yosys/passes/techmap/clkbufmap.cc

340 lines
12 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* Copyright (C) 2019 Marcin Kościelnicki <mwk@0x04.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
void split_portname_pair(std::string &port1, std::string &port2)
{
size_t pos = port1.find_first_of(':');
if (pos != std::string::npos) {
port2 = port1.substr(pos+1);
port1 = port1.substr(0, pos);
}
}
struct ClkbufmapPass : public Pass {
ClkbufmapPass() : Pass("clkbufmap", "insert global buffers on clock networks") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" clkbufmap [options] [selection]\n");
log("\n");
log("Inserts global buffers between nets connected to clock inputs and their drivers.\n");
log("\n");
log("In the absence of any selection, all wires without the 'clkbuf_inhibit'\n");
log("attribute will be considered for global buffer insertion.\n");
log("Alternatively, to consider all wires without the 'buffer_type' attribute set to\n");
log("'none' or 'bufr' one would specify:\n");
log(" 'w:* a:buffer_type=none a:buffer_type=bufr %%u %%d'\n");
log("as the selection.\n");
log("\n");
log(" -buf <celltype> <portname_out>:<portname_in>\n");
log(" Specifies the cell type to use for the global buffers\n");
log(" and its port names. The first port will be connected to\n");
log(" the clock network sinks, and the second will be connected\n");
log(" to the actual clock source. This option is required.\n");
log("\n");
log(" -inpad <celltype> <portname_out>:<portname_in>\n");
log(" If specified, a PAD cell of the given type is inserted on\n");
log(" clock nets that are also top module's inputs (in addition\n");
log(" to the global buffer).\n");
log("\n");
}
void module_queue(Design *design, Module *module, std::vector<Module *> &modules_sorted, pool<Module *> &modules_processed) {
if (modules_processed.count(module))
return;
for (auto cell : module->cells()) {
Module *submodule = design->module(cell->type);
if (!submodule)
continue;
module_queue(design, submodule, modules_sorted, modules_processed);
}
modules_sorted.push_back(module);
modules_processed.insert(module);
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing CLKBUFMAP pass (inserting global clock buffers).\n");
std::string buf_celltype, buf_portname, buf_portname2;
std::string inpad_celltype, inpad_portname, inpad_portname2;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
std::string arg = args[argidx];
if (arg == "-buf" && argidx+2 < args.size()) {
buf_celltype = args[++argidx];
buf_portname = args[++argidx];
split_portname_pair(buf_portname, buf_portname2);
continue;
}
if (arg == "-inpad" && argidx+2 < args.size()) {
inpad_celltype = args[++argidx];
inpad_portname = args[++argidx];
split_portname_pair(inpad_portname, inpad_portname2);
continue;
}
break;
}
bool select = false;
if (argidx < args.size()) {
if (args[argidx].compare(0, 1, "-") != 0)
select = true;
extra_args(args, argidx, design);
}
if (buf_celltype.empty())
log_error("The -buf option is required.\n");
// Cell type, port name, bit index.
pool<pair<IdString, pair<IdString, int>>> sink_ports;
pool<pair<IdString, pair<IdString, int>>> buf_ports;
dict<pair<IdString, pair<IdString, int>>, pair<IdString, int>> inv_ports_out;
dict<pair<IdString, pair<IdString, int>>, pair<IdString, int>> inv_ports_in;
// Process submodules before module using them.
std::vector<Module *> modules_sorted;
pool<Module *> modules_processed;
for (auto module : design->selected_modules())
module_queue(design, module, modules_sorted, modules_processed);
for (auto module : modules_sorted)
{
if (module->get_blackbox_attribute()) {
for (auto port : module->ports) {
auto wire = module->wire(port);
if (wire->get_bool_attribute(ID::clkbuf_driver))
for (int i = 0; i < GetSize(wire); i++)
buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
if (wire->get_bool_attribute(ID::clkbuf_sink))
for (int i = 0; i < GetSize(wire); i++)
sink_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
auto it = wire->attributes.find(ID::clkbuf_inv);
if (it != wire->attributes.end()) {
IdString in_name = RTLIL::escape_id(it->second.decode_string());
for (int i = 0; i < GetSize(wire); i++) {
inv_ports_out[make_pair(module->name, make_pair(wire->name, i))] = make_pair(in_name, i);
inv_ports_in[make_pair(module->name, make_pair(in_name, i))] = make_pair(wire->name, i);
}
}
}
continue;
}
pool<SigBit> sink_wire_bits;
pool<SigBit> buf_wire_bits;
pool<SigBit> driven_wire_bits;
SigMap sigmap(module);
// bit -> (buffer, buffer's input)
dict<SigBit, pair<Cell *, Wire *>> buffered_bits;
// First, collect nets that could use a clock buffer.
for (auto cell : module->cells())
for (auto port : cell->connections())
for (int i = 0; i < port.second.size(); i++)
if (sink_ports.count(make_pair(cell->type, make_pair(port.first, i))))
sink_wire_bits.insert(sigmap(port.second[i]));
// Second, collect ones that already have a clock buffer.
for (auto cell : module->cells())
for (auto port : cell->connections())
for (int i = 0; i < port.second.size(); i++)
if (buf_ports.count(make_pair(cell->type, make_pair(port.first, i))))
buf_wire_bits.insert(sigmap(port.second[i]));
// Third, propagate tags through inverters.
bool retry = true;
while (retry) {
retry = false;
for (auto cell : module->cells())
for (auto port : cell->connections())
for (int i = 0; i < port.second.size(); i++) {
auto it = inv_ports_out.find(make_pair(cell->type, make_pair(port.first, i)));
auto bit = sigmap(port.second[i]);
// If output of an inverter is connected to a sink, mark it as buffered,
// and request a buffer on the inverter's input instead.
