yosys/frontends/ast/genrtlil.cc

2244 lines
79 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* This is the AST frontend library.
*
* The AST frontend library is not a frontend on it's own but provides a
* generic abstract syntax tree (AST) abstraction for HDL code and can be
* used by HDL frontends. See "ast.h" for an overview of the API and the
* Verilog frontend for an usage example.
*
*/
#include "kernel/log.h"
#include "kernel/utils.h"
#include "kernel/binding.h"
#include "libs/sha1/sha1.h"
#include "ast.h"
#include "ast_binding.h"
#include <sstream>
#include <stdarg.h>
#include <algorithm>
YOSYS_NAMESPACE_BEGIN
using namespace AST;
using namespace AST_INTERNAL;
// helper function for creating RTLIL code for unary operations
static RTLIL::SigSpec uniop2rtlil(AstNode *that, IdString type, int result_width, const RTLIL::SigSpec &arg, bool gen_attributes = true)
{
IdString name = stringf("%s$%s:%d$%d", type.c_str(), RTLIL::encode_filename(that->filename).c_str(), that->location.first_line, autoidx++);
RTLIL::Cell *cell = current_module->addCell(name, type);
set_src_attr(cell, that);
RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", result_width);
set_src_attr(wire, that);
wire->is_signed = that->is_signed;
if (gen_attributes)
for (auto &attr : that->attributes) {
if (attr.second->type != AST_CONSTANT)
that->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->parameters[ID::A_SIGNED] = RTLIL::Const(that->children[0]->is_signed);
cell->parameters[ID::A_WIDTH] = RTLIL::Const(arg.size());
cell->setPort(ID::A, arg);
cell->parameters[ID::Y_WIDTH] = result_width;
cell->setPort(ID::Y, wire);
return wire;
}
// helper function for extending bit width (preferred over SigSpec::extend() because of correct undef propagation in ConstEval)
static void widthExtend(AstNode *that, RTLIL::SigSpec &sig, int width, bool is_signed)
{
if (width <= sig.size()) {
sig.extend_u0(width, is_signed);
return;
}
IdString name = stringf("$extend$%s:%d$%d", RTLIL::encode_filename(that->filename).c_str(), that->location.first_line, autoidx++);
RTLIL::Cell *cell = current_module->addCell(name, ID($pos));
set_src_attr(cell, that);
RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", width);
set_src_attr(wire, that);
wire->is_signed = that->is_signed;
if (that != NULL)
for (auto &attr : that->attributes) {
if (attr.second->type != AST_CONSTANT)
that->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->parameters[ID::A_SIGNED] = RTLIL::Const(is_signed);
cell->parameters[ID::A_WIDTH] = RTLIL::Const(sig.size());
cell->setPort(ID::A, sig);
cell->parameters[ID::Y_WIDTH] = width;
cell->setPort(ID::Y, wire);
sig = wire;
}
// helper function for creating RTLIL code for binary operations
static RTLIL::SigSpec binop2rtlil(AstNode *that, IdString type, int result_width, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right)
{
IdString name = stringf("%s$%s:%d$%d", type.c_str(), RTLIL::encode_filename(that->filename).c_str(), that->location.first_line, autoidx++);
RTLIL::Cell *cell = current_module->addCell(name, type);
set_src_attr(cell, that);
RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", result_width);
set_src_attr(wire, that);
wire->is_signed = that->is_signed;
for (auto &attr : that->attributes) {
if (attr.second->type != AST_CONSTANT)
that->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->parameters[ID::A_SIGNED] = RTLIL::Const(that->children[0]->is_signed);
cell->parameters[ID::B_SIGNED] = RTLIL::Const(that->children[1]->is_signed);
cell->parameters[ID::A_WIDTH] = RTLIL::Const(left.size());
cell->parameters[ID::B_WIDTH] = RTLIL::Const(right.size());
cell->setPort(ID::A, left);
cell->setPort(ID::B, right);
cell->parameters[ID::Y_WIDTH] = result_width;
cell->setPort(ID::Y, wire);
return wire;
}
// helper function for creating RTLIL code for multiplexers
static RTLIL::SigSpec mux2rtlil(AstNode *that, const RTLIL::SigSpec &cond, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right)
{
log_assert(cond.size() == 1);
std::stringstream sstr;
sstr << "$ternary$" << RTLIL::encode_filename(that->filename) << ":" << that->location.first_line << "$" << (autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), ID($mux));
set_src_attr(cell, that);
RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", left.size());
set_src_attr(wire, that);
wire->is_signed = that->is_signed;
for (auto &attr : that->attributes) {
if (attr.second->type != AST_CONSTANT)
that->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->parameters[ID::WIDTH] = RTLIL::Const(left.size());
cell->setPort(ID::A, right);
cell->setPort(ID::B, left);
cell->setPort(ID::S, cond);
cell->setPort(ID::Y, wire);
return wire;
}
// helper class for rewriting simple lookahead references in AST always blocks
struct AST_INTERNAL::LookaheadRewriter
{
dict<IdString, pair<AstNode*, AstNode*>> lookaheadids;
void collect_lookaheadids(AstNode *node)
{
if (node->lookahead) {
log_assert(node->type == AST_IDENTIFIER);
if (!lookaheadids.count(node->str)) {
AstNode *wire = new AstNode(AST_WIRE);
for (auto c : node->id2ast->children)
wire->children.push_back(c->clone());
wire->str = stringf("$lookahead%s$%d", node->str.c_str(), autoidx++);
wire->attributes[ID::nosync] = AstNode::mkconst_int(1, false);
wire->is_logic = true;
while (wire->simplify(true, false, 1, -1, false, false)) { }
current_ast_mod->children.push_back(wire);
lookaheadids[node->str] = make_pair(node->id2ast, wire);
wire->genRTLIL();
}
}
for (auto child : node->children)
collect_lookaheadids(child);
}
bool has_lookaheadids(AstNode *node)
{
if (node->type == AST_IDENTIFIER && lookaheadids.count(node->str) != 0)
return true;
for (auto child : node->children)
if (has_lookaheadids(child))
return true;
return false;
}
bool has_nonlookaheadids(AstNode *node)
{
if (node->type == AST_IDENTIFIER && lookaheadids.count(node->str) == 0)
return true;
for (auto child : node->children)
if (has_nonlookaheadids(child))
return true;
return false;
}
void rewrite_lookaheadids(AstNode *node, bool lhs = false)
{
if (node->type == AST_ASSIGN_LE)
{
if (has_lookaheadids(node->children[0]))
{
if (has_nonlookaheadids(node->children[0]))
log_error("incompatible mix of lookahead and non-lookahead IDs in LHS expression.\n");
rewrite_lookaheadids(node->children[0], true);
node->type = AST_ASSIGN_EQ;
}
rewrite_lookaheadids(node->children[1], lhs);
return;
}
if (node->type == AST_IDENTIFIER && (node->lookahead || lhs)) {
AstNode *newwire = lookaheadids.at(node->str).second;
node->str = newwire->str;
node->id2ast = newwire;
lhs = false;
}
for (auto child : node->children)
rewrite_lookaheadids(child, lhs);
}
LookaheadRewriter(AstNode *top)
{
// top->dumpAst(NULL, "REWRITE-BEFORE> ");
// top->dumpVlog(NULL, "REWRITE-BEFORE> ");
AstNode *block = nullptr;
for (auto c : top->children)
if (c->type == AST_BLOCK) {
log_assert(block == nullptr);
block = c;
}
log_assert(block != nullptr);
collect_lookaheadids(block);
rewrite_lookaheadids(block);
for (auto it : lookaheadids)
{
AstNode *ref_orig = new AstNode(AST_IDENTIFIER);
ref_orig->str = it.second.first->str;
ref_orig->id2ast = it.second.first;
ref_orig->was_checked = true;
AstNode *ref_temp = new AstNode(AST_IDENTIFIER);
ref_temp->str = it.second.second->str;
ref_temp->id2ast = it.second.second;
ref_temp->was_checked = true;
AstNode *init_assign = new AstNode(AST_ASSIGN_EQ, ref_temp->clone(), ref_orig->clone());
AstNode *final_assign = new AstNode(AST_ASSIGN_LE, ref_orig, ref_temp);
block->children.insert(block->children.begin(), init_assign);
block->children.push_back(final_assign);
}
// top->dumpAst(NULL, "REWRITE-AFTER> ");
// top->dumpVlog(NULL, "REWRITE-AFTER> ");
}
};
// helper class for converting AST always nodes to RTLIL processes
struct AST_INTERNAL::ProcessGenerator
{
// input and output structures
AstNode *always;
RTLIL::SigSpec initSyncSignals;
RTLIL::Process *proc;
RTLIL::SigSpec outputSignals;
// This always points to the RTLIL::CaseRule being filled at the moment
RTLIL::CaseRule *current_case;
// This map contains the replacement pattern to be used in the right hand side
// of an assignment. E.g. in the code "foo = bar; foo = func(foo);" the foo in the right
// hand side of the 2nd assignment needs to be replace with the temporary signal holding
// the value assigned in the first assignment. So when the first assignment is processed
// the according information is appended to subst_rvalue_from and subst_rvalue_to.
stackmap<RTLIL::SigBit, RTLIL::SigBit> subst_rvalue_map;
// This map contains the replacement pattern to be used in the left hand side
// of an assignment. E.g. in the code "always @(posedge clk) foo <= bar" the signal bar
// should not be connected to the signal foo. Instead it must be connected to the temporary
// signal that is used as input for the register that drives the signal foo.
stackmap<RTLIL::SigBit, RTLIL::SigBit> subst_lvalue_map;
// The code here generates a number of temporary signal for each output register. This
// map helps generating nice numbered names for all this temporary signals.
std::map<RTLIL::Wire*, int> new_temp_count;
// Buffer for generating the init action
RTLIL::SigSpec init_lvalue, init_rvalue;
// The most recently assigned $print cell \PRIORITY.
