yosys/passes/sat/eval.cc

604 lines
21 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] VlogHammer Verilog Regression Test Suite
// http://www.clifford.at/yosys/vloghammer.html
#include "kernel/register.h"
#include "kernel/celltypes.h"
#include "kernel/consteval.h"
#include "kernel/sigtools.h"
#include "kernel/satgen.h"
#include "kernel/log.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
namespace {
/* this should only be used for regression testing of ConstEval -- see vloghammer */
struct BruteForceEquivChecker
{
RTLIL::Module *mod1, *mod2;
RTLIL::SigSpec mod1_inputs, mod1_outputs;
RTLIL::SigSpec mod2_inputs, mod2_outputs;
int counter, errors;
bool ignore_x_mod1;
void run_checker(RTLIL::SigSpec &inputs)
{
if (inputs.size() < mod1_inputs.size()) {
RTLIL::SigSpec inputs0 = inputs, inputs1 = inputs;
inputs0.append(RTLIL::Const(0, 1));
inputs1.append(RTLIL::Const(1, 1));
run_checker(inputs0);
run_checker(inputs1);
return;
}
ConstEval ce1(mod1), ce2(mod2);
ce1.set(mod1_inputs, inputs.as_const());
ce2.set(mod2_inputs, inputs.as_const());
RTLIL::SigSpec sig1 = mod1_outputs, undef1;
RTLIL::SigSpec sig2 = mod2_outputs, undef2;
if (!ce1.eval(sig1, undef1))
log("Failed ConstEval of module 1 outputs at signal %s (input: %s = %s).\n",
log_signal(undef1), log_signal(mod1_inputs), log_signal(inputs));
if (!ce2.eval(sig2, undef2))
log("Failed ConstEval of module 2 outputs at signal %s (input: %s = %s).\n",
log_signal(undef2), log_signal(mod1_inputs), log_signal(inputs));
if (ignore_x_mod1) {
for (int i = 0; i < SIZE(sig1); i++)
if (sig1[i] == RTLIL::State::Sx)
sig2[i] = RTLIL::State::Sx;
}
if (sig1 != sig2) {
log("Found counter-example (ignore_x_mod1 = %s):\n", ignore_x_mod1 ? "active" : "inactive");
log(" Module 1: %s = %s => %s = %s\n", log_signal(mod1_inputs), log_signal(inputs), log_signal(mod1_outputs), log_signal(sig1));
log(" Module 2: %s = %s => %s = %s\n", log_signal(mod2_inputs), log_signal(inputs), log_signal(mod2_outputs), log_signal(sig2));
errors++;
}
counter++;
}
BruteForceEquivChecker(RTLIL::Module *mod1, RTLIL::Module *mod2, bool ignore_x_mod1) :
mod1(mod1), mod2(mod2), counter(0), errors(0), ignore_x_mod1(ignore_x_mod1)
{
log("Checking for equivialence (brute-force): %s vs %s\n", mod1->name.c_str(), mod2->name.c_str());
for (auto &w : mod1->wires)
{
RTLIL::Wire *wire1 = w.second;
if (wire1->port_id == 0)
continue;
if (mod2->wires.count(wire1->name) == 0)
log_cmd_error("Port %s in module 1 has no counterpart in module 2!\n", wire1->name.c_str());
RTLIL::Wire *wire2 = mod2->wires.at(wire1->name);
if (wire1->width != wire2->width || wire1->port_input != wire2->port_input || wire1->port_output != wire2->port_output)
log_cmd_error("Port %s in module 1 does not match its counterpart in module 2!\n", wire1->name.c_str());
if (wire1->port_input) {
mod1_inputs.append(wire1);
mod2_inputs.append(wire2);
} else {
mod1_outputs.append(wire1);
mod2_outputs.append(wire2);
}
}
RTLIL::SigSpec inputs;
run_checker(inputs);
}
};
/* this should only be used for regression testing of ConstEval -- see vloghammer */
struct VlogHammerReporter
{
RTLIL::Design *design;
std::vector<RTLIL::Module*> modules;
std::vector<std::string> module_names;
std::vector<RTLIL::IdString> inputs;
std::vector<int> input_widths;
std::vector<RTLIL::Const> patterns;
int total_input_width;
std::vector<std::string> split(std::string text, const char *delim)