if (it != inv_ports_out.end() && !buf_wire_bits.count(bit) && sink_wire_bits.count(bit)) {
buf_wire_bits.insert(bit);
auto other_bit = sigmap(cell->getPort(it->second.first)[it->second.second]);
sink_wire_bits.insert(other_bit);
retry = true;
}
// If input of an inverter is marked as already-buffered,
// mark its output already-buffered as well.
auto it2 = inv_ports_in.find(make_pair(cell->type, make_pair(port.first, i)));
if (it2 != inv_ports_in.end() && buf_wire_bits.count(bit)) {
auto other_bit = sigmap(cell->getPort(it2->second.first)[it2->second.second]);
if (!buf_wire_bits.count(other_bit)) {
buf_wire_bits.insert(other_bit);
retry = true;
}
}
}
};
// Collect all driven bits.
for (auto cell : module->cells())
for (auto port : cell->connections())
if (cell->output(port.first))
for (int i = 0; i < port.second.size(); i++)
driven_wire_bits.insert(port.second[i]);
// Insert buffers.
std::vector<pair<Wire *, Wire *>> input_queue;
// Copy current wire list, as we will be adding new ones during iteration.
std::vector<Wire *> wires(module->wires());
for (auto wire : wires)
{
// Should not happen.
if (wire->port_input && wire->port_output)
continue;
bool process_wire = module->selected(wire);
if (!select && wire->get_bool_attribute(ID::clkbuf_inhibit))
process_wire = false;
if (!process_wire) {
// This wire is supposed to be bypassed, so make sure we don't buffer it in
// some buffer higher up in the hierarchy.
if (wire->port_output)
for (int i = 0; i < GetSize(wire); i++)
buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
continue;
}
pool<int> input_bits;
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wire_bit(wire, i);
SigBit mapped_wire_bit = sigmap(wire_bit);
if (buf_wire_bits.count(mapped_wire_bit)) {
// Already buffered downstream. If this is an output, mark it.
if (wire->port_output)
buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
} else if (!sink_wire_bits.count(mapped_wire_bit)) {
// Nothing to do.
} else if (driven_wire_bits.count(wire_bit) || (wire->port_input && module->get_bool_attribute(ID::top))) {
// Clock network not yet buffered, driven by one of
// our cells or a top-level input -- buffer it.
log("Inserting %s on %s.%s[%d].\n", buf_celltype.c_str(), log_id(module), log_id(wire), i);
RTLIL::Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(buf_celltype));
Wire *iwire = module->addWire(NEW_ID);
cell->setPort(RTLIL::escape_id(buf_portname), mapped_wire_bit);
cell->setPort(RTLIL::escape_id(buf_portname2), iwire);
if (wire->port_input && !inpad_celltype.empty() && module->get_bool_attribute(ID::top)) {
log("Inserting %s on %s.%s[%d].\n", inpad_celltype.c_str(), log_id(module), log_id(wire), i);
RTLIL::Cell *cell2 = module->addCell(NEW_ID, RTLIL::escape_id(inpad_celltype));
cell2->setPort(RTLIL::escape_id(inpad_portname), iwire);
iwire = module->addWire(NEW_ID);
cell2->setPort(RTLIL::escape_id(inpad_portname2), iwire);
}
buffered_bits[mapped_wire_bit] = make_pair(cell, iwire);
if (wire->port_input) {
input_bits.insert(i);
}
} else if (wire->port_input) {
// A clock input in a submodule -- mark it, let higher level
// worry about it.
if (wire->port_input)
sink_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
}
}
if (!input_bits.empty()) {
// This is an input port and some buffers were inserted -- we need
// to create a new input wire and transfer attributes.
Wire *new_wire = module->addWire(NEW_ID, wire);
for (int i = 0; i < wire->width; i++) {
SigBit wire_bit(wire, i);
SigBit mapped_wire_bit = sigmap(wire_bit);
auto it = buffered_bits.find(mapped_wire_bit);
if (it != buffered_bits.end()) {
module->connect(it->second.second, SigSpec(new_wire, i));
} else {
module->connect(SigSpec(wire, i), SigSpec(new_wire, i));
}
}
input_queue.push_back(make_pair(wire, new_wire));
}
}
// Mark any newly-buffered output ports as such.
for (auto wire : module->selected_wires()) {
if (wire->port_input || !wire->port_output)
continue;
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wire_bit(wire, i);
SigBit mapped_wire_bit = sigmap(wire_bit);
if (buffered_bits.count(mapped_wire_bit))
buf_ports.insert(make_pair(module->name, make_pair(wire->name, i)));
}
}
// Reconnect the drivers to buffer inputs.
for (auto cell : module->cells())
for (auto port : cell->connections()) {
if (!cell->output(port.first))
continue;
SigSpec sig = port.second;
bool newsig = false;
for (auto &bit : sig) {
const auto it = buffered_bits.find(sigmap(bit));
if (it == buffered_bits.end())
continue;
// Avoid substituting buffer's own output pin.
if (cell == it->second.first)
continue;
bit = it->second.second;
newsig = true;
}
if (newsig)
cell->setPort(port.first, sig);
}
// This has to be done last, to avoid upsetting sigmap before the port reconnections.
for (auto &it : input_queue) {
Wire *wire = it.first;
Wire *new_wire = it.second;
module->swap_names(new_wire, wire);
wire->attributes.clear();
wire->port_id = 0;
wire->port_input = false;
wire->port_output = false;
}
module->fixup_ports();
}
}
} ClkbufmapPass;
PRIVATE_NAMESPACE_END