENABLE = 1;
parameter TRG_WIDTH = 0;
parameter TRG_POLARITY = 0;
input EN;
input [TRG_WIDTH-1:0] TRG;
input [ARGS_WIDTH-1:0] ARGS;
endmodule
// --------------------------------------------------------
module \$check (A, EN, TRG, ARGS);
parameter FLAVOR = "";
parameter PRIORITY = 0;
parameter FORMAT = "";
parameter ARGS_WIDTH = 0;
parameter TRG_ENABLE = 1;
parameter TRG_WIDTH = 0;
parameter TRG_POLARITY = 0;
input A;
input EN;
input [TRG_WIDTH-1:0] TRG;
input [ARGS_WIDTH-1:0] ARGS;
endmodule
// --------------------------------------------------------
`ifndef SIMLIB_NOSR
module \$sr (SET, CLR, Q);
parameter WIDTH = 0;
parameter SET_POLARITY = 1'b1;
parameter CLR_POLARITY = 1'b1;
input [WIDTH-1:0] SET, CLR;
output reg [WIDTH-1:0] Q;
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;
genvar i;
generate
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
always @*
if (pos_clr[i])
Q[i] <= 0;
else if (pos_set[i])
Q[i] <= 1;
end
endgenerate
endmodule
`endif
// --------------------------------------------------------
`ifdef SIMLIB_FF
`ifndef SIMLIB_GLOBAL_CLOCK
`define SIMLIB_GLOBAL_CLOCK $global_clk
`endif
module \$ff (D, Q);
parameter WIDTH = 0;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
always @(`SIMLIB_GLOBAL_CLOCK) begin
Q <= D;
end
endmodule
`endif
// --------------------------------------------------------
module \$dff (CLK, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
input CLK;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
always @(posedge pos_clk) begin
Q <= D;
end
endmodule
// --------------------------------------------------------
module \$dffe (CLK, EN, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter EN_POLARITY = 1'b1;
input CLK, EN;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
always @(posedge pos_clk) begin
if (EN == EN_POLARITY) Q <= D;
end
endmodule
// --------------------------------------------------------
`ifndef SIMLIB_NOSR
module \$dffsr (CLK, SET, CLR, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter SET_POLARITY = 1'b1;
parameter CLR_POLARITY = 1'b1;
input CLK;
input [WIDTH-1:0] SET, CLR, D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;
genvar i;
generate
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
always @(posedge pos_set[i], posedge pos_clr[i], posedge pos_clk)
if (pos_clr[i])
Q[i] <= 0;
else if (pos_set[i])
Q[i] <= 1;
else
Q[i] <= D[i];
end
endgenerate
endmodule
// --------------------------------------------------------
module \$dffsre (CLK, SET, CLR, EN, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter SET_POLARITY = 1'b1;
parameter CLR_POLARITY = 1'b1;
parameter EN_POLARITY = 1'b1;
input CLK, EN;
input [WIDTH-1:0] SET, CLR, D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;
genvar i;
generate
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
always @(posedge pos_set[i], posedge pos_clr[i], posedge pos_clk)
if (pos_clr[i])
Q[i] <= 0;
else if (pos_set[i])
Q[i] <= 1;
else if (EN == EN_POLARITY)
Q[i] <= D[i];
end
endgenerate
endmodule
`endif
// --------------------------------------------------------
module \$adff (CLK, ARST, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter ARST_POLARITY = 1'b1;
parameter ARST_VALUE = 0;
