mirror of https://github.com/YosysHQ/yosys.git
235 lines
7.1 KiB
Plaintext
235 lines
7.1 KiB
Plaintext
// This file describes the second of three pattern matcher setups that
|
|
// forms the `xilinx_dsp` pass described in xilinx_dsp.cc
|
|
// At a high level, it works as follows:
|
|
// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already,
|
|
// and (b) uses the 'C' port
|
|
// (2) Match the driver of the 'C' input to a possible $dff cell (CREG)
|
|
// (attached to at most two $mux cells that implement clock-enable or
|
|
// reset functionality, using a subpattern discussed below)
|
|
// Notes:
|
|
// - Running CREG packing after xilinx_dsp_pack is necessary since there is no
|
|
// guarantee that the cell ordering corresponds to the "expected" case (i.e.
|
|
// the order in which they appear in the source) thus the possiblity existed
|
|
// that a register got packed as a CREG into a downstream DSP that should
|
|
// have otherwise been a PREG of an upstream DSP that had not been visited
|
|
// yet
|
|
// - The reason this is separated out from the xilinx_dsp.pmg file is
|
|
// for efficiency --- each *.pmg file creates a class of the same basename,
|
|
// which when constructed, creates a custom database tailored to the
|
|
// pattern(s) contained within. Since the pattern in this file must be
|
|
// executed after the pattern contained in xilinx_dsp.pmg, it is necessary
|
|
// to reconstruct this database. Separating the two patterns into
|
|
// independent files causes two smaller, more specific, databases.
|
|
|
|
pattern xilinx_dsp_packC
|
|
|
|
udata <std::function<SigSpec(const SigSpec&)>> unextend
|
|
state <SigBit> clock
|
|
state <SigSpec> sigC sigP
|
|
state <bool> ffCcepol ffCrstpol
|
|
state <Cell*> ffC ffCcemux ffCrstmux
|
|
|
|
// Variables used for subpatterns
|
|
state <SigSpec> argQ argD
|
|
state <bool> ffcepol ffrstpol
|
|
state <int> ffoffset
|
|
udata <SigSpec> dffD dffQ
|
|
udata <SigBit> dffclock
|
|
udata <Cell*> dff dffcemux dffrstmux
|
|
udata <bool> dffcepol dffrstpol
|
|
|
|
// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already,
|
|
// and (b) uses the 'C' port
|
|
match dsp
|
|
select dsp->type.in(\DSP48E1)
|
|
select param(dsp, \CREG, 1).as_int() == 0
|
|
select nusers(port(dsp, \C, SigSpec())) > 1
|
|
endmatch
|
|
|
|
code sigC sigP clock
|
|
unextend = [](const SigSpec &sig) {
|
|
int i;
|
|
for (i = GetSize(sig)-1; i > 0; i--)
|
|
if (sig[i] != sig[i-1])
|
|
break;
|
|
// Do not remove non-const sign bit
|
|
if (sig[i].wire)
|
|
++i;
|
|
return sig.extract(0, i);
|
|
};
|
|
sigC = unextend(port(dsp, \C, SigSpec()));
|
|
|
|
SigSpec P = port(dsp, \P);
|
|
if (param(dsp, \USE_MULT, Const("MULTIPLY")).decode_string() == "MULTIPLY") {
|
|
// Only care about those bits that are used
|
|
int i;
|
|
for (i = 0; i < GetSize(P); i++) {
|
|
if (nusers(P[i]) <= 1)
|
|
break;
|
|
sigP.append(P[i]);
|
|
}
|
|
log_assert(nusers(P.extract_end(i)) <= 1);
|
|
}
|
|
else
|
|
sigP = P;
|
|
|
|
clock = port(dsp, \CLK, SigBit());
|
|
endcode
|
|
|
|
// (2) Match the driver of the 'C' input to a possible $dff cell (CREG)
|
|
// (attached to at most two $mux cells that implement clock-enable or
|
|
// reset functionality, using the in_dffe subpattern)
|
|
code argQ ffC ffCcemux ffCrstmux ffCcepol ffCrstpol sigC clock
|
|
argQ = sigC;
|
|
subpattern(in_dffe);
|
|
if (dff) {
|
|
ffC = dff;
|
|
clock = dffclock;
|
|
if (dffrstmux) {
|
|
ffCrstmux = dffrstmux;
|
|
ffCrstpol = dffrstpol;
|
|
}
|
|
if (dffcemux) {
|
|
ffCcemux = dffcemux;
|
|
ffCcepol = dffcepol;
|
|
}
|
|
sigC = dffD;
|
|
}
|
|
endcode
|
|
|
|
code
|
|
if (ffC)
|
|
accept;
|
|
endcode
|
|
|
|
// #######################
|
|
|
|
// Subpattern for matching against input registers, based on knowledge of the
|
|
// 'Q' input. Typically, identifying registers with clock-enable and reset
|
|
// capability would be a task would be handled by other Yosys passes such as
|
|
// dff2dffe, but since DSP inference happens much before this, these patterns
|
|
// have to be manually identified.