int last_print_priority;
ProcessGenerator(AstNode *always, RTLIL::SigSpec initSyncSignalsArg = RTLIL::SigSpec()) : always(always), initSyncSignals(initSyncSignalsArg), last_print_priority(0)
{
// rewrite lookahead references
LookaheadRewriter la_rewriter(always);
// generate process and simple root case
proc = current_module->addProcess(stringf("$proc$%s:%d$%d", RTLIL::encode_filename(always->filename).c_str(), always->location.first_line, autoidx++));
set_src_attr(proc, always);
for (auto &attr : always->attributes) {
if (attr.second->type != AST_CONSTANT)
always->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
proc->attributes[attr.first] = attr.second->asAttrConst();
}
current_case = &proc->root_case;
// create initial temporary signal for all output registers
RTLIL::SigSpec subst_lvalue_from, subst_lvalue_to;
collect_lvalues(subst_lvalue_from, always, true, true);
subst_lvalue_to = new_temp_signal(subst_lvalue_from);
subst_lvalue_map = subst_lvalue_from.to_sigbit_map(subst_lvalue_to);
bool found_global_syncs = false;
bool found_anyedge_syncs = false;
for (auto child : always->children)
{
if ((child->type == AST_POSEDGE || child->type == AST_NEGEDGE) && GetSize(child->children) == 1 && child->children.at(0)->type == AST_IDENTIFIER &&
child->children.at(0)->id2ast && child->children.at(0)->id2ast->type == AST_WIRE && child->children.at(0)->id2ast->get_bool_attribute(ID::gclk)) {
found_global_syncs = true;
}
if (child->type == AST_EDGE) {
if (GetSize(child->children) == 1 && child->children.at(0)->type == AST_IDENTIFIER && child->children.at(0)->str == "\\$global_clock")
found_global_syncs = true;
else
found_anyedge_syncs = true;
}
}
if (found_anyedge_syncs) {
if (found_global_syncs)
always->input_error("Found non-synthesizable event list!\n");
log("Note: Assuming pure combinatorial block at %s in\n", always->loc_string().c_str());
log("compliance with IEC 62142(E):2005 / IEEE Std. 1364.1(E):2002. Recommending\n");
log("use of @* instead of @(...) for better match of synthesis and simulation.\n");
}
// create syncs for the process
bool found_clocked_sync = false;
for (auto child : always->children)
if (child->type == AST_POSEDGE || child->type == AST_NEGEDGE) {
if (GetSize(child->children) == 1 && child->children.at(0)->type == AST_IDENTIFIER && child->children.at(0)->id2ast &&
child->children.at(0)->id2ast->type == AST_WIRE && child->children.at(0)->id2ast->get_bool_attribute(ID::gclk))
continue;
found_clocked_sync = true;
if (found_global_syncs || found_anyedge_syncs)
always->input_error("Found non-synthesizable event list!\n");
RTLIL::SyncRule *syncrule = new RTLIL::SyncRule;
syncrule->type = child->type == AST_POSEDGE ? RTLIL::STp : RTLIL::STn;
syncrule->signal = child->children[0]->genRTLIL();
if (GetSize(syncrule->signal) != 1)
always->input_error("Found posedge/negedge event on a signal that is not 1 bit wide!\n");
addChunkActions(syncrule->actions, subst_lvalue_from, subst_lvalue_to, true);
proc->syncs.push_back(syncrule);
}
if (proc->syncs.empty()) {
RTLIL::SyncRule *syncrule = new RTLIL::SyncRule;
syncrule->type = found_global_syncs ? RTLIL::STg : RTLIL::STa;
syncrule->signal = RTLIL::SigSpec();
addChunkActions(syncrule->actions, subst_lvalue_from, subst_lvalue_to, true);
proc->syncs.push_back(syncrule);
}
// create initial assignments for the temporary signals
if ((flag_nolatches || always->get_bool_attribute(ID::nolatches) || current_module->get_bool_attribute(ID::nolatches)) && !found_clocked_sync) {
subst_rvalue_map = subst_lvalue_from.to_sigbit_dict(RTLIL::SigSpec(RTLIL::State::Sx, GetSize(subst_lvalue_from)));
} else {
addChunkActions(current_case->actions, subst_lvalue_to, subst_lvalue_from);
}
// process the AST
for (auto child : always->children)
if (child->type == AST_BLOCK)
processAst(child);
for (auto sync: proc->syncs)
processMemWrites(sync);
if (initSyncSignals.size() > 0)
{
RTLIL::SyncRule *sync = new RTLIL::SyncRule;
sync->type = RTLIL::SyncType::STi;
proc->syncs.push_back(sync);
log_assert(init_lvalue.size() == init_rvalue.size());
int offset = 0;
for (auto &init_lvalue_c : init_lvalue.chunks()) {
RTLIL::SigSpec lhs = init_lvalue_c;
RTLIL::SigSpec rhs = init_rvalue.extract(offset, init_lvalue_c.width);
remove_unwanted_lvalue_bits(lhs, rhs);
sync->actions.push_back(RTLIL::SigSig(lhs, rhs));
offset += lhs.size();
}
}
outputSignals = RTLIL::SigSpec(subst_lvalue_from);
}
void remove_unwanted_lvalue_bits(RTLIL::SigSpec &lhs, RTLIL::SigSpec &rhs)
{
RTLIL::SigSpec new_lhs, new_rhs;
log_assert(GetSize(lhs) == GetSize(rhs));
for (int i = 0; i < GetSize(lhs); i++) {
if (lhs[i].wire == nullptr)
continue;
new_lhs.append(lhs[i]);
new_rhs.append(rhs[i]);
}
lhs = new_lhs;
rhs = new_rhs;
}
// create new temporary signals
RTLIL::SigSpec new_temp_signal(RTLIL::SigSpec sig)
{
std::vector<RTLIL::SigChunk> chunks = sig.chunks();
for (int i = 0; i < GetSize(chunks); i++)
{
RTLIL::SigChunk &chunk = chunks[i];
if (chunk.wire == NULL)
continue;
std::string wire_name;
do {
wire_name = stringf("$%d%s[%d:%d]", new_temp_count[chunk.wire]++,
chunk.wire->name.c_str(), chunk.width+chunk.offset-1, chunk.offset);;
if (chunk.wire->name.str().find('$') != std::string::npos)
wire_name += stringf("$%d", autoidx++);
} while (current_module->wires_.count(wire_name) > 0);
RTLIL::Wire *wire = current_module->addWire(wire_name, chunk.width);
set_src_attr(wire, always);
chunk.wire = wire;
chunk.offset = 0;
}
return chunks;
}
// recursively traverse the AST and collect all assigned signals
void collect_lvalues(RTLIL::SigSpec &reg, AstNode *ast, bool type_eq, bool type_le, bool run_sort_and_unify = true)
{
switch (ast->type)
{
case AST_CASE:
for (auto child : ast->children)
if (child != ast->children[0]) {
log_assert(child->type == AST_COND || child->type == AST_CONDX || child->type == AST_CONDZ);
collect_lvalues(reg, child, type_eq, type_le, false);
}
break;
case AST_COND:
case AST_CONDX:
case AST_CONDZ:
case AST_ALWAYS:
case AST_INITIAL:
for (auto child : ast->children)
if (child->type == AST_BLOCK)
collect_lvalues(reg, child, type_eq, type_le, false);
break;
case AST_BLOCK:
for (auto child : ast->children) {
if (child->type == AST_ASSIGN_EQ && type_eq)
reg.append(child->children[0]->genRTLIL());
if (child->type == AST_ASSIGN_LE && type_le)
reg.append(child->children[0]->genRTLIL());
if (child->type == AST_CASE || child->type == AST_BLOCK)
collect_lvalues(reg, child, type_eq, type_le, false);
}
break;
default:
log_abort();
}
if (run_sort_and_unify) {
std::set<RTLIL::SigBit> sorted_reg;
for (auto bit : reg)
if (bit.wire)
sorted_reg.insert(bit);
reg = RTLIL::SigSpec(sorted_reg);
}
}
// remove all assignments to the given signal pattern in a case and all its children.
// e.g. when the last statement in the code "a = 23; if (b) a = 42; a = 0;" is processed this
// function is called to clean up the first two assignments as they are overwritten by
// the third assignment.
void removeSignalFromCaseTree(const RTLIL::SigSpec &pattern, RTLIL::CaseRule *cs)
{
for (auto it = cs->actions.begin(); it != cs->actions.end(); it++)
it->first.remove2(pattern, &it->second);
for (auto it = cs->switches.begin(); it != cs->switches.end(); it++)
for (auto it2 = (*it)->cases.begin(); it2 != (*it)->cases.end(); it2++)
removeSignalFromCaseTree(pattern, *it2);
}
// add an assignment (aka "action") but split it up in chunks. this way huge assignments
// are avoided and the generated $mux cells have a more "natural" size.