{
std::vector<std::string> list;
char *p = strdup(text.c_str());
char *t = strtok(p, delim);
while (t != NULL) {
list.push_back(t);
t = strtok(NULL, delim);
}
free(p);
return list;
}
void sat_check(RTLIL::Module *module, RTLIL::SigSpec recorded_set_vars, RTLIL::Const recorded_set_vals, RTLIL::SigSpec expected_y, bool model_undef)
{
log("Verifying SAT model (%s)..\n", model_undef ? "with undef" : "without undef");
ezDefaultSAT ez;
SigMap sigmap(module);
SatGen satgen(&ez, &sigmap);
satgen.model_undef = model_undef;
for (auto &c : module->cells)
if (!satgen.importCell(c.second))
log_error("Failed to import cell %s (type %s) to SAT database.\n", RTLIL::id2cstr(c.first), RTLIL::id2cstr(c.second->type));
ez.assume(satgen.signals_eq(recorded_set_vars, recorded_set_vals));
std::vector<int> y_vec = satgen.importDefSigSpec(module->wires.at("\\y"));
std::vector<bool> y_values;
if (model_undef) {
std::vector<int> y_undef_vec = satgen.importUndefSigSpec(module->wires.at("\\y"));
y_vec.insert(y_vec.end(), y_undef_vec.begin(), y_undef_vec.end());
}
log(" Created SAT problem with %d variables and %d clauses.\n",
ez.numCnfVariables(), ez.numCnfClauses());
if (!ez.solve(y_vec, y_values))
log_error("Failed to find solution to SAT problem.\n");
for (int i = 0; i < expected_y.size(); i++) {
RTLIL::State solution_bit = y_values.at(i) ? RTLIL::State::S1 : RTLIL::State::S0;
RTLIL::State expected_bit = expected_y[i].data;
if (model_undef) {
if (y_values.at(expected_y.size()+i))
solution_bit = RTLIL::State::Sx;
} else {
if (expected_bit == RTLIL::State::Sx)
continue;
}
if (solution_bit != expected_bit) {
std::string sat_bits, rtl_bits;
for (int k = expected_y.size()-1; k >= 0; k--) {
if (model_undef && y_values.at(expected_y.size()+k))
sat_bits += "x";
else
sat_bits += y_values.at(k) ? "1" : "0";
rtl_bits += expected_y[k] == RTLIL::State::Sx ? "x" : expected_y[k] == RTLIL::State::S1 ? "1" : "0";
}
log_error("Found error in SAT model: y[%d] = %s, should be %s:\n SAT: %s\n RTL: %s\n %*s^\n",
int(i), log_signal(solution_bit), log_signal(expected_bit),
sat_bits.c_str(), rtl_bits.c_str(), expected_y.size()-i-1, "");
}
}
if (model_undef)
{
std::vector<int> cmp_vars;
std::vector<bool> cmp_vals;
std::vector<bool> y_undef(y_values.begin() + expected_y.size(), y_values.end());
for (int i = 0; i < expected_y.size(); i++)
if (y_undef.at(i))
{
log(" Toggling undef bit %d to test undef gating.\n", i);
if (!ez.solve(y_vec, y_values, ez.IFF(y_vec.at(i), y_values.at(i) ? ez.FALSE : ez.TRUE)))
log_error("Failed to find solution with toggled bit!\n");
cmp_vars.push_back(y_vec.at(expected_y.size() + i));
cmp_vals.push_back(true);
}
else
{
cmp_vars.push_back(y_vec.at(i));
cmp_vals.push_back(y_values.at(i));
cmp_vars.push_back(y_vec.at(expected_y.size() + i));
cmp_vals.push_back(false);
}
log(" Testing if SAT solution is unique.\n");
ez.assume(ez.vec_ne(cmp_vars, ez.vec_const(cmp_vals)));
if (ez.solve(y_vec, y_values))
log_error("Found two distinct solutions to SAT problem.\n");
}
else
{
log(" Testing if SAT solution is unique.\n");
ez.assume(ez.vec_ne(y_vec, ez.vec_const(y_values)));
if (ez.solve(y_vec, y_values))
log_error("Found two distinct solutions to SAT problem.\n");
}
log(" SAT model verified.\n");
}
void run()
{
for (int idx = 0; idx < int(patterns.size()); idx++)
{
log("Creating report for pattern