input CLK, ARST;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_arst = ARST == ARST_POLARITY;
always @(posedge pos_clk, posedge pos_arst) begin
if (pos_arst)
Q <= ARST_VALUE;
else
Q <= D;
end
endmodule
// --------------------------------------------------------
module \$aldff (CLK, ALOAD, AD, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter ALOAD_POLARITY = 1'b1;
input CLK, ALOAD;
input [WIDTH-1:0] AD;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_aload = ALOAD == ALOAD_POLARITY;
always @(posedge pos_clk, posedge pos_aload) begin
if (pos_aload)
Q <= AD;
else
Q <= D;
end
endmodule
// --------------------------------------------------------
module \$sdff (CLK, SRST, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter SRST_POLARITY = 1'b1;
parameter SRST_VALUE = 0;
input CLK, SRST;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_srst = SRST == SRST_POLARITY;
always @(posedge pos_clk) begin
if (pos_srst)
Q <= SRST_VALUE;
else
Q <= D;
end
endmodule
// --------------------------------------------------------
module \$adffe (CLK, ARST, EN, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter EN_POLARITY = 1'b1;
parameter ARST_POLARITY = 1'b1;
parameter ARST_VALUE = 0;
input CLK, ARST, EN;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_arst = ARST == ARST_POLARITY;
always @(posedge pos_clk, posedge pos_arst) begin
if (pos_arst)
Q <= ARST_VALUE;
else if (EN == EN_POLARITY)
Q <= D;
end
endmodule
// --------------------------------------------------------
module \$aldffe (CLK, ALOAD, AD, EN, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter EN_POLARITY = 1'b1;
parameter ALOAD_POLARITY = 1'b1;
input CLK, ALOAD, EN;
input [WIDTH-1:0] D;
input [WIDTH-1:0] AD;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_aload = ALOAD == ALOAD_POLARITY;
always @(posedge pos_clk, posedge pos_aload) begin
if (pos_aload)
Q <= AD;
else if (EN == EN_POLARITY)
Q <= D;
end
endmodule
// --------------------------------------------------------
module \$sdffe (CLK, SRST, EN, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter EN_POLARITY = 1'b1;
parameter SRST_POLARITY = 1'b1;
parameter SRST_VALUE = 0;
input CLK, SRST, EN;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_srst = SRST == SRST_POLARITY;
always @(posedge pos_clk) begin
if (pos_srst)
Q <= SRST_VALUE;
else if (EN == EN_POLARITY)
Q <= D;
end
endmodule
// --------------------------------------------------------
module \$sdffce (CLK, SRST, EN, D, Q);
parameter WIDTH = 0;
parameter CLK_POLARITY = 1'b1;
parameter EN_POLARITY = 1'b1;
parameter SRST_POLARITY = 1'b1;
parameter SRST_VALUE = 0;
input CLK, SRST, EN;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_srst = SRST == SRST_POLARITY;
always @(posedge pos_clk) begin
if (EN == EN_POLARITY) begin
if (pos_srst)
Q <= SRST_VALUE;
else
Q <= D;
end
end
endmodule
// --------------------------------------------------------
module \$dlatch (EN, D, Q);
parameter WIDTH = 0;
parameter EN_POLARITY = 1'b1;
input EN;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
always @* begin
if (EN == EN_POLARITY)
Q = D;
end
endmodule
// --------------------------------------------------------
module \$adlatch (EN, ARST, D, Q);
parameter WIDTH = 0;
parameter EN_POLARITY = 1'b1;
parameter ARST_POLARITY = 1'b1;