void addChunkActions(std::vector<RTLIL::SigSig> &actions, RTLIL::SigSpec lvalue, RTLIL::SigSpec rvalue, bool inSyncRule = false)
{
if (inSyncRule && initSyncSignals.size() > 0) {
init_lvalue.append(lvalue.extract(initSyncSignals));
init_rvalue.append(lvalue.extract(initSyncSignals, &rvalue));
lvalue.remove2(initSyncSignals, &rvalue);
}
log_assert(lvalue.size() == rvalue.size());
int offset = 0;
for (auto &lvalue_c : lvalue.chunks()) {
RTLIL::SigSpec lhs = lvalue_c;
RTLIL::SigSpec rhs = rvalue.extract(offset, lvalue_c.width);
if (inSyncRule && lvalue_c.wire && lvalue_c.wire->get_bool_attribute(ID::nosync))
rhs = RTLIL::SigSpec(RTLIL::State::Sx, rhs.size());
remove_unwanted_lvalue_bits(lhs, rhs);
actions.push_back(RTLIL::SigSig(lhs, rhs));
offset += lhs.size();
}
}
// recursively process the AST and fill the RTLIL::Process
void processAst(AstNode *ast)
{
switch (ast->type)
{
case AST_BLOCK:
for (auto child : ast->children)
processAst(child);
break;
case AST_ASSIGN_EQ:
case AST_ASSIGN_LE:
{
RTLIL::SigSpec unmapped_lvalue = ast->children[0]->genRTLIL(), lvalue = unmapped_lvalue;
RTLIL::SigSpec rvalue = ast->children[1]->genWidthRTLIL(lvalue.size(), true, &subst_rvalue_map.stdmap());
pool<SigBit> lvalue_sigbits;
for (int i = 0; i < GetSize(lvalue); i++) {
if (lvalue_sigbits.count(lvalue[i]) > 0) {
unmapped_lvalue.remove(i);
lvalue.remove(i);
rvalue.remove(i--);
} else
lvalue_sigbits.insert(lvalue[i]);
}
lvalue.replace(subst_lvalue_map.stdmap());
if (ast->type == AST_ASSIGN_EQ) {
for (int i = 0; i < GetSize(unmapped_lvalue); i++)
subst_rvalue_map.set(unmapped_lvalue[i], rvalue[i]);
}
removeSignalFromCaseTree(lvalue, current_case);
remove_unwanted_lvalue_bits(lvalue, rvalue);
current_case->actions.push_back(RTLIL::SigSig(lvalue, rvalue));
}
break;
case AST_CASE:
{
int width_hint;
bool sign_hint;
ast->detectSignWidth(width_hint, sign_hint);
RTLIL::SwitchRule *sw = new RTLIL::SwitchRule;
set_src_attr(sw, ast);
sw->signal = ast->children[0]->genWidthRTLIL(width_hint, sign_hint, &subst_rvalue_map.stdmap());
current_case->switches.push_back(sw);
for (auto &attr : ast->attributes) {
if (attr.second->type != AST_CONSTANT)
ast->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
sw->attributes[attr.first] = attr.second->asAttrConst();
}
RTLIL::SigSpec this_case_eq_lvalue;
collect_lvalues(this_case_eq_lvalue, ast, true, false);
RTLIL::SigSpec this_case_eq_ltemp = new_temp_signal(this_case_eq_lvalue);
RTLIL::SigSpec this_case_eq_rvalue = this_case_eq_lvalue;
this_case_eq_rvalue.replace(subst_rvalue_map.stdmap());
RTLIL::CaseRule *default_case = NULL;
RTLIL::CaseRule *last_generated_case = NULL;
for (auto child : ast->children)
{
if (child == ast->children[0])
continue;
log_assert(child->type == AST_COND || child->type == AST_CONDX || child->type == AST_CONDZ);
subst_lvalue_map.save();
subst_rvalue_map.save();
for (int i = 0; i < GetSize(this_case_eq_lvalue); i++)
subst_lvalue_map.set(this_case_eq_lvalue[i], this_case_eq_ltemp[i]);
RTLIL::CaseRule *backup_case = current_case;
current_case = new RTLIL::CaseRule;
set_src_attr(current_case, child);
last_generated_case = current_case;
addChunkActions(current_case->actions, this_case_eq_ltemp, this_case_eq_rvalue);
for (auto node : child->children) {
if (node->type == AST_DEFAULT)
default_case = current_case;
else if (node->type == AST_BLOCK)
processAst(node);
else
current_case->compare.push_back(node->genWidthRTLIL(width_hint, sign_hint, &subst_rvalue_map.stdmap()));
}
if (default_case != current_case)
sw->cases.push_back(current_case);
else
log_assert(current_case->compare.size() == 0);
current_case = backup_case;
subst_lvalue_map.restore();
subst_rvalue_map.restore();
}
if (last_generated_case != NULL && ast->get_bool_attribute(ID::full_case) && default_case == NULL) {
#if 0
// this is a valid transformation, but as optimization it is premature.
// better: add a default case that assigns 'x' to everything, and let later
// optimizations take care of the rest
last_generated_case->compare.clear();
#else
default_case = new RTLIL::CaseRule;
addChunkActions(default_case->actions, this_case_eq_ltemp, SigSpec(State::Sx, GetSize(this_case_eq_rvalue)));
sw->cases.push_back(default_case);
#endif
} else {
if (default_case == NULL) {
default_case = new RTLIL::CaseRule;
addChunkActions(default_case->actions, this_case_eq_ltemp, this_case_eq_rvalue);
}
sw->cases.push_back(default_case);
}
for (int i = 0; i < GetSize(this_case_eq_lvalue); i++)
subst_rvalue_map.set(this_case_eq_lvalue[i], this_case_eq_ltemp[i]);
this_case_eq_lvalue.replace(subst_lvalue_map.stdmap());
removeSignalFromCaseTree(this_case_eq_lvalue, current_case);
addChunkActions(current_case->actions, this_case_eq_lvalue, this_case_eq_ltemp);
}
break;
case AST_WIRE:
ast->input_error("Found reg declaration in block without label!\n");
break;
case AST_ASSIGN:
ast->input_error("Found continous assignment in always/initial block!\n");
break;
case AST_PARAMETER:
case AST_LOCALPARAM:
ast->input_error("Found parameter declaration in block without label!\n");
break;
case AST_TCALL:
if (ast->str == "$display" || ast->str == "$displayb" || ast->str == "$displayh" || ast->str == "$displayo" ||
ast->str == "$write" || ast->str == "$writeb" || ast->str == "$writeh" || ast->str == "$writeo") {
std::stringstream sstr;
sstr << ast->str << "$" << ast->filename << ":" << ast->location.first_line << "$" << (autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), ID($print));
set_src_attr(cell, ast);
RTLIL::SigSpec triggers;
RTLIL::Const polarity;
for (auto sync : proc->syncs) {
if (sync->type == RTLIL::STp) {
triggers.append(sync->signal);
polarity.bits.push_back(RTLIL::S1);
} else if (sync->type == RTLIL::STn) {
triggers.append(sync->signal);
polarity.bits.push_back(RTLIL::S0);
}
}
cell->parameters[ID::TRG_WIDTH] = triggers.size();
cell->parameters[ID::TRG_ENABLE] = !triggers.empty();
cell->parameters[ID::TRG_POLARITY] = polarity;
cell->parameters[ID::PRIORITY] = --last_print_priority;
cell->setPort(ID::TRG, triggers);
Wire *wire = current_module->addWire(sstr.str() + "_EN", 1);
set_src_attr(wire, ast);
cell->setPort(ID::EN, wire);
proc->root_case.actions.push_back(SigSig(wire, false));
current_case->actions.push_back(SigSig(wire, true));
int default_base = 10;
if (ast->str.back() == 'b')
default_base = 2;
else if (ast->str.back() == 'o')
default_base = 8;
else if (ast->str.back() == 'h')
default_base = 16;
std::vector<VerilogFmtArg> args;
for (auto node : ast->children) {
int width;
bool is_signed;
node->detectSignWidth(width, is_signed, nullptr);
VerilogFmtArg arg = {};
arg.filename = node->filename;
arg.first_line = node->location.first_line;
if (node->type == AST_CONSTANT && node->is_string) {
arg.type = VerilogFmtArg::STRING;
arg.str = node->bitsAsConst().decode_string();
// and in case this will be used as an argument...
arg.sig = node->bitsAsConst();
arg.signed_ = false;
} else if (node->type == AST_IDENTIFIER && node->str == "$time") {
arg.type = VerilogFmtArg::TIME;
} else if (node->type == AST_IDENTIFIER && node->str == "$realtime") {
arg.type = VerilogFmtArg::TIME;
arg.realtime = true;
} else {
arg.type = VerilogFmtArg::INTEGER;
arg.sig = node->genWidthRTLIL(-1, false, &subst_rvalue_map.stdmap());
arg.signed_ = is_signed;
}
args.push_back(arg);
}
Fmt fmt = {};
fmt.parse_verilog(args, /*sformat_like=*/false, default_base, /*task_name=*/ast->str, current_module->name);
if (ast->str.substr(0, 8) == "$display")
fmt.append_string("\n");
fmt.emit_rtlil(cell);
} else if (!ast->str.empty()) {
log_file_error(ast->filename, ast->location.first_line, "Found unsupported invocation of system task `%s'!\n", ast->str.c_str());
}
break;
case AST_NONE:
case AST_FOR:
break;
default:
// ast->dumpAst(NULL, "ast> ");
// current_ast_mod->dumpAst(NULL, "mod> ");
log_abort();
}
}
void processMemWrites(RTLIL::SyncRule *sync)
{
// Maps per-memid AST_MEMWR IDs to indices in the mem_write_actions array.
dict<std::pair<std::string, int>, int> port_map;
for (auto child : always->children)
if (child->type == AST_MEMWR)
{
std::string memid = child->str;
int portid = child->children[3]->asInt(false);
int cur_idx = GetSize(sync->mem_write_actions);
RTLIL::MemWriteAction action;
set_src_attr(&action, child);
action.memid = memid;
action.address = child->children[0]->genWidthRTLIL(-1, true, &subst_rvalue_map.stdmap());
action.data = child->children[1]->genWidthRTLIL(current_module->memories[memid]->width, true, &subst_rvalue_map.stdmap());
action.enable = child->children[2]->genWidthRTLIL(-1, true, &subst_rvalue_map.stdmap());
RTLIL::Const orig_priority_mask = child->children[4]->bitsAsConst();
RTLIL::Const priority_mask = RTLIL::Const(0, cur_idx);
for (int i = 0; i < portid; i++) {
int new_bit = port_map[std::make_pair(memid, i)];
priority_mask.bits[new_bit] = orig_priority_mask.bits[i];
}
action.priority_mask = priority_mask;
sync->mem_write_actions.push_back(action);
port_map[std::make_pair(memid, portid)] = cur_idx;
}
}
};
// Generate RTLIL for a bind construct
//
// The AST node will have one or more AST_IDENTIFIER children, which were added
// by bind_target_instance in the parser. After these, it will have one or more
// cells, as parsed by single_cell. These have type AST_CELL.
//
// If there is more than one AST_IDENTIFIER, the first one should be considered
// a module identifier. If there is only one AST_IDENTIFIER, we can't tell at
// this point whether it's a module/interface name or the name of an instance
// because the correct interpretation depends on what's visible at elaboration
// time. For now, we just treat it as a target instance with unknown type, and
// we'll deal with the corner case in the hierarchy pass.
//
// To simplify downstream code, RTLIL::Binding only has a single target and
// single bound instance. If we see the syntax that allows more than one of
// either, we split it into multiple Binding objects.
std::vector<RTLIL::Binding *> AstNode::genBindings() const
{
// Partition children into identifiers and cells
int num_ids = 0;
for (int i = 0; i < GetSize(children); ++i) {
if (children[i]->type != AST_IDENTIFIER) {
log_assert(i > 0);
num_ids = i;
break;
}
}
// We should have found at least one child that's not an identifier
log_assert(num_ids > 0);
// Make sense of the identifiers, extracting a possible type name and a
// list of hierarchical IDs. We represent an unknown type with an empty
// string.
