yosys/kernel/mem.h

339 lines
15 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2020 Marcelina Kościelnicka <mwk@0x04.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef MEM_H
#define MEM_H
#include "kernel/yosys.h"
#include "kernel/ffinit.h"
#include "kernel/utils.h"
YOSYS_NAMESPACE_BEGIN
struct MemRd : RTLIL::AttrObject {
bool removed;
Cell *cell;
int wide_log2;
bool clk_enable, clk_polarity, ce_over_srst;
Const arst_value, srst_value, init_value;
// One bit for every write port, true iff simultanous read on this
// port and write on the other port will bypass the written data
// to this port's output (default behavior is to read old value).
// Can only be set for write ports that have the same clock domain.
std::vector<bool> transparency_mask;
// One bit for every write port, true iff simultanous read on this
// port and write on the other port will return an all-X (don't care)
// value. Mutually exclusive with transparency_mask.
// Can only be set for write ports that have the same clock domain.
// For optimization purposes, this will also be set if we can
// determine that the two ports can never be active simultanously
// (making the above vacuously true).
std::vector<bool> collision_x_mask;
SigSpec clk, en, arst, srst, addr, data;
MemRd() : removed(false), cell(nullptr), wide_log2(0), clk_enable(false), clk_polarity(true), ce_over_srst(false), clk(State::Sx), en(State::S1), arst(State::S0), srst(State::S0) {}
// Returns the address of given subword index accessed by this port.
SigSpec sub_addr(int sub) {
SigSpec res = addr;
for (int i = 0; i < wide_log2; i++)
res[i] = State(sub >> i & 1);
return res;
}
};
struct MemWr : RTLIL::AttrObject {
bool removed;
Cell *cell;
int wide_log2;
bool clk_enable, clk_polarity;
std::vector<bool> priority_mask;
SigSpec clk, en, addr, data;
MemWr() : removed(false), cell(nullptr) {}
// Returns the address of given subword index accessed by this port.
SigSpec sub_addr(int sub) {
SigSpec res = addr;
for (int i = 0; i < wide_log2; i++)
res[i] = State(sub >> i & 1);
return res;
}
std::pair<SigSpec, std::vector<int>> compress_en();
SigSpec decompress_en(const std::vector<int> &swizzle, SigSpec sig);
};
struct MemInit : RTLIL::AttrObject {
bool removed;
Cell *cell;
Const addr;
Const data;
Const en;
MemInit() : removed(false), cell(nullptr) {}
};
struct Mem : RTLIL::AttrObject {
Module *module;
IdString memid;
bool packed;
RTLIL::Memory *mem;
Cell *cell;
int width, start_offset, size;
std::vector<MemInit> inits;
std::vector<MemRd> rd_ports;
std::vector<MemWr> wr_ports;
// Removes this memory from the module. The data in helper structures
// is unaffected except for the cell/mem fields.
void remove();
// Commits all changes in helper structures into the module — ports and
// inits marked as removed are actually removed, new ports/inits create
// new cells, modified port/inits are commited into their existing
// cells. Note that this reindexes the ports and inits array (actually
// removing the ports/inits marked as removed).
void emit();
// Marks all inits as removed.
void clear_inits();
// Coalesces inits: whenever two inits have overlapping or touching
// address ranges, they are combined into one, with the higher-priority
// one's data overwriting the other. Running this results in
// an inits list equivalent to the original, in which all entries
// cover disjoint (and non-touching) address ranges, and all enable
// masks are all-1.
void coalesce_inits();
// Checks consistency of this memory and all its ports/inits, using
// log_assert.
void check();
// Gathers all initialization data into a single big const covering
// the whole memory. For all non-initialized bits, Sx will be returned.
Const get_init_data() const;
// Constructs and returns the helper structures for all memories
// in a module.
static std::vector<Mem> get_all_memories(Module *module);
// Constructs and returns the helper structures for all selected
// memories in a module.
static std::vector<Mem> get_selected_memories(Module *module);
// Converts a synchronous read port into an asynchronous one by
// extracting the data (or, in some rare cases, address) register
// into a separate cell, together with any soft-transparency
// logic necessary to preserve its semantics. Returns the created
// register cell, if any. Note that in some rare cases this function
// may succeed and perform a conversion without creating a new
// register — a nullptr result doesn't imply nothing was done.
Cell *extract_rdff(int idx, FfInitVals *initvals);
// Splits all wide ports in this memory into equivalent narrow ones.