parameter ARST_VALUE = 0;
input EN, ARST;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
always @* begin
if (ARST == ARST_POLARITY)
Q = ARST_VALUE;
else if (EN == EN_POLARITY)
Q = D;
end
endmodule
// --------------------------------------------------------
`ifndef SIMLIB_NOSR
module \$dlatchsr (EN, SET, CLR, D, Q);
parameter WIDTH = 0;
parameter EN_POLARITY = 1'b1;
parameter SET_POLARITY = 1'b1;
parameter CLR_POLARITY = 1'b1;
input EN;
input [WIDTH-1:0] SET, CLR, D;
output reg [WIDTH-1:0] Q;
wire pos_en = EN == EN_POLARITY;
wire [WIDTH-1:0] pos_set = SET_POLARITY ? SET : ~SET;
wire [WIDTH-1:0] pos_clr = CLR_POLARITY ? CLR : ~CLR;
genvar i;
generate
for (i = 0; i < WIDTH; i = i+1) begin:bitslices
always @*
if (pos_clr[i])
Q[i] = 0;
else if (pos_set[i])
Q[i] = 1;
else if (pos_en)
Q[i] = D[i];
end
endgenerate
endmodule
`endif
// --------------------------------------------------------
module \$fsm (CLK, ARST, CTRL_IN, CTRL_OUT);
parameter NAME = "";
parameter CLK_POLARITY = 1'b1;
parameter ARST_POLARITY = 1'b1;
parameter CTRL_IN_WIDTH = 1;
parameter CTRL_OUT_WIDTH = 1;
parameter STATE_BITS = 1;
parameter STATE_NUM = 1;
parameter STATE_NUM_LOG2 = 1;
parameter STATE_RST = 0;
parameter STATE_TABLE = 1'b0;
parameter TRANS_NUM = 1;
parameter TRANS_TABLE = 4'b0x0x;
input CLK, ARST;
input [CTRL_IN_WIDTH-1:0] CTRL_IN;
output reg [CTRL_OUT_WIDTH-1:0] CTRL_OUT;
wire pos_clk = CLK == CLK_POLARITY;
wire pos_arst = ARST == ARST_POLARITY;
reg [STATE_BITS-1:0] state;
reg [STATE_BITS-1:0] state_tmp;
reg [STATE_BITS-1:0] next_state;
reg [STATE_BITS-1:0] tr_state_in;
reg [STATE_BITS-1:0] tr_state_out;
reg [CTRL_IN_WIDTH-1:0] tr_ctrl_in;
reg [CTRL_OUT_WIDTH-1:0] tr_ctrl_out;
integer i;
task tr_fetch;
input [31:0] tr_num;
reg [31:0] tr_pos;
reg [STATE_NUM_LOG2-1:0] state_num;
begin
tr_pos = (2*STATE_NUM_LOG2+CTRL_IN_WIDTH+CTRL_OUT_WIDTH)*tr_num;
tr_ctrl_out = TRANS_TABLE >> tr_pos;
tr_pos = tr_pos + CTRL_OUT_WIDTH;
state_num = TRANS_TABLE >> tr_pos;
tr_state_out = STATE_TABLE >> (STATE_BITS*state_num);
tr_pos = tr_pos + STATE_NUM_LOG2;
tr_ctrl_in = TRANS_TABLE >> tr_pos;
tr_pos = tr_pos + CTRL_IN_WIDTH;
state_num = TRANS_TABLE >> tr_pos;
tr_state_in = STATE_TABLE >> (STATE_BITS*state_num);
tr_pos = tr_pos + STATE_NUM_LOG2;
end
endtask
always @(posedge pos_clk, posedge pos_arst) begin
if (pos_arst) begin
state_tmp = STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
for (i = 0; i < STATE_BITS; i = i+1)
if (state_tmp[i] === 1'bz)
state_tmp[i] = 0;
state <= state_tmp;
end else begin
state_tmp = next_state;
for (i = 0; i < STATE_BITS; i = i+1)
if (state_tmp[i] === 1'bz)
state_tmp[i] = 0;
state <= state_tmp;
end
end
always @(state, CTRL_IN) begin
next_state <= STATE_TABLE[STATE_BITS*(STATE_RST+1)-1:STATE_BITS*STATE_RST];
CTRL_OUT <= 'bx;
// $display("---");
// $display("Q: %b %b", state, CTRL_IN);
for (i = 0; i < TRANS_NUM; i = i+1) begin
tr_fetch(i);
// $display("T: %b %b -> %b %b [%d]", tr_state_in, tr_ctrl_in, tr_state_out, tr_ctrl_out, i);
casez ({state, CTRL_IN})
{tr_state_in, tr_ctrl_in}: begin
// $display("-> %b %b <- MATCH", state, CTRL_IN);
{next_state, CTRL_OUT} <= {tr_state_out, tr_ctrl_out};
end
endcase
end
end
endmodule
// --------------------------------------------------------