RTLIL::IdString tgt_type;
int first_tgt_inst = 0;
if (num_ids > 1) {
tgt_type = children[0]->str;
first_tgt_inst = 1;
}
std::vector<RTLIL::Binding *> ret;
// At this point, we know that children with index >= first_tgt_inst and
// index < num_ids are (hierarchical?) names of target instances. Make a
// binding object for each of them, and fill in the generated instance
// cells each time.
for (int i = first_tgt_inst; i < num_ids; ++i) {
const AstNode &tgt_child = *children[i];
for (int j = num_ids; j < GetSize(children); ++j) {
const AstNode &cell_child = *children[j];
log_assert(cell_child.type == AST_CELL);
ret.push_back(new AST::Binding(tgt_type, tgt_child.str,
cell_child));
}
}
return ret;
}
// detect sign and width of an expression
void AstNode::detectSignWidthWorker(int &width_hint, bool &sign_hint, bool *found_real)
{
std::string type_name;
bool sub_sign_hint = true;
int sub_width_hint = -1;
int this_width = 0;
AstNode *range = NULL;
AstNode *id_ast = NULL;
bool local_found_real = false;
if (found_real == NULL)
found_real = &local_found_real;
switch (type)
{
case AST_NONE:
// unallocated enum, ignore
break;
case AST_CONSTANT:
width_hint = max(width_hint, int(bits.size()));
if (!is_signed)
sign_hint = false;
break;
case AST_REALVALUE:
*found_real = true;
width_hint = max(width_hint, 32);
break;
case AST_IDENTIFIER:
id_ast = id2ast;
if (!id_ast) {
if (current_scope.count(str))
id_ast = current_scope[str];
else {
std::string alt = try_pop_module_prefix();
if (current_scope.count(alt))
id_ast = current_scope[alt];
}
}
if (!id_ast)
input_error("Failed to resolve identifier %s for width detection!\n", str.c_str());
if (id_ast->type == AST_PARAMETER || id_ast->type == AST_LOCALPARAM || id_ast->type == AST_ENUM_ITEM) {
if (id_ast->children.size() > 1 && id_ast->children[1]->range_valid) {
this_width = id_ast->children[1]->range_left - id_ast->children[1]->range_right + 1;
} else {
if (id_ast->children[0]->type != AST_CONSTANT)
while (id_ast->simplify(true, false, 1, -1, false, true)) { }
if (id_ast->children[0]->type == AST_CONSTANT)
this_width = id_ast->children[0]->bits.size();
else
input_error("Failed to detect width for parameter %s!\n", str.c_str());
}
if (children.size() != 0)
range = children[0];
} else if (id_ast->type == AST_WIRE || id_ast->type == AST_AUTOWIRE) {
if (!id_ast->range_valid) {
if (id_ast->type == AST_AUTOWIRE)
this_width = 1;
else {
// current_ast_mod->dumpAst(NULL, "mod> ");
// log("---\n");
// id_ast->dumpAst(NULL, "decl> ");
// dumpAst(NULL, "ref> ");
input_error("Failed to detect width of signal access `%s'!\n", str.c_str());
}
} else {
this_width = id_ast->range_left - id_ast->range_right + 1;
if (children.size() != 0)
range = children[0];
}
} else if (id_ast->type == AST_GENVAR) {
this_width = 32;
} else if (id_ast->type == AST_MEMORY) {
if (!id_ast->children[0]->range_valid)
input_error("Failed to detect width of memory access `%s'!\n", str.c_str());
this_width = id_ast->children[0]->range_left - id_ast->children[0]->range_right + 1;
if (children.size() > 1)
range = children[1];
} else if (id_ast->type == AST_STRUCT_ITEM || id_ast->type == AST_STRUCT || id_ast->type == AST_UNION) {
AstNode *tmp_range = make_struct_member_range(this, id_ast);
this_width = tmp_range->range_left - tmp_range->range_right + 1;
delete tmp_range;
} else
input_error("Failed to detect width for identifier %s!\n", str.c_str());
if (range) {
if (range->children.size() == 1)
this_width = 1;
else if (!range->range_valid) {
AstNode *left_at_zero_ast = children[0]->children[0]->clone_at_zero();
AstNode *right_at_zero_ast = children[0]->children.size() >= 2 ? children[0]->children[1]->clone_at_zero() : left_at_zero_ast->clone();
while (left_at_zero_ast->simplify(true, false, 1, -1, false, false)) { }
while (right_at_zero_ast->simplify(true, false, 1, -1, false, false)) { }
if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT)
input_error("Unsupported expression on dynamic range select on signal `%s'!\n", str.c_str());
this_width = abs(int(left_at_zero_ast->integer - right_at_zero_ast->integer)) + 1;
delete left_at_zero_ast;
delete right_at_zero_ast;
} else
this_width = range->range_left - range->range_right + 1;
sign_hint = false;
}
width_hint = max(width_hint, this_width);
if (!id_ast->is_signed)
sign_hint = false;
break;
case AST_TO_BITS:
while (children[0]->simplify(true, false, 1, -1, false, false) == true) { }
if (children[0]->type != AST_CONSTANT)
input_error("Left operand of tobits expression is not constant!\n");
children[1]->detectSignWidthWorker(sub_width_hint, sign_hint);
width_hint = max(width_hint, children[0]->bitsAsConst().as_int());
break;
case AST_TO_SIGNED:
children.at(0)->detectSignWidthWorker(width_hint, sub_sign_hint);
break;
case AST_TO_UNSIGNED:
children.at(0)->detectSignWidthWorker(width_hint, sub_sign_hint);
sign_hint = false;
break;
case AST_SELFSZ:
sub_width_hint = 0;
children.at(0)->detectSignWidthWorker(sub_width_hint, sign_hint);
break;
case AST_CAST_SIZE:
while (children.at(0)->simplify(true, false, 1, -1, false, false)) { }
if (children.at(0)->type != AST_CONSTANT)
input_error("Static cast with non constant expression!\n");
children.at(1)->detectSignWidthWorker(width_hint, sign_hint);
this_width = children.at(0)->bitsAsConst().as_int();
width_hint = max(width_hint, this_width);
if (width_hint <= 0)
input_error("Static cast with zero or negative size!\n");
break;
case AST_CONCAT:
for (auto child : children) {
sub_width_hint = 0;
sub_sign_hint = true;
child->detectSignWidthWorker(sub_width_hint, sub_sign_hint);
this_width += sub_width_hint;
}
width_hint = max(width_hint, this_width);
sign_hint = false;
break;
case AST_REPLICATE:
while (children[0]->simplify(true, false, 1, -1, false, true) == true) { }
if (children[0]->type != AST_CONSTANT)
input_error("Left operand of replicate expression is not constant!\n");
children[1]->detectSignWidthWorker(sub_width_hint, sub_sign_hint);
width_hint = max(width_hint, children[0]->bitsAsConst().as_int() * sub_width_hint);
sign_hint = false;
break;
case AST_NEG:
case AST_BIT_NOT:
case AST_POS:
children[0]->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_BIT_AND:
case AST_BIT_OR:
case AST_BIT_XOR:
case AST_BIT_XNOR:
for (auto child : children)
child->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_REDUCE_AND:
case AST_REDUCE_OR:
case AST_REDUCE_XOR:
case AST_REDUCE_XNOR:
case AST_REDUCE_BOOL:
width_hint = max(width_hint, 1);
sign_hint = false;
break;
case AST_SHIFT_LEFT:
case AST_SHIFT_RIGHT:
case AST_SHIFT_SLEFT:
case AST_SHIFT_SRIGHT:
case AST_SHIFTX:
case AST_SHIFT:
case AST_POW:
children[0]->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_LT:
case AST_LE:
case AST_EQ:
case AST_NE:
case AST_EQX:
case AST_NEX:
case AST_GE:
case AST_GT:
width_hint = max(width_hint, 1);
sign_hint = false;
break;
case AST_ADD:
case AST_SUB:
case AST_MUL:
case AST_DIV:
case AST_MOD:
for (auto child : children)
child->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_LOGIC_AND:
case AST_LOGIC_OR:
case AST_LOGIC_NOT:
width_hint = max(width_hint, 1);
sign_hint = false;
break;
case AST_TERNARY:
children.at(1)->detectSignWidthWorker(width_hint, sign_hint, found_real);
children.at(2)->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_MEMRD:
if (!id2ast->is_signed)
sign_hint = false;
if (!id2ast->children[0]->range_valid)
input_error("Failed to detect width of memory access `%s'!\n", str.c_str());
this_width = id2ast->children[0]->range_left - id2ast->children[0]->range_right + 1;
width_hint = max(width_hint, this_width);
break;
case AST_CASE:
{
// This detects the _overall_ sign and width to be used for comparing
// the case expression with the case item expressions. The case
// expression and case item expressions are extended to the maximum
// width among them, and are only interpreted as signed if all of them
// are signed.
width_hint = -1;
sign_hint = true;
auto visit_case_expr = [&width_hint, &sign_hint] (AstNode *node) {
int sub_width_hint = -1;
bool sub_sign_hint = true;
node->detectSignWidth(sub_width_hint, sub_sign_hint);
width_hint = max(width_hint, sub_width_hint);
sign_hint &= sub_sign_hint;
};
visit_case_expr(children[0]);
for (size_t i = 1; i < children.size(); i++) {
AstNode *child = children[i];
for (AstNode *v : child->children)
if (v->type != AST_DEFAULT && v->type != AST_BLOCK)
visit_case_expr(v);
}
break;
}
case AST_PREFIX:
// Prefix nodes always resolve to identifiers in generate loops, so we
// can simply perform the resolution to determine the sign and width.
