yosys/passes/memory/memory_dff.cc

390 lines
11 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <algorithm>
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/ffinit.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct MemoryDffWorker
{
Module *module;
SigMap sigmap;
vector<Cell*> dff_cells;
dict<SigBit, SigBit> invbits;
dict<SigBit, int> sigbit_users_count;
pool<Cell*> forward_merged_dffs, candidate_dffs;
FfInitVals initvals;
MemoryDffWorker(Module *module) : module(module), sigmap(module)
{
initvals.set(&sigmap, module);
}
bool find_sig_before_dff(RTLIL::SigSpec &sig, RTLIL::SigSpec &clk, bool &clk_polarity)
{
sigmap.apply(sig);
dict<SigBit, SigBit> cache;
for (auto &bit : sig)
{
if (cache.count(bit)) {
bit = cache[bit];
continue;
}
if (bit.wire == NULL)
continue;
if (initvals(bit) != State::Sx)
return false;
for (auto cell : dff_cells)
{
SigSpec this_clk = cell->getPort(ID::CLK);
bool this_clk_polarity = cell->parameters[ID::CLK_POLARITY].as_bool();
if (invbits.count(this_clk)) {
this_clk = invbits.at(this_clk);
this_clk_polarity = !this_clk_polarity;
}
if (clk != RTLIL::SigSpec(RTLIL::State::Sx)) {
if (this_clk != clk)
continue;
if (this_clk_polarity != clk_polarity)
continue;
}
RTLIL::SigSpec q_norm = cell->getPort(ID::Q);
sigmap.apply(q_norm);
RTLIL::SigSpec d = q_norm.extract(bit, &cell->getPort(ID::D));
if (d.size() != 1)
continue;
if (cell->type == ID($sdffce)) {
SigSpec rval = cell->parameters[ID::SRST_VALUE];
SigSpec rbit = q_norm.extract(bit, &rval);
if (cell->parameters[ID::SRST_POLARITY].as_bool())
d = module->Mux(NEW_ID, d, rbit, cell->getPort(ID::SRST));
else
d = module->Mux(NEW_ID, rbit, d, cell->getPort(ID::SRST));
}
if (cell->type.in(ID($dffe), ID($sdffe), ID($sdffce))) {
if (cell->parameters[ID::EN_POLARITY].as_bool())
d = module->Mux(NEW_ID, bit, d, cell->getPort(ID::EN));
else
d = module->Mux(NEW_ID, d, bit, cell->getPort(ID::EN));
}
if (cell->type.in(ID($sdff), ID($sdffe))) {
SigSpec rval = cell->parameters[ID::SRST_VALUE];
SigSpec rbit = q_norm.extract(bit, &rval);
if (cell->parameters[ID::SRST_POLARITY].as_bool())
d = module->Mux(NEW_ID, d, rbit, cell->getPort(ID::SRST));
else
d = module->Mux(NEW_ID, rbit, d, cell->getPort(ID::SRST));
}
cache[bit] = d;
bit = d;
clk = this_clk;
clk_polarity = this_clk_polarity;
candidate_dffs.insert(cell);
goto replaced_this_bit;
}
return false;
replaced_this_bit:;
}
return true;
}
bool find_sig_after_dffe(RTLIL::SigSpec &sig, RTLIL::SigSpec &clk, bool &clk_polarity, RTLIL::SigSpec &en, bool &en_polarity)
{
sigmap.apply(sig);
for (auto &bit : sig)
{
if (bit.wire == NULL)
continue;
for (auto cell : dff_cells)
{
if (forward_merged_dffs.count(cell))
continue;
if (!cell->type.in(ID($dff), ID($dffe)))
continue;
SigSpec this_clk = cell->getPort(ID::CLK);
bool this_clk_polarity = cell->parameters[ID::CLK_POLARITY].as_bool();
SigSpec this_en = State::S1;
bool this_en_polarity = true;
if (cell->type == ID($dffe)) {
this_en = cell->getPort(ID::EN);
this_en_polarity = cell->parameters[ID::EN_POLARITY].as_bool();
}
if (invbits.count(this_clk)) {
this_clk = invbits.at(this_clk);
this_clk_polarity = !this_clk_polarity;
}
if (invbits.count(this_en)) {
this_en = invbits.at(this_en);
this_en_polarity = !this_en_polarity;
}
if (clk != RTLIL::SigSpec(RTLIL::State::Sx)) {
if (this_clk != clk)
continue;
if (this_clk_polarity != clk_polarity)
continue;
if (this_en != en)
continue;
if (this_en_polarity != en_polarity)
continue;
}
RTLIL::SigSpec q_norm = cell->getPort(ID::D);
sigmap.apply(q_norm);
RTLIL::SigSpec d = q_norm.extract(bit, &cell->getPort(ID::Q));
if (d.size() != 1)
continue;
if (initvals(d) != State::Sx)
return false;
bit = d;
clk = this_clk;
clk_polarity = this_clk_polarity;
en = this_en;
en_polarity = this_en_polarity;
candidate_dffs.insert(cell);
goto replaced_this_bit;
}
return false;
replaced_this_bit:;
}
return true;
}
void handle_wr_cell(RTLIL::Cell *cell)
{
log("Checking cell `%s' in module `%s': ", cell->name.c_str(), module->name.c_str());
RTLIL::SigSpec clk = RTLIL::SigSpec(RTLIL::State::Sx);
bool clk_polarity = 0;
candidate_dffs.clear();
RTLIL::SigSpec sig_addr = cell->getPort(ID::ADDR);
if (!find_sig_before_dff(sig_addr, clk, clk_polarity)) {
log("no (compatible) $dff for address input found.\n");
return;
}
RTLIL::SigSpec sig_data = cell->getPort(ID::DATA);
if (!find_sig_before_dff(sig_data, clk, clk_polarity)) {
log("no (compatible) $dff for data input found.\n");
return;
}
RTLIL::SigSpec sig_en = cell->getPort(ID::EN);
if (!find_sig_before_dff(sig_en, clk, clk_polarity)) {
log("no (compatible) $dff for enable input found.\n");
return;
}
if (clk != RTLIL::SigSpec(RTLIL::State::Sx))
{
for (auto cell : candidate_dffs)
forward_merged_dffs.insert(cell);
cell->setPort(ID::CLK, clk);
cell->setPort(ID::ADDR, sig_addr);
cell->setPort(ID::DATA, sig_data);
cell->setPort(ID::EN, sig_en);
cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1);
cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity);
log("merged $dff to cell.\n");
return;
}
log("no (compatible) $dff found.\n");
}
void disconnect_dff(RTLIL::SigSpec sig)
{
sigmap.apply(sig);
sig.sort_and_unify();
std::stringstream sstr;
sstr << "$memory_dff_disconnected$" << (autoidx++);
RTLIL::SigSpec new_sig = module->addWire(sstr.str(), sig.size());
for (auto cell : module->cells())
if (cell->type.in(ID($dff), ID($dffe))) {
RTLIL::SigSpec new_q = cell->getPort(ID::Q);
new_q.replace(sig, new_sig);
cell->setPort(ID::Q, new_q);
}
}
void handle_rd_cell(RTLIL::Cell *cell)
{
log("Checking cell `%s' in module `%s': ", cell->name.c_str(), module->name.c_str());
bool clk_polarity = 0;
bool en_polarity = 0;
RTLIL::SigSpec clk_data = RTLIL::SigSpec(RTLIL::State::Sx);
RTLIL::SigSpec en_data;
RTLIL::SigSpec sig_data = cell->getPort(ID::DATA);
for (auto bit : sigmap(sig_data))
if (sigbit_users_count[bit] > 1)
goto skip_ff_after_read_merging;
if (find_sig_after_dffe(sig_data, clk_data, clk_polarity, en_data, en_polarity) && clk_data != RTLIL::SigSpec(RTLIL::State::Sx))
{
if (!en_polarity)
en_data = module->LogicNot(NEW_ID, en_data);
disconnect_dff(sig_data);
cell->setPort(ID::CLK, clk_data);
cell->setPort(ID::EN, en_data);
cell->setPort(ID::DATA, sig_data);
cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1);
cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity);
cell->parameters[ID::TRANSPARENT] = RTLIL::Const(0);
log("merged data $dff to cell.\n");
return;
}
skip_ff_after_read_merging:;
RTLIL::SigSpec clk_addr = RTLIL::SigSpec(RTLIL::State::Sx);
RTLIL::SigSpec sig_addr = cell->getPort(ID::ADDR);
if (find_sig_before_dff(sig_addr, clk_addr, clk_polarity) &&
clk_addr != RTLIL::SigSpec(RTLIL::State::Sx))
{
cell->setPort(ID::CLK, clk_addr);
cell->setPort(ID::EN, State::S1);
cell->setPort(ID::ADDR, sig_addr);
cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1);
cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity);
cell->parameters[ID::TRANSPARENT] = RTLIL::Const(1);
log("merged address $dff to cell.\n");
return;
}
log("no (compatible) $dff found.\n");
}
void run(bool flag_wr_only)
{
for (auto wire : module->wires()) {
if (wire->port_output)
for (auto bit : sigmap(wire))
sigbit_users_count[bit]++;
}
for (auto cell : module->cells()) {
if (cell->type.in(ID($dff), ID($dffe), ID($sdff), ID($sdffe), ID($sdffce)))
dff_cells.push_back(cell);
if (cell->type.in(ID($not), ID($_NOT_)) || (cell->type == ID($logic_not) && GetSize(cell->getPort(ID::A)) == 1)) {
SigSpec sig_a = cell->getPort(ID::A);
SigSpec sig_y = cell->getPort(ID::Y);
if (cell->type == ID($not))
sig_a.extend_u0(GetSize(sig_y), cell->getParam(ID::A_SIGNED).as_bool());
if (cell->type == ID($logic_not))
sig_y.extend_u0(1);
for (int i = 0; i < GetSize(sig_y); i++)
invbits[sig_y[i]] = sig_a[i];
}
for (auto &conn : cell->connections())
if (!cell->known() || cell->input(conn.first))
for (auto bit : sigmap(conn.second))
sigbit_users_count[bit]++;
}
for (auto cell : module->selected_cells())
if (cell->type == ID($memwr) && !cell->parameters[ID::CLK_ENABLE].as_bool())
handle_wr_cell(cell);
if (!flag_wr_only)
for (auto cell : module->selected_cells())
if (cell->type == ID($memrd) && !cell->parameters[ID::CLK_ENABLE].as_bool())
handle_rd_cell(cell);
}
};
struct MemoryDffPass : public Pass {
MemoryDffPass() : Pass("memory_dff", "merge input/output DFFs into memories") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" memory_dff [options] [selection]\n");
log("\n");
log("This pass detects DFFs at memory ports and merges them into the memory port.\n");
log("I.e. it consumes an asynchronous memory port and the flip-flops at its\n");
log("interface and yields a synchronous memory port.\n");
log("\n");
log(" -nordfff\n");
log(" do not merge registers on read ports\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool flag_wr_only = false;
log_header(design, "Executing MEMORY_DFF pass (merging $dff cells to $memrd and $memwr).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-nordff" || args[argidx] == "-wr_only") {
flag_wr_only = true;
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto mod : design->selected_modules()) {
MemoryDffWorker worker(mod);
worker.run(flag_wr_only);
}
}
} MemoryDffPass;
PRIVATE_NAMESPACE_END