`ifndef SIMLIB_NOMEM
module \$memrd (CLK, EN, ADDR, DATA);
parameter MEMID = "";
parameter ABITS = 8;
parameter WIDTH = 8;
parameter CLK_ENABLE = 0;
parameter CLK_POLARITY = 0;
parameter TRANSPARENT = 0;
input CLK, EN;
input [ABITS-1:0] ADDR;
output [WIDTH-1:0] DATA;
initial begin
if (MEMID != "") begin
$display("ERROR: Found non-simulatable instance of $memrd!");
$finish;
end
end
endmodule
module \$memrd_v2 (CLK, EN, ARST, SRST, ADDR, DATA);
parameter MEMID = "";
parameter ABITS = 8;
parameter WIDTH = 8;
parameter CLK_ENABLE = 0;
parameter CLK_POLARITY = 0;
parameter TRANSPARENCY_MASK = 0;
parameter COLLISION_X_MASK = 0;
parameter ARST_VALUE = 0;
parameter SRST_VALUE = 0;
parameter INIT_VALUE = 0;
parameter CE_OVER_SRST = 0;
input CLK, EN, ARST, SRST;
input [ABITS-1:0] ADDR;
output [WIDTH-1:0] DATA;
initial begin
if (MEMID != "") begin
$display("ERROR: Found non-simulatable instance of $memrd_v2!");
$finish;
end
end
endmodule
// --------------------------------------------------------
module \$memwr (CLK, EN, ADDR, DATA);
parameter MEMID = "";
parameter ABITS = 8;
parameter WIDTH = 8;
parameter CLK_ENABLE = 0;
parameter CLK_POLARITY = 0;
parameter PRIORITY = 0;
input CLK;
input [WIDTH-1:0] EN;
input [ABITS-1:0] ADDR;
input [WIDTH-1:0] DATA;
initial begin
if (MEMID != "") begin
$display("ERROR: Found non-simulatable instance of $memwr!");
$finish;
end
end
endmodule
module \$memwr_v2 (CLK, EN, ADDR, DATA);
parameter MEMID = "";
parameter ABITS = 8;
parameter WIDTH = 8;
parameter CLK_ENABLE = 0;
parameter CLK_POLARITY = 0;
parameter PORTID = 0;
parameter PRIORITY_MASK = 0;
input CLK;
input [WIDTH-1:0] EN;
input [ABITS-1:0] ADDR;
input [WIDTH-1:0] DATA;
initial begin
if (MEMID != "") begin
$display("ERROR: Found non-simulatable instance of $memwr_v2!");
$finish;
end
end
endmodule
// --------------------------------------------------------
module \$meminit (ADDR, DATA);
parameter MEMID = "";
parameter ABITS = 8;
parameter WIDTH = 8;
parameter WORDS = 1;
parameter PRIORITY = 0;
input [ABITS-1:0] ADDR;
input [WORDS*WIDTH-1:0] DATA;
initial begin
if (MEMID != "") begin
$display("ERROR: Found non-simulatable instance of $meminit!");
$finish;
end
end
endmodule
// --------------------------------------------------------
module \$meminit_v2 (ADDR, DATA, EN);
parameter MEMID = "";
parameter ABITS = 8;
parameter WIDTH = 8;
parameter WORDS = 1;
parameter PRIORITY = 0;
input [ABITS-1:0] ADDR;
input [WORDS*WIDTH-1:0] DATA;
input [WIDTH-1:0] EN;
initial begin
if (MEMID != "") begin
$display("ERROR: Found non-simulatable instance of $meminit_v2!");
$finish;
end
end
endmodule
// --------------------------------------------------------
module \$mem (RD_CLK, RD_EN, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA);
parameter MEMID = "";
parameter signed SIZE = 4;
parameter signed OFFSET = 0;
parameter signed ABITS = 2;
parameter signed WIDTH = 8;
parameter signed INIT = 1'bx;
parameter signed RD_PORTS = 1;
parameter RD_CLK_ENABLE = 1'b1;
parameter RD_CLK_POLARITY = 1'b1;
parameter RD_TRANSPARENT = 1'b1;
parameter signed WR_PORTS = 1;
parameter WR_CLK_ENABLE = 1'b1;
parameter WR_CLK_POLARITY = 1'b1;
input [RD_PORTS-1:0] RD_CLK;
input [RD_PORTS-1:0] RD_EN;