simplify(true, false, 1, -1, false, false);
log_assert(type == AST_IDENTIFIER);
detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_FCALL:
if (str == "\\$anyconst" || str == "\\$anyseq" || str == "\\$allconst" || str == "\\$allseq") {
if (GetSize(children) == 1) {
while (children[0]->simplify(true, false, 1, -1, false, true) == true) { }
if (children[0]->type != AST_CONSTANT)
input_error("System function %s called with non-const argument!\n",
RTLIL::unescape_id(str).c_str());
width_hint = max(width_hint, int(children[0]->asInt(true)));
}
break;
}
if (str == "\\$past") {
if (GetSize(children) > 0) {
sub_width_hint = 0;
sub_sign_hint = true;
children.at(0)->detectSignWidthWorker(sub_width_hint, sub_sign_hint);
width_hint = max(width_hint, sub_width_hint);
sign_hint &= sub_sign_hint;
}
break;
}
if (str == "\\$size" || str == "\\$bits" || str == "\\$high" || str == "\\$low" || str == "\\$left" || str == "\\$right") {
width_hint = max(width_hint, 32);
break;
}
if (current_scope.count(str))
{
// This width detection is needed for function calls which are
// unelaborated, which currently applies to calls to functions
// reached via unevaluated ternary branches or used in case or case
// item expressions.
const AstNode *func = current_scope.at(str);
if (func->type != AST_FUNCTION)
input_error("Function call to %s resolved to something that isn't a function!\n", RTLIL::unescape_id(str).c_str());
const AstNode *wire = nullptr;
for (const AstNode *child : func->children)
if (child->str == func->str) {
wire = child;
break;
}
log_assert(wire && wire->type == AST_WIRE);
sign_hint &= wire->is_signed;
int result_width = 1;
if (!wire->children.empty())
{
log_assert(wire->children.size() == 1);
const AstNode *range = wire->children.at(0);
log_assert(range->type == AST_RANGE && range->children.size() == 2);
AstNode *left = range->children.at(0)->clone();
AstNode *right = range->children.at(1)->clone();
while (left->simplify(true, false, 1, -1, false, true)) { }
while (right->simplify(true, false, 1, -1, false, true)) { }
if (left->type != AST_CONSTANT || right->type != AST_CONSTANT)
input_error("Function %s has non-constant width!",
RTLIL::unescape_id(str).c_str());
result_width = abs(int(left->asInt(true) - right->asInt(true)));
delete left;
delete right;
}
width_hint = max(width_hint, result_width);
break;
}
YS_FALLTHROUGH
// everything should have been handled above -> print error if not.
default:
AstNode *current_scope_ast = current_ast_mod == nullptr ? current_ast : current_ast_mod;
for (auto f : log_files)
current_scope_ast->dumpAst(f, "verilog-ast> ");
input_error("Don't know how to detect sign and width for %s node!\n", type2str(type).c_str());
}
if (*found_real)
sign_hint = true;
}
// detect sign and width of an expression
void AstNode::detectSignWidth(int &width_hint, bool &sign_hint, bool *found_real)
{
width_hint = -1;
sign_hint = true;
if (found_real)
*found_real = false;
detectSignWidthWorker(width_hint, sign_hint, found_real);
constexpr int kWidthLimit = 1 << 24;
if (width_hint >= kWidthLimit)
input_error("Expression width %d exceeds implementation limit of %d!\n",
width_hint, kWidthLimit);
}
static void check_unique_id(RTLIL::Module *module, RTLIL::IdString id,
const AstNode *node, const char *to_add_kind)
{
auto already_exists = [&](const RTLIL::AttrObject *existing, const char *existing_kind) {
std::string src = existing->get_string_attribute(ID::src);
std::string location_str = "earlier";
if (!src.empty())
location_str = "at " + src;
node->input_error("Cannot add %s `%s' because a %s with the same name was already created %s!\n",
to_add_kind, id.c_str(), existing_kind, location_str.c_str());
};
if (const RTLIL::Wire *wire = module->wire(id))
already_exists(wire, "signal");
if (const RTLIL::Cell *cell = module->cell(id))
already_exists(cell, "cell");
if (module->processes.count(id))
already_exists(module->processes.at(id), "process");
if (module->memories.count(id))
already_exists(module->memories.at(id), "memory");
}
// create RTLIL from an AST node
// all generated cells, wires and processes are added to the module pointed to by 'current_module'
// when the AST node is an expression (AST_ADD, AST_BIT_XOR, etc.), the result signal is returned.
//
// note that this function is influenced by a number of global variables that might be set when
// called from genWidthRTLIL(). also note that this function recursively calls itself to transform
// larger expressions into a netlist of cells.
RTLIL::SigSpec AstNode::genRTLIL(int width_hint, bool sign_hint)
{
// in the following big switch() statement there are some uses of
// Clifford's Device (http://www.clifford.at/cfun/cliffdev/). In this
// cases this variable is used to hold the type of the cell that should
// be instantiated for this type of AST node.
IdString type_name;
current_filename = filename;
switch (type)
{
// simply ignore this nodes.
// they are either leftovers from simplify() or are referenced by other nodes
// and are only accessed here thru this references
case AST_NONE:
case AST_TASK:
case AST_FUNCTION:
case AST_DPI_FUNCTION:
case AST_AUTOWIRE:
case AST_DEFPARAM:
case AST_GENVAR:
case AST_GENFOR:
case AST_GENBLOCK:
case AST_GENIF:
case AST_GENCASE:
case AST_PACKAGE:
case AST_ENUM:
case AST_MODPORT:
case AST_MODPORTMEMBER:
case AST_TYPEDEF:
case AST_STRUCT:
case AST_UNION:
break;
case AST_INTERFACEPORT: {
// If a port in a module with unknown type is found, mark it with the attribute 'is_interface'
// This is used by the hierarchy pass to know when it can replace interface connection with the individual
// signals.
RTLIL::IdString id = str;
check_unique_id(current_module, id, this, "interface port");
RTLIL::Wire *wire = current_module->addWire(id, 1);
set_src_attr(wire, this);
wire->start_offset = 0;
wire->port_id = port_id;
wire->port_input = true;
wire->port_output = true;
wire->set_bool_attribute(ID::is_interface);
if (children.size() > 0) {
for(size_t i=0; i<children.size();i++) {
if(children[i]->type == AST_INTERFACEPORTTYPE) {
std::pair<std::string,std::string> res = AST::split_modport_from_type(children[i]->str);
wire->attributes[ID::interface_type] = res.first;
if (res.second != "")
wire->attributes[ID::interface_modport] = res.second;
break;
}
}
}
wire->upto = 0;
}
break;
case AST_INTERFACEPORTTYPE:
break;
// remember the parameter, needed for example in techmap
case AST_PARAMETER:
current_module->avail_parameters(str);
if (GetSize(children) >= 1 && children[0]->type == AST_CONSTANT) {
current_module->parameter_default_values[str] = children[0]->asParaConst();
}
YS_FALLTHROUGH
case AST_LOCALPARAM:
if (flag_pwires)
{
if (GetSize(children) < 1 || children[0]->type != AST_CONSTANT)
input_error("Parameter `%s' with non-constant value!\n", str.c_str());
RTLIL::Const val = children[0]->bitsAsConst();
RTLIL::IdString id = str;
check_unique_id(current_module, id, this, "pwire");
RTLIL::Wire *wire = current_module->addWire(id, GetSize(val));
current_module->connect(wire, val);
wire->is_signed = children[0]->is_signed;
set_src_attr(wire, this);
wire->attributes[type == AST_PARAMETER ? ID::parameter : ID::localparam] = 1;
for (auto &attr : attributes) {
if (attr.second->type != AST_CONSTANT)
input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
wire->attributes[attr.first] = attr.second->asAttrConst();
}
}
break;
// create an RTLIL::Wire for an AST_WIRE node
case AST_WIRE: {
if (!range_valid)
input_error("Signal `%s' with non-constant width!\n", str.c_str());
if (!(range_left + 1 >= range_right))
input_error("Signal `%s' with invalid width range %d!\n", str.c_str(), range_left - range_right + 1);
RTLIL::IdString id = str;
check_unique_id(current_module, id, this, "signal");
RTLIL::Wire *wire = current_module->addWire(id, range_left - range_right + 1);
set_src_attr(wire, this);
wire->start_offset = range_right;
wire->port_id = port_id;
wire->port_input = is_input;
wire->port_output = is_output;
wire->upto = range_swapped;
wire->is_signed = is_signed;
for (auto &attr : attributes) {
if (attr.second->type != AST_CONSTANT)
input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
wire->attributes[attr.first] = attr.second->asAttrConst();
}
if (is_wand) wire->set_bool_attribute(ID::wand);
if (is_wor) wire->set_bool_attribute(ID::wor);
}
break;
// create an RTLIL::Memory for an AST_MEMORY node
case AST_MEMORY: {
log_assert(children.size() >= 2);
log_assert(children[0]->type == AST_RANGE);
log_assert(children[1]->type == AST_RANGE);
if (!children[0]->range_valid || !children[1]->range_valid)
input_error("Memory `%s' with non-constant width or size!\n", str.c_str());
RTLIL::Memory *memory = new RTLIL::Memory;
set_src_attr(memory, this);
memory->name = str;
memory->width = children[0]->range_left - children[0]->range_right + 1;
if (children[1]->range_right < children[1]->range_left) {
memory->start_offset = children[1]->range_right;
memory->size = children[1]->range_left - children[1]->range_right + 1;
} else {
memory->start_offset = children[1]->range_left;
memory->size = children[1]->range_right - children[1]->range_left + 1;
}
check_unique_id(current_module, memory->name, this, "memory");
current_module->memories[memory->name] = memory;
for (auto &attr : attributes) {
if (attr.second->type != AST_CONSTANT)
input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
memory->attributes[attr.first] = attr.second->asAttrConst();
}
}
break;
// simply return the corresponding RTLIL::SigSpec for an AST_CONSTANT node
case AST_CONSTANT:
case AST_REALVALUE:
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
is_signed = sign_hint;
if (type == AST_CONSTANT) {
if (is_unsized) {
return RTLIL::SigSpec(bitsAsUnsizedConst(width_hint));
} else {
return RTLIL::SigSpec(bitsAsConst());
}
}
RTLIL::SigSpec sig = realAsConst(width_hint);
log_file_warning(filename, location.first_line, "converting real value %e to binary %s.\n", realvalue, log_signal(sig));
return sig;
}
// simply return the corresponding RTLIL::SigSpec for an AST_IDENTIFIER node
// for identifiers with dynamic bit ranges (e.g. "foo[bar]" or "foo[bar+3:bar]") a
// shifter cell is created and the output signal of this cell is returned
case AST_IDENTIFIER:
{
RTLIL::Wire *wire = NULL;
RTLIL::SigChunk chunk;
bool is_interface = false;
AST::AstNode *member_node = NULL;
int add_undef_bits_msb = 0;
int add_undef_bits_lsb = 0;
log_assert(id2ast != nullptr);
if (id2ast->type == AST_AUTOWIRE && current_module->wires_.count(str) == 0) {
RTLIL::Wire *wire = current_module->addWire(str);
set_src_attr(wire, this);
wire->name = str;
// If we are currently processing a bind directive which wires up
// signals or parameters explicitly, rather than with .*, then
// current_module will start out empty and we don't want to warn the
// user about it: we'll spot broken wiring later, when we run the
// hierarchy pass.
if (dynamic_cast<RTLIL::Binding*>(current_module)) {
/* nothing to do here */
} else if (flag_autowire)
log_file_warning(filename, location.first_line, "Identifier `%s' is implicitly declared.\n", str.c_str());
else
input_error("Identifier `%s' is implicitly declared and `default_nettype is set to none.\n", str.c_str());
}
else if (id2ast->type == AST_PARAMETER || id2ast->type == AST_LOCALPARAM || id2ast->type == AST_ENUM_ITEM) {
if (id2ast->children[0]->type != AST_CONSTANT)
input_error("Parameter %s does not evaluate to constant value!\n", str.c_str());
chunk = RTLIL::Const(id2ast->children[0]->bits);
goto use_const_chunk;
}
else if ((id2ast->type == AST_WIRE || id2ast->type == AST_AUTOWIRE || id2ast->type == AST_MEMORY) && current_module->wires_.count(str) != 0) {
RTLIL::Wire *current_wire = current_module->wire(str);
if (current_wire->get_bool_attribute(ID::is_interface))
is_interface = true;
// Ignore
}
// If an identifier is found that is not already known, assume that it is an interface:
else if (1) { // FIXME: Check if sv_mode first?
is_interface = true;
}
else {
input_error("Identifier `%s' doesn't map to any signal!\n", str.c_str());
}
if (id2ast->type == AST_MEMORY)
input_error("Identifier `%s' does map to an unexpanded memory!\n", str.c_str());
// If identifier is an interface, create a RTLIL::SigSpec with a dummy wire with a attribute called 'is_interface'
// This makes it possible for the hierarchy pass to see what are interface connections and then replace them
// with the individual signals:
if (is_interface) {
IdString dummy_wire_name = stringf("$dummywireforinterface%s", str.c_str());
RTLIL::Wire *dummy_wire = current_module->wire(dummy_wire_name);
if (!dummy_wire) {
dummy_wire = current_module->addWire(dummy_wire_name);
dummy_wire->set_bool_attribute(ID::is_interface);
}
return dummy_wire;
}
wire = current_module->wires_[str];
chunk.wire = wire;
chunk.width = wire->width;
chunk.offset = 0;
if ((member_node = get_struct_member(this))) {
// Clamp wire chunk to range of member within struct/union.
chunk.width = member_node->range_left - member_node->range_right + 1;
chunk.offset = member_node->range_right;
}
use_const_chunk:
if (children.size() != 0) {
if (children[0]->type != AST_RANGE)
input_error("Single range expected.\n");
int source_width = id2ast->range_left - id2ast->range_right + 1;
int source_offset = id2ast->range_right;
int chunk_left = source_width - 1;
int chunk_right = 0;
if (member_node) {
// Clamp wire chunk to range of member within struct/union.
log_assert(!source_offset && !id2ast->range_swapped);
chunk_left = chunk.offset + chunk.width - 1;
chunk_right = chunk.offset;
}
if (!children[0]->range_valid) {
AstNode *left_at_zero_ast = children[0]->children[0]->clone_at_zero();
AstNode *right_at_zero_ast = children[0]->children.size() >= 2 ? children[0]->children[1]->clone_at_zero() : left_at_zero_ast->clone();
while (left_at_zero_ast->simplify(true, false, 1, -1, false, false)) { }
while (right_at_zero_ast->simplify(true, false, 1, -1, false, false)) { }
if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT)
input_error("Unsupported expression on dynamic range select on signal `%s'!\n", str.c_str());
int width = abs(int(left_at_zero_ast->integer - right_at_zero_ast->integer)) + 1;
AstNode *fake_ast = new AstNode(AST_NONE, clone(), children[0]->children.size() >= 2 ?
children[0]->children[1]->clone() : children[0]->children[0]->clone());
fake_ast->children[0]->delete_children();
if (member_node)
fake_ast->children[0]->attributes[ID::wiretype] = member_node->clone();
int fake_ast_width = 0;
bool fake_ast_sign = true;
fake_ast->children[1]->detectSignWidth(fake_ast_width, fake_ast_sign);
RTLIL::SigSpec shift_val = fake_ast->children[1]->genRTLIL(fake_ast_width, fake_ast_sign);
if (source_offset != 0) {
shift_val = current_module->Sub(NEW_ID, shift_val, source_offset, fake_ast_sign);
fake_ast->children[1]->is_signed = true;
}
if (id2ast->range_swapped) {
shift_val = current_module->Sub(NEW_ID, RTLIL::SigSpec(source_width - width), shift_val, fake_ast_sign);
fake_ast->children[1]->is_signed = true;
}
if (GetSize(shift_val) >= 32)
fake_ast->children[1]->is_signed = true;
RTLIL::SigSpec sig = binop2rtlil(fake_ast, ID($shiftx), width, fake_ast->children[0]->genRTLIL(), shift_val);
delete left_at_zero_ast;
delete right_at_zero_ast;
delete fake_ast;
return sig;
} else {
chunk.width = children[0]->range_left - children[0]->range_right + 1;
chunk.offset += children[0]->range_right - source_offset;
if (id2ast->range_swapped)
chunk.offset = source_width - (chunk.offset + chunk.width);
if (chunk.offset > chunk_left || chunk.offset + chunk.width < chunk_right) {
if (chunk.width == 1)
log_file_warning(filename, location.first_line, "Range select out of bounds on signal `%s': Setting result bit to undef.\n",
str.c_str());
else
log_file_warning(filename, location.first_line, "Range select [%d:%d] out of bounds on signal `%s': Setting all %d result bits to undef.\n",
children[0]->range_left, children[0]->range_right, str.c_str(), chunk.width);
chunk = RTLIL::SigChunk(RTLIL::State::Sx, chunk.width);
} else {
if (chunk.offset + chunk.width - 1 > chunk_left) {
add_undef_bits_msb = (chunk.offset + chunk.width - 1) - chunk_left;
chunk.width -= add_undef_bits_msb;
}
if (chunk.offset < chunk_right) {
add_undef_bits_lsb = chunk_right - chunk.offset;
chunk.width -= add_undef_bits_lsb;
chunk.offset += add_undef_bits_lsb;
}
if (add_undef_bits_lsb)
log_file_warning(filename, location.first_line, "Range [%d:%d] select out of bounds on signal `%s': Setting %d LSB bits to undef.\n",
children[0]->range_left, children[0]->range_right, str.c_str(), add_undef_bits_lsb);
if (add_undef_bits_msb)
log_file_warning(filename, location.first_line, "Range [%d:%d] select out of bounds on signal `%s': Setting %d MSB bits to undef.\n",
children[0]->range_left, children[0]->range_right, str.c_str(), add_undef_bits_msb);
}
}
}
RTLIL::SigSpec sig = { RTLIL::SigSpec(RTLIL::State::Sx, add_undef_bits_msb), chunk, RTLIL::SigSpec(RTLIL::State::Sx, add_undef_bits_lsb) };
if (genRTLIL_subst_ptr)
sig.replace(*genRTLIL_subst_ptr);
is_signed = children.size() > 0 ? false : id2ast->is_signed && sign_hint;
return sig;
}
// just pass thru the signal. the parent will evaluate the is_signed property and interpret the SigSpec accordingly
case AST_TO_SIGNED:
case AST_TO_UNSIGNED:
case AST_SELFSZ: {
RTLIL::SigSpec sig = children[0]->genRTLIL();
if (sig.size() < width_hint)
sig.extend_u0(width_hint, sign_hint);
is_signed = sign_hint;
return sig;
}
// changing the size of signal can be done directly using RTLIL::SigSpec
case AST_CAST_SIZE: {
RTLIL::SigSpec size = children[0]->genRTLIL();
if (!size.is_fully_const())
input_error("Static cast with non constant expression!\n");
int width = size.as_int();
if (width <= 0)
input_error("Static cast with zero or negative size!\n");
// determine the *signedness* of the expression
int sub_width_hint = -1;
bool sub_sign_hint = true;
children[1]->detectSignWidth(sub_width_hint, sub_sign_hint);
// generate the signal given the *cast's* size and the
// *expression's* signedness
RTLIL::SigSpec sig = children[1]->genWidthRTLIL(width, sub_sign_hint);
// context may effect this node's signedness, but not that of the
// casted expression
is_signed = sign_hint;
return sig;
}
// concatenation of signals can be done directly using RTLIL::SigSpec
case AST_CONCAT: {
RTLIL::SigSpec sig;
for (auto it = children.begin(); it != children.end(); it++)
sig.append((*it)->genRTLIL());
if (sig.size() < width_hint)
sig.extend_u0(width_hint, false);
return sig;
}
// replication of signals can be done directly using RTLIL::SigSpec
case AST_REPLICATE: {
RTLIL::SigSpec left = children[0]->genRTLIL();
RTLIL::SigSpec right = children[1]->genRTLIL();
if (!left.is_fully_const())
input_error("Left operand of replicate expression is not constant!\n");
int count = left.as_int();
RTLIL::SigSpec sig;
for (int i = 0; i < count; i++)
sig.append(right);
if (sig.size() < width_hint)
sig.extend_u0(width_hint, false);
is_signed = false;
return sig;
}
// generate cells for unary operations: $not, $pos, $neg
if (0) { case AST_BIT_NOT: type_name = ID($not); }
if (0) { case AST_POS: type_name = ID($pos); }
if (0) { case AST_NEG: type_name = ID($neg); }
{
RTLIL::SigSpec arg = children[0]->genRTLIL(width_hint, sign_hint);
is_signed = children[0]->is_signed;
int width = arg.size();
if (width_hint > 0) {
width = width_hint;
widthExtend(this, arg, width, is_signed);
}
return uniop2rtlil(this, type_name, width, arg);
}
// generate cells for binary operations: $and, $or, $xor, $xnor
if (0) { case AST_BIT_AND: type_name = ID($and); }
if (0) { case AST_BIT_OR: type_name = ID($or); }
if (0) { case AST_BIT_XOR: type_name = ID($xor); }
if (0) { case AST_BIT_XNOR: type_name = ID($xnor); }
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint);
int width = max(left.size(), right.size());
if (width_hint > 0)
width = width_hint;
is_signed = children[0]->is_signed && children[1]->is_signed;
return binop2rtlil(this, type_name, width, left, right);
}
// generate cells for unary operations: $reduce_and, $reduce_or, $reduce_xor, $reduce_xnor
if (0) { case AST_REDUCE_AND: type_name = ID($reduce_and); }
if (0) { case AST_REDUCE_OR: type_name = ID($reduce_or); }
if (0) { case AST_REDUCE_XOR: type_name = ID($reduce_xor); }
if (0) { case AST_REDUCE_XNOR: type_name = ID($reduce_xnor); }
{
RTLIL::SigSpec arg = children[0]->genRTLIL();
RTLIL::SigSpec sig = uniop2rtlil(this, type_name, max(width_hint, 1), arg);
return sig;
}
// generate cells for unary operations: $reduce_bool
// (this is actually just an $reduce_or, but for clarity a different cell type is used)
if (0) { case AST_REDUCE_BOOL: type_name = ID($reduce_bool); }
{
RTLIL::SigSpec arg = children[0]->genRTLIL();
RTLIL::SigSpec sig = arg.size() > 1 ? uniop2rtlil(this, type_name, max(width_hint, 1), arg) : arg;
return sig;
}
// generate cells for binary operations: $shl, $shr, $sshl, $sshr
if (0) { case AST_SHIFT_LEFT: type_name = ID($shl); }
if (0) { case AST_SHIFT_RIGHT: type_name = ID($shr); }
if (0) { case AST_SHIFT_SLEFT: type_name = ID($sshl); }
if (0) { case AST_SHIFT_SRIGHT: type_name = ID($sshr); }
if (0) { case AST_SHIFTX: type_name = ID($shiftx); }
if (0) { case AST_SHIFT: type_name = ID($shift); }
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL();
int width = width_hint > 0 ? width_hint : left.size();
is_signed = children[0]->is_signed;
return binop2rtlil(this, type_name, width, left, right);
}
// generate cells for binary operations: $pow
case AST_POW:
{
int right_width;
bool right_signed;
children[1]->detectSignWidth(right_width, right_signed);
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL(right_width, right_signed);
int width = width_hint > 0 ? width_hint : left.size();
is_signed = children[0]->is_signed;
if (!flag_noopt && left.is_fully_const() && left.as_int() == 2 && !right_signed)
return binop2rtlil(this, ID($shl), width, RTLIL::SigSpec(1, left.size()), right);
return binop2rtlil(this, ID($pow), width, left, right);
}
// generate cells for binary operations: $lt, $le, $eq, $ne, $ge, $gt
if (0) { case AST_LT: type_name = ID($lt); }
if (0) { case AST_LE: type_name = ID($le); }
if (0) { case AST_EQ: type_name = ID($eq); }
if (0) { case AST_NE: type_name = ID($ne); }
if (0) { case AST_EQX: type_name = ID($eqx); }
if (0) { case AST_NEX: type_name = ID($nex); }
if (0) { case AST_GE: type_name = ID($ge); }
if (0) { case AST_GT: type_name = ID($gt); }
{
int width = max(width_hint, 1);
width_hint = -1, sign_hint = true;
children[0]->detectSignWidthWorker(width_hint, sign_hint);
children[1]->detectSignWidthWorker(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec sig = binop2rtlil(this, type_name, width, left, right);
return sig;
}
// generate cells for binary operations: $add, $sub, $mul, $div, $mod
if (0) { case AST_ADD: type_name = ID($add); }
if (0) { case AST_SUB: type_name = ID($sub); }
if (0) { case AST_MUL: type_name = ID($mul); }
if (0) { case AST_DIV: type_name = ID($div); }
if (0) { case AST_MOD: type_name = ID($mod); }
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint);
#if 0
int width = max(left.size(), right.size());
if (width > width_hint && width_hint > 0)
width = width_hint;
if (width < width_hint) {
if (type == AST_ADD || type == AST_SUB || type == AST_DIV)
width++;
if (type == AST_SUB && (!children[0]->is_signed || !children[1]->is_signed))
width = width_hint;
if (type == AST_MUL)
width = min(left.size() + right.size(), width_hint);
}
#else
int width = max(max(left.size(), right.size()), width_hint);
#endif
is_signed = children[0]->is_signed && children[1]->is_signed;
return binop2rtlil(this, type_name, width, left, right);
}
// generate cells for binary operations: $logic_and, $logic_or
if (0) { case AST_LOGIC_AND: type_name = ID($logic_and); }
if (0) { case AST_LOGIC_OR: type_name = ID($logic_or); }
{
RTLIL::SigSpec left = children[0]->genRTLIL();
RTLIL::SigSpec right = children[1]->genRTLIL();
return binop2rtlil(this, type_name, max(width_hint, 1), left, right);
}
// generate cells for unary operations: $logic_not
case AST_LOGIC_NOT:
{
RTLIL::SigSpec arg = children[0]->genRTLIL();
return uniop2rtlil(this, ID($logic_not), max(width_hint, 1), arg);
}
// generate multiplexer for ternary operator (aka ?:-operator)
case AST_TERNARY:
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
is_signed = sign_hint;
RTLIL::SigSpec cond = children[0]->genRTLIL();
RTLIL::SigSpec sig;
if (cond.is_fully_def())
{
if (cond.as_bool()) {
sig = children[1]->genRTLIL(width_hint, sign_hint);
log_assert(is_signed == children[1]->is_signed);
} else {
sig = children[2]->genRTLIL(width_hint, sign_hint);
log_assert(is_signed == children[2]->is_signed);
}
widthExtend(this, sig, sig.size(), is_signed);
}
else
{
RTLIL::SigSpec val1 = children[1]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec val2 = children[2]->genRTLIL(width_hint, sign_hint);
if (cond.size() > 1)
cond = uniop2rtlil(this, ID($reduce_bool), 1, cond, false);
int width = max(val1.size(), val2.size());
log_assert(is_signed == children[1]->is_signed);
log_assert(is_signed == children[2]->is_signed);
widthExtend(this, val1, width, is_signed);
widthExtend(this, val2, width, is_signed);
sig = mux2rtlil(this, cond, val1, val2);
}
if (sig.size() < width_hint)
sig.extend_u0(width_hint, sign_hint);
return sig;
}
// generate $memrd cells for memory read ports
case AST_MEMRD:
{
std::stringstream sstr;
sstr << "$memrd$" << str << "$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), ID($memrd));
set_src_attr(cell, this);
RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_DATA", current_module->memories[str]->width);
set_src_attr(wire, this);
int mem_width, mem_size, addr_bits;
is_signed = id2ast->is_signed;
wire->is_signed = is_signed;
id2ast->meminfo(mem_width, mem_size, addr_bits);
RTLIL::SigSpec addr_sig = children[0]->genRTLIL();
cell->setPort(ID::CLK, RTLIL::SigSpec(RTLIL::State::Sx, 1));
cell->setPort(ID::EN, RTLIL::SigSpec(RTLIL::State::Sx, 1));
cell->setPort(ID::ADDR, addr_sig);
cell->setPort(ID::DATA, RTLIL::SigSpec(wire));
cell->parameters[ID::MEMID] = RTLIL::Const(str);
cell->parameters[ID::ABITS] = RTLIL::Const(GetSize(addr_sig));
cell->parameters[ID::WIDTH] = RTLIL::Const(wire->width);
cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(0);
cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(0);
cell->parameters[ID::TRANSPARENT] = RTLIL::Const(0);
if (!sign_hint)
is_signed = false;
return RTLIL::SigSpec(wire);
}
// generate $meminit cells
case AST_MEMINIT:
{
std::stringstream sstr;
sstr << "$meminit$" << str << "$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++);
SigSpec en_sig = children[2]->genRTLIL();
RTLIL::Cell *cell = current_module->addCell(sstr.str(), ID($meminit_v2));
set_src_attr(cell, this);
int mem_width, mem_size, addr_bits;
id2ast->meminfo(mem_width, mem_size, addr_bits);
if (children[3]->type != AST_CONSTANT)
input_error("Memory init with non-constant word count!\n");
int num_words = int(children[3]->asInt(false));
cell->parameters[ID::WORDS] = RTLIL::Const(num_words);
SigSpec addr_sig = children[0]->genRTLIL();
cell->setPort(ID::ADDR, addr_sig);
cell->setPort(ID::DATA, children[1]->genWidthRTLIL(current_module->memories[str]->width * num_words, true));
cell->setPort(ID::EN, en_sig);
cell->parameters[ID::MEMID] = RTLIL::Const(str);
cell->parameters[ID::ABITS] = RTLIL::Const(GetSize(addr_sig));
cell->parameters[ID::WIDTH] = RTLIL::Const(current_module->memories[str]->width);
cell->parameters[ID::PRIORITY] = RTLIL::Const(autoidx-1);
}
break;
// generate $assert cells
case AST_ASSERT:
case AST_ASSUME:
case AST_LIVE:
case AST_FAIR:
case AST_COVER:
{
IdString celltype;
if (type == AST_ASSERT) celltype = ID($assert);
if (type == AST_ASSUME) celltype = ID($assume);
if (type == AST_LIVE) celltype = ID($live);
if (type == AST_FAIR) celltype = ID($fair);
if (type == AST_COVER) celltype = ID($cover);
log_assert(children.size() == 2);
RTLIL::SigSpec check = children[0]->genRTLIL();
if (GetSize(check) != 1)
check = current_module->ReduceBool(NEW_ID, check);
RTLIL::SigSpec en = children[1]->genRTLIL();
if (GetSize(en) != 1)
en = current_module->ReduceBool(NEW_ID, en);
IdString cellname;
if (str.empty())
cellname = stringf("%s$%s:%d$%d", celltype.c_str(), RTLIL::encode_filename(filename).c_str(), location.first_line, autoidx++);
else
cellname = str;
check_unique_id(current_module, cellname, this, "procedural assertion");
RTLIL::Cell *cell = current_module->addCell(cellname, celltype);
set_src_attr(cell, this);
for (auto &attr : attributes) {
if (attr.second->type != AST_CONSTANT)
input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str());
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->setPort(ID::A, check);
cell->setPort(ID::EN, en);
}
break;
// add entries to current_module->connections for assignments (outside of always blocks)
case AST_ASSIGN:
{
RTLIL::SigSpec left = children[0]->genRTLIL();
RTLIL::SigSpec right = children[1]->genWidthRTLIL(left.size(), true);
if (left.has_const()) {
RTLIL::SigSpec new_left, new_right;
for (int i = 0; i < GetSize(left); i++)
if (left[i].wire) {
new_left.append(left[i]);
new_right.append(right[i]);
}
log_file_warning(filename, location.first_line, "Ignoring assignment to constant bits:\n"
" old assignment: %s = %s\n new assignment: %s = %s.\n",
log_signal(left), log_signal(right),
log_signal(new_left), log_signal(new_right));
left = new_left;
right = new_right;
}
current_module->connect(RTLIL::SigSig(left, right));
}
break;
// create an RTLIL::Cell for an AST_CELL
case AST_CELL:
{
int port_counter = 0, para_counter = 0;
RTLIL::IdString id = str;
check_unique_id(current_module, id, this, "cell");
RTLIL::Cell *cell = current_module->addCell(id, "");
set_src_attr(cell, this);
// Set attribute 'module_not_derived' which will be cleared again after the hierarchy pass
cell->set_bool_attribute(ID::module_not_derived);
for (auto it = children.begin(); it != children.end(); it++) {
AstNode *child = *it;
if (child->type == AST_CELLTYPE) {
cell->type = child->str;
if (flag_icells && cell->type.begins_with("\\$"))
cell->type = cell->type.substr(1);
continue;
}
if (child->type == AST_PARASET) {
IdString paraname = child->str.empty() ? stringf("$%d", ++para_counter) : child->str;
const AstNode *value = child->children[0];
if (value->type == AST_REALVALUE)
log_file_warning(filename, location.first_line, "Replacing floating point parameter %s.%s = %f with string.\n",
log_id(cell), log_id(paraname), value->realvalue);
else if (value->type != AST_CONSTANT)
input_error("Parameter %s.%s with non-constant value!\n",
log_id(cell), log_id(paraname));
cell->parameters[paraname] = value->asParaConst();
continue;
}
if (child->type == AST_ARGUMENT) {
RTLIL::SigSpec sig;
if (child->children.size() > 0) {
AstNode *arg = child->children[0];
int local_width_hint = -1;
bool local_sign_hint = false;
// don't inadvertently attempt to detect the width of interfaces
if (arg->type != AST_IDENTIFIER || !arg->id2ast || arg->id2ast->type != AST_CELL)
arg->detectSignWidth(local_width_hint, local_sign_hint);
sig = arg->genRTLIL(local_width_hint, local_sign_hint);
log_assert(local_sign_hint == arg->is_signed);
if (sig.is_wire()) {
// if the resulting SigSpec is a wire, its
// signedness should match that of the AstNode
if (arg->type == AST_IDENTIFIER && arg->id2ast && arg->id2ast->is_signed && !arg->is_signed)
// fully-sliced signed wire will be resolved
// once the module becomes available
log_assert(attributes.count(ID::reprocess_after));
else
log_assert(arg->is_signed == sig.as_wire()->is_signed);
} else if (arg->is_signed) {
// non-trivial signed nodes are indirected through
// signed wires to enable sign extension
RTLIL::IdString wire_name = NEW_ID;
RTLIL::Wire *wire = current_module->addWire(wire_name, GetSize(sig));
wire->is_signed = true;
current_module->connect(wire, sig);
sig = wire;
}
}
if (child->str.size() == 0) {
char buf[100];
snprintf(buf, 100, "$%d", ++port_counter);
cell->setPort(buf, sig);
} else {
cell->setPort(child->str, sig);
}
continue;
}
log_abort();
}
for (auto &attr : attributes) {
if (attr.second->type != AST_CONSTANT)
input_error("Attribute `%s' with non-constant value.\n", attr.first.c_str());
cell->attributes[attr.first] = attr.second->asAttrConst();
}
if (cell->type == ID($specify2)) {
int src_width = GetSize(cell->getPort(ID::SRC));
int dst_width = GetSize(cell->getPort(ID::DST));
bool full = cell->getParam(ID::FULL).as_bool();
if (!full && src_width != dst_width)
input_error("Parallel specify SRC width does not match DST width.\n");
cell->setParam(ID::SRC_WIDTH, Const(src_width));
cell->setParam(ID::DST_WIDTH, Const(dst_width));
}
else if (cell->type == ID($specify3)) {
int dat_width = GetSize(cell->getPort(ID::DAT));
int dst_width = GetSize(cell->getPort(ID::DST));
if (dat_width != dst_width)
input_error("Specify DAT width does not match DST width.\n");
int src_width = GetSize(cell->getPort(ID::SRC));
cell->setParam(ID::SRC_WIDTH, Const(src_width));
cell->setParam(ID::DST_WIDTH, Const(dst_width));
}
else if (cell->type == ID($specrule)) {
int src_width = GetSize(cell->getPort(ID::SRC));
int dst_width = GetSize(cell->getPort(ID::DST));
cell->setParam(ID::SRC_WIDTH, Const(src_width));
cell->setParam(ID::DST_WIDTH, Const(dst_width));
}
}
break;
// use ProcessGenerator for always blocks
case AST_ALWAYS: {
AstNode *always = this->clone();
ProcessGenerator generator(always);
ignoreThisSignalsInInitial.append(generator.outputSignals);
delete always;
} break;
case AST_INITIAL: {
AstNode *always = this->clone();
ProcessGenerator generator(always, ignoreThisSignalsInInitial);
delete always;
} break;
case AST_TECALL: {
int sz = children.size();
if (str == "$info") {
if (sz > 0)
log_file_info(filename, location.first_line, "%s.\n", children[0]->str.c_str());
else
log_file_info(filename, location.first_line, "\n");
} else if (str == "$warning") {
if (sz > 0)
log_file_warning(filename, location.first_line, "%s.\n", children[0]->str.c_str());
else
log_file_warning(filename, location.first_line, "\n");
} else if (str == "$error") {
if (sz > 0)
input_error("%s.\n", children[0]->str.c_str());
else
input_error("\n");
} else if (str == "$fatal") {
// TODO: 1st parameter, if exists, is 0,1 or 2, and passed to $finish()
// if no parameter is given, default value is 1
// dollar_finish(sz ? children[0] : 1);
// perhaps create & use log_file_fatal()
if (sz > 0)
input_error("FATAL: %s.\n", children[0]->str.c_str());
else
input_error("FATAL.\n");
} else {
input_error("Unknown elabortoon system task '%s'.\n", str.c_str());
}
} break;
case AST_BIND: {
// Read a bind construct. This should have one or more cells as children.
for (RTLIL::Binding *binding : genBindings())
current_module->add(binding);
break;
}
case AST_FCALL: {
if (str == "\\$anyconst" || str == "\\$anyseq" || str == "\\$allconst" || str == "\\$allseq")
{
string myid = stringf("%s$%d", str.c_str() + 1, autoidx++);
int width = width_hint;
if (GetSize(children) > 1)
input_error("System function %s got %d arguments, expected 1 or 0.\n",
RTLIL::unescape_id(str).c_str(), GetSize(children));
if (GetSize(children) == 1) {
if (children[0]->type != AST_CONSTANT)
input_error("System function %s called with non-const argument!\n",
RTLIL::unescape_id(str).c_str());
width = children[0]->asInt(true);
}
if (width <= 0)
input_error("Failed to detect width of %s!\n", RTLIL::unescape_id(str).c_str());
Cell *cell = current_module->addCell(myid, str.substr(1));
set_src_attr(cell, this);
cell->parameters[ID::WIDTH] = width;
if (attributes.count(ID::reg)) {
auto &attr = attributes.at(ID::reg);
if (attr->type != AST_CONSTANT)
input_error("Attribute `reg' with non-constant value!\n");
cell->attributes[ID::reg] = attr->asAttrConst();
}
Wire *wire = current_module->addWire(myid + "_wire", width);
set_src_attr(wire, this);
cell->setPort(ID::Y, wire);
is_signed = sign_hint;
return SigSpec(wire);
}
}
YS_FALLTHROUGH
// everything should have been handled above -> print error if not.
default:
for (auto f : log_files)
current_ast_mod->dumpAst(f, "verilog-ast> ");
input_error("Don't know how to generate RTLIL code for %s node!\n", type2str(type).c_str());
}
return RTLIL::SigSpec();
}
// this is a wrapper for AstNode::genRTLIL() when a specific signal width is requested and/or
// signals must be substituted before being used as input values (used by ProcessGenerator)
// note that this is using some global variables to communicate this special settings to AstNode::genRTLIL().
RTLIL::SigSpec AstNode::genWidthRTLIL(int width, bool sgn, const dict<RTLIL::SigBit, RTLIL::SigBit> *new_subst_ptr)
{
const dict<RTLIL::SigBit, RTLIL::SigBit> *backup_subst_ptr = genRTLIL_subst_ptr;
if (new_subst_ptr)
genRTLIL_subst_ptr = new_subst_ptr;
bool sign_hint = sgn;
int width_hint = width;
detectSignWidthWorker(width_hint, sign_hint);
RTLIL::SigSpec sig = genRTLIL(width_hint, sign_hint);
genRTLIL_subst_ptr = backup_subst_ptr;
if (width >= 0)
sig.extend_u0(width, is_signed);
return sig;
}
YOSYS_NAMESPACE_END