// This function performs no modifications at all to the actual
// netlist unless and until emit() is called.
void narrow();
// If write port idx2 currently has priority over write port idx1,
// inserts extra logic on idx1's enable signal to disable writes
// when idx2 is writing to the same address, then removes the priority
// from the priority mask. If there is a memory port that is
// transparent with idx1, but not with idx2, that port is converted
// to use soft transparency logic.
void emulate_priority(int idx1, int idx2, FfInitVals *initvals);
// Creates soft-transparency logic on read port ridx, bypassing the
// data from write port widx. Should only be called when ridx is
// transparent wrt widx in the first place. Once we're done, the
// transparency_mask bit will be cleared, and the collision_x_mask
// bit will be set instead (since whatever value is read will be
// replaced by the soft transparency logic).
void emulate_transparency(int widx, int ridx, FfInitVals *initvals);
// Prepares for merging write port idx2 into idx1 (where idx1 < idx2).
// Specifically, takes care of priority masks: any priority relations
// that idx2 had are replicated onto idx1, unless they conflict with
// priorities already present on idx1, in which case emulate_priority
// is called. Likewise, ensures transparency and undefined collision
// masks of all read ports have the same values for both ports,
// calling emulate_transparency if necessary.
void prepare_wr_merge(int idx1, int idx2, FfInitVals *initvals);
// Prepares for merging read port idx2 into idx1.
// Specifically, makes sure the transparency and undefined collision
// masks of both ports are equal, by changing undefined behavior
// of one port to the other's defined behavior, or by calling
// emulate_transparency if necessary.
void prepare_rd_merge(int idx1, int idx2, FfInitVals *initvals);
// Prepares the memory for widening a port to a given width. This
// involves ensuring that start_offset and size are aligned to the
// target width.
void widen_prep(int wide_log2);
// Widens a write port up to a given width. The newly port is
// equivalent to the original, made by replicating enable/data bits
// and masking enable bits with decoders on the low part of the
// original address.
void widen_wr_port(int idx, int wide_log2);
// Emulates a sync read port's enable functionality in soft logic,
// changing the actual read port's enable to be always-on.
void emulate_rden(int idx, FfInitVals *initvals);
// Emulates a sync read port's initial/reset value functionality in
// soft logic, removing it from the actual read port.
void emulate_reset(int idx, bool emu_init, bool emu_arst, bool emu_srst, FfInitVals *initvals);
// Given a read port with ce_over_srst set, converts it to a port
// with ce_over_srst unset without changing its behavior by adding
// emulation logic.
void emulate_rd_ce_over_srst(int idx);
// Given a read port with ce_over_srst unset, converts it to a port
// with ce_over_srst set without changing its behavior by adding
// emulation logic.
void emulate_rd_srst_over_ce(int idx);
// Returns true iff emulate_read_first makes sense to call.
bool emulate_read_first_ok();
// Emulates all read-first read-write port relationships in terms of
// all-transparent ports, by delaying all write ports by one cycle.
// This can only be used when all read ports and all write ports are
// in the same clock domain.
void emulate_read_first(FfInitVals *initvals);
Mem(Module *module, IdString memid, int width, int start_offset, int size) : module(module), memid(memid), packed(false), mem(nullptr), cell(nullptr), width(width), start_offset(start_offset), size(size) {}
};
// MemContents efficiently represents the contents of a potentially sparse memory by storing only those segments that are actually defined
class MemContents {
public:
class range; class iterator;
using addr_t = uint32_t;
private:
// we ban _addr_width == sizeof(addr_t) * 8 because it adds too many cornercases
int _addr_width;
int _data_width;
RTLIL::Const _default_value;
// for each range, store the concatenation of the words at the start address
// invariants:
// - no overlapping or adjacent ranges
// - no empty ranges
// - all Consts are a multiple of the word size
std::map<addr_t, RTLIL::Const> _values;
// returns an iterator to the range containing addr, if it exists, or the first range past addr
std::map<addr_t, RTLIL::Const>::iterator _range_at(addr_t addr) const;
addr_t _range_size(std::map<addr_t, RTLIL::Const>::iterator it) const { return it->second.size() / _data_width; }
addr_t _range_begin(std::map<addr_t, RTLIL::Const>::iterator it) const { return it->first; }
addr_t _range_end(std::map<addr_t, RTLIL::Const>::iterator it) const { return _range_begin(it) + _range_size(it); }
// check if the iterator points to a range containing addr
bool _range_contains(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) const;
// check if the iterator points to a range containing [begin_addr, end_addr). assumes end_addr >= begin_addr.
bool _range_contains(std::map<addr_t, RTLIL::Const>::iterator it, addr_t begin_addr, addr_t end_addr) const;
// check if the iterator points to a range overlapping with [begin_addr, end_addr)
bool _range_overlaps(std::map<addr_t, RTLIL::Const>::iterator it, addr_t begin_addr, addr_t end_addr) const;
// return the offset the addr would have in the range at `it`
size_t _range_offset(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) const { return (addr - it->first) * _data_width; }
// assuming _range_contains(it, addr), return an iterator pointing to the data at addr
std::vector<State>::iterator _range_data(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) { return it->second.bits.begin() + _range_offset(it, addr); }
// internal version of reserve_range that returns an iterator to the range
std::map<addr_t, RTLIL::Const>::iterator _reserve_range(addr_t begin_addr, addr_t end_addr);
// write a single word at addr, return iterator to next word
std::vector<State>::iterator _range_write(std::vector<State>::iterator it, RTLIL::Const const &data);
public:
class range {
int _data_width;
addr_t _base;
RTLIL::Const const &_values;
friend class iterator;
range(int data_width, addr_t base, RTLIL::Const const &values)
: _data_width(data_width), _base(base), _values(values) {}
public:
addr_t base() const { return _base; }
addr_t size() const { return ((addr_t) _values.size()) / _data_width; }
addr_t limit() const { return _base + size(); }
RTLIL::Const const &concatenated() const { return _values; }
RTLIL::Const operator[](addr_t addr) const {
log_assert(addr - _base < size());
return _values.extract((addr - _base) * _data_width, _data_width);
}
RTLIL::Const at_offset(addr_t offset) const { return (*this)[_base + offset]; }
};
class iterator {
MemContents const *_memory;
// storing addr instead of an iterator gives more well-defined behaviour under insertions/deletions
// use ~0 for end so that all end iterators compare the same
addr_t _addr;
friend class MemContents;
iterator(MemContents const *memory, addr_t addr) : _memory(memory), _addr(addr) {}
public:
using iterator_category = std::input_iterator_tag;
using value_type = range;
using pointer = arrow_proxy<range>;
using reference = range;
using difference_type = addr_t;
reference operator *() const { return range(_memory->_data_width, _addr, _memory->_values.at(_addr)); }
pointer operator->() const { return arrow_proxy<range>(**this); }
bool operator !=(iterator const &other) const { return _memory != other._memory || _addr != other._addr; }
bool operator ==(iterator const &other) const { return !(*this != other); }
iterator &operator++();
};
MemContents(int addr_width, int data_width, RTLIL::Const default_value)
: _addr_width(addr_width), _data_width(data_width)
, _default_value((default_value.extu(data_width), std::move(default_value)))
{ log_assert(_addr_width > 0 && _addr_width < (int)sizeof(addr_t) * 8); log_assert(_data_width > 0); }
MemContents(int addr_width, int data_width) : MemContents(addr_width, data_width, RTLIL::Const(State::Sx, data_width)) {}
explicit MemContents(Mem *mem);
int addr_width() const { return _addr_width; }
int data_width() const { return _data_width; }
RTLIL::Const const &default_value() const { return _default_value; }
// return the value at the address if it exists, the default_value of the memory otherwise. address must not exceed 2**addr_width.
RTLIL::Const operator [](addr_t addr) const;
// return the number of defined words in the range [begin_addr, end_addr)
addr_t count_range(addr_t begin_addr, addr_t end_addr) const;
// allocate memory for the range [begin_addr, end_addr), but leave the contents undefined.
void reserve_range(addr_t begin_addr, addr_t end_addr) { _reserve_range(begin_addr, end_addr); }
// insert multiple words (provided as a single concatenated RTLIL::Const) at the given address, overriding any previous assignment.
void insert_concatenated(addr_t addr, RTLIL::Const const &values);
// insert multiple words at the given address, overriding any previous assignment.
template<typename Iterator> void insert_range(addr_t addr, Iterator begin, Iterator end) {
auto words = end - begin;
log_assert(addr < 1<<_addr_width); log_assert(words <= (1<<_addr_width) - addr);
auto range = _reserve_range(addr, addr + words);
auto it = _range_data(range, addr);
for(; begin != end; ++begin)
it = _range_write(it, *begin);
}
// undefine all words in the range [begin_addr, end_addr)
void clear_range(addr_t begin_addr, addr_t end_addr);
// check invariants, abort if invariants failed
void check();
iterator end() const { return iterator(nullptr, ~(addr_t) 0); }
iterator begin() const { return _values.empty() ? end() : iterator(this, _values.begin()->first); }
bool empty() const { return _values.empty(); }
};
YOSYS_NAMESPACE_END
#endif