input [RD_PORTS*ABITS-1:0] RD_ADDR;
output reg [RD_PORTS*WIDTH-1:0] RD_DATA;
input [WR_PORTS-1:0] WR_CLK;
input [WR_PORTS*WIDTH-1:0] WR_EN;
input [WR_PORTS*ABITS-1:0] WR_ADDR;
input [WR_PORTS*WIDTH-1:0] WR_DATA;
reg [WIDTH-1:0] memory [SIZE-1:0];
integer i, j;
reg [WR_PORTS-1:0] LAST_WR_CLK;
reg [RD_PORTS-1:0] LAST_RD_CLK;
function port_active;
input clk_enable;
input clk_polarity;
input last_clk;
input this_clk;
begin
casez ({clk_enable, clk_polarity, last_clk, this_clk})
4'b0???: port_active = 1;
4'b1101: port_active = 1;
4'b1010: port_active = 1;
default: port_active = 0;
endcase
end
endfunction
initial begin
for (i = 0; i < SIZE; i = i+1)
memory[i] = INIT >>> (i*WIDTH);
end
always @(RD_CLK, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA) begin
`ifdef SIMLIB_MEMDELAY
#`SIMLIB_MEMDELAY;
`endif
for (i = 0; i < RD_PORTS; i = i+1) begin
if (!RD_TRANSPARENT[i] && RD_CLK_ENABLE[i] && RD_EN[i] && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i])) begin
// $display("Read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
end
end
for (i = 0; i < WR_PORTS; i = i+1) begin
if (port_active(WR_CLK_ENABLE[i], WR_CLK_POLARITY[i], LAST_WR_CLK[i], WR_CLK[i]))
for (j = 0; j < WIDTH; j = j+1)
if (WR_EN[i*WIDTH+j]) begin
// $display("Write to %s: addr=%b data=%b", MEMID, WR_ADDR[i*ABITS +: ABITS], WR_DATA[i*WIDTH+j]);
memory[WR_ADDR[i*ABITS +: ABITS] - OFFSET][j] = WR_DATA[i*WIDTH+j];
end
end
for (i = 0; i < RD_PORTS; i = i+1) begin
if ((RD_TRANSPARENT[i] || !RD_CLK_ENABLE[i]) && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i])) begin
// $display("Transparent read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
end
end
LAST_RD_CLK <= RD_CLK;
LAST_WR_CLK <= WR_CLK;
end
endmodule
module \$mem_v2 (RD_CLK, RD_EN, RD_ARST, RD_SRST, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA);
parameter MEMID = "";
parameter signed SIZE = 4;
parameter signed OFFSET = 0;
parameter signed ABITS = 2;
parameter signed WIDTH = 8;
parameter signed INIT = 1'bx;
parameter signed RD_PORTS = 1;
parameter RD_CLK_ENABLE = 1'b1;
parameter RD_CLK_POLARITY = 1'b1;
parameter RD_TRANSPARENCY_MASK = 1'b0;
parameter RD_COLLISION_X_MASK = 1'b0;
parameter RD_WIDE_CONTINUATION = 1'b0;
parameter RD_CE_OVER_SRST = 1'b0;
parameter RD_ARST_VALUE = 1'b0;
parameter RD_SRST_VALUE = 1'b0;
parameter RD_INIT_VALUE = 1'b0;
parameter signed WR_PORTS = 1;
parameter WR_CLK_ENABLE = 1'b1;
parameter WR_CLK_POLARITY = 1'b1;
parameter WR_PRIORITY_MASK = 1'b0;
parameter WR_WIDE_CONTINUATION = 1'b0;
input [RD_PORTS-1:0] RD_CLK;
input [RD_PORTS-1:0] RD_EN;
input [RD_PORTS-1:0] RD_ARST;
input [RD_PORTS-1:0] RD_SRST;
input [RD_PORTS*ABITS-1:0] RD_ADDR;
output reg [RD_PORTS*WIDTH-1:0] RD_DATA;
input [WR_PORTS-1:0] WR_CLK;
input [WR_PORTS*WIDTH-1:0] WR_EN;
input [WR_PORTS*ABITS-1:0] WR_ADDR;
input [WR_PORTS*WIDTH-1:0] WR_DATA;
reg [WIDTH-1:0] memory [SIZE-1:0];
integer i, j, k;
reg [WR_PORTS-1:0] LAST_WR_CLK;
reg [RD_PORTS-1:0] LAST_RD_CLK;
function port_active;
input clk_enable;
input clk_polarity;
input last_clk;
input this_clk;
begin
casez ({clk_enable, clk_polarity, last_clk, this_clk})
4'b0???: port_active = 1;
4'b1101: port_active = 1;
4'b1010: port_active = 1;
default: port_active = 0;
endcase
end
endfunction
initial begin
for (i = 0; i < SIZE; i = i+1)
memory[i] = INIT >>> (i*WIDTH);
RD_DATA = RD_INIT_VALUE;
end
always @(RD_CLK, RD_ARST, RD_ADDR, RD_DATA, WR_CLK, WR_EN, WR_ADDR, WR_DATA) begin
`ifdef SIMLIB_MEMDELAY
#`SIMLIB_MEMDELAY;
`endif
for (i = 0; i < RD_PORTS; i = i+1) begin
if (RD_CLK_ENABLE[i] && RD_EN[i] && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i])) begin
// $display("Read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
for (j = 0; j < WR_PORTS; j = j+1) begin
if (RD_TRANSPARENCY_MASK[i*WR_PORTS + j] && port_active(WR_CLK_ENABLE[j], WR_CLK_POLARITY[j], LAST_WR_CLK[j], WR_CLK[j]) && RD_ADDR[i*ABITS +: ABITS] == WR_ADDR[j*ABITS +: ABITS])
for (k = 0; k < WIDTH; k = k+1)
if (WR_EN[j*WIDTH+k])
RD_DATA[i*WIDTH+k] <= WR_DATA[j*WIDTH+k];
if (RD_COLLISION_X_MASK[i*WR_PORTS + j] && port_active(WR_CLK_ENABLE[j], WR_CLK_POLARITY[j], LAST_WR_CLK[j], WR_CLK[j]) && RD_ADDR[i*ABITS +: ABITS] == WR_ADDR[j*ABITS +: ABITS])
for (k = 0; k < WIDTH; k = k+1)
if (WR_EN[j*WIDTH+k])
RD_DATA[i*WIDTH+k] <= 1'bx;
end
end
end
for (i = 0; i < WR_PORTS; i = i+1) begin
if (port_active(WR_CLK_ENABLE[i], WR_CLK_POLARITY[i], LAST_WR_CLK[i], WR_CLK[i]))
for (j = 0; j < WIDTH; j = j+1)
if (WR_EN[i*WIDTH+j]) begin
// $display("Write to %s: addr=%b data=%b", MEMID, WR_ADDR[i*ABITS +: ABITS], WR_DATA[i*WIDTH+j]);
memory[WR_ADDR[i*ABITS +: ABITS] - OFFSET][j] = WR_DATA[i*WIDTH+j];
end
end
for (i = 0; i < RD_PORTS; i = i+1) begin
if (!RD_CLK_ENABLE[i]) begin
// $display("Combinatorial read from %s: addr=%b data=%b", MEMID, RD_ADDR[i*ABITS +: ABITS], memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET]);
RD_DATA[i*WIDTH +: WIDTH] <= memory[RD_ADDR[i*ABITS +: ABITS] - OFFSET];
end
end
for (i = 0; i < RD_PORTS; i = i+1) begin
if (RD_SRST[i] && port_active(RD_CLK_ENABLE[i], RD_CLK_POLARITY[i], LAST_RD_CLK[i], RD_CLK[i]) && (RD_EN[i] || !RD_CE_OVER_SRST[i]))
RD_DATA[i*WIDTH +: WIDTH] <= RD_SRST_VALUE[i*WIDTH +: WIDTH];
if (RD_ARST[i])
RD_DATA[i*WIDTH +: WIDTH] <= RD_ARST_VALUE[i*WIDTH +: WIDTH];
end
LAST_RD_CLK <= RD_CLK;
LAST_WR_CLK <= WR_CLK;
end
endmodule
`endif
// --------------------------------------------------------
module \$set_tag (A, SET, CLR, Y);
parameter TAG = "";
parameter WIDTH = 0;
input [WIDTH-1:0] A;
input [WIDTH-1:0] SET;
input [WIDTH-1:0] CLR;
output [WIDTH-1:0] Y;
assign Y = A;
endmodule
// --------------------------------------------------------
module \$get_tag (A, Y);
parameter TAG = "";
parameter WIDTH = 0;
input [WIDTH-1:0] A;
output [WIDTH-1:0] Y;
assign Y = A;
endmodule
// --------------------------------------------------------
module \$overwrite_tag (A, SET, CLR);
parameter TAG = "";
parameter WIDTH = 0;
input [WIDTH-1:0] A;
input [WIDTH-1:0] SET;
input [WIDTH-1:0] CLR;
endmodule
// --------------------------------------------------------
module \$original_tag (A, Y);
parameter TAG = "";
parameter WIDTH = 0;
input [WIDTH-1:0] A;
output [WIDTH-1:0] Y;
assign Y = A;
endmodule
// --------------------------------------------------------
module \$future_ff (A, Y);
parameter WIDTH = 0;
input [WIDTH-1:0] A;
output [WIDTH-1:0] Y;
assign Y = A;
endmodule
// --------------------------------------------------------
(* noblackbox *)
module \$scopeinfo ();
parameter TYPE = "";
endmodule