|
|
// At a high level:
|
|
// (1) Starting from a $dff cell that (partially or fully) drives the given
|
|
// 'Q' argument
|
|
// (2) Match for a $mux cell implementing synchronous reset semantics ---
|
|
// one that exclusively drives the 'D' input of the $dff, with one of its
|
|
// $mux inputs being fully zero
|
|
// (3) Match for a $mux cell implement clock enable semantics --- one that
|
|
// exclusively drives the 'D' input of the $dff (or the other input of
|
|
// the reset $mux) and where one of this $mux's inputs is connected to
|
|
// the 'Q' output of the $dff
|
|
subpattern in_dffe
|
|
arg argD argQ clock
|
|
|
|
code
|
|
dff = nullptr;
|
|
for (const auto &c : argQ.chunks()) {
|
|
// Abandon matches when 'Q' is a constant
|
|
if (!c.wire)
|
|
reject;
|
|
// Abandon matches when 'Q' has the keep attribute set
|
|
if (c.wire->get_bool_attribute(\keep))
|
|
reject;
|
|
// Abandon matches when 'Q' has a non-zero init attribute set
|
|
// (not supported by DSP48E1)
|
|
Const init = c.wire->attributes.at(\init, Const());
|
|
for (auto b : init.extract(c.offset, c.width))
|
|
if (b != State::Sx && b != State::S0)
|
|
reject;
|
|
}
|
|
endcode
|
|
|
|
// (1) Starting from a $dff cell that (partially or fully) drives the given
|
|
// 'Q' argument
|
|
match ff
|
|
select ff->type.in($dff)
|
|
// DSP48E1 does not support clock inversion
|
|
select param(ff, \CLK_POLARITY).as_bool()
|
|
|
|
slice offset GetSize(port(ff, \D))
|
|
index <SigBit> port(ff, \Q)[offset] === argQ[0]
|
|
|
|
// Check that the rest of argQ is present
|
|
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
|
|
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
|
|
|
|
filter clock == SigBit() || port(ff, \CLK) == clock
|
|
|
|
set ffoffset offset
|
|
endmatch
|
|
|
|
code argQ argD
|
|
SigSpec Q = port(ff, \Q);
|
|
dff = ff;
|
|
dffclock = port(ff, \CLK);
|
|
dffD = argQ;
|
|
argD = port(ff, \D);
|
|
argQ = Q;
|
|
dffD.replace(argQ, argD);
|
|
// Only search for ffrstmux if dffD only
|
|
// has two (ff, ffrstmux) users
|
|
if (nusers(dffD) > 2)
|
|
argD = SigSpec();
|
|
endcode
|
|
|
|
// (2) Match for a $mux cell implementing synchronous reset semantics ---
|
|
// exclusively drives the 'D' input of the $dff, with one of the $mux
|
|
// inputs being fully zero
|
|
match ffrstmux
|
|
if !argD.empty()
|
|
select ffrstmux->type.in($mux)
|
|
index <SigSpec> port(ffrstmux, \Y) === argD
|
|
|
|
choice <IdString> BA {\B, \A}
|
|
// DSP48E1 only supports reset to zero
|
|
select port(ffrstmux, BA).is_fully_zero()
|
|
|
|
define <bool> pol (BA == \B)
|
|
set ffrstpol pol
|
|
semioptional
|
|
endmatch
|
|
|
|
code argD
|
|
if (ffrstmux) {
|
|
dffrstmux = ffrstmux;
|
|
dffrstpol = ffrstpol;
|
|
argD = port(ffrstmux, ffrstpol ? \A : \B);
|
|
dffD.replace(port(ffrstmux, \Y), argD);
|
|
|
|
// Only search for ffcemux if argQ has at
|
|
// least 3 users (ff, <upstream>, ffrstmux) and
|
|
// dffD only has two (ff, ffrstmux)
|
|
if (!(nusers(argQ) >= 3 && nusers(dffD) == 2))
|
|
argD = SigSpec();
|
|
}
|
|
else
|
|
dffrstmux = nullptr;
|
|
endcode
|
|
|
|
// (3) Match for a $mux cell implement clock enable semantics --- one that
|
|
// exclusively drives the 'D' input of the $dff (or the other input of
|
|
// the reset $mux) and where one of this $mux's inputs is connected to
|
|
// the 'Q' output of the $dff
|
|
match ffcemux
|
|
if !argD.empty()
|
|
select ffcemux->type.in($mux)
|
|
index <SigSpec> port(ffcemux, \Y) === argD
|
|
choice <IdString> AB {\A, \B}
|
|
index <SigSpec> port(ffcemux, AB) === argQ
|
|
define <bool> pol (AB == \A)
|
|
set ffcepol pol
|
|
semioptional
|
|
endmatch
|
|
|
|
code argD
|
|
if (ffcemux) {
|
|
dffcemux = ffcemux;
|
|
dffcepol = ffcepol;
|
|
argD = port(ffcemux, ffcepol ? \B : \A);
|
|
dffD.replace(port(ffcemux, \Y), argD);
|
|
}
|
|
else
|
|
dffcemux = nullptr;
|
|
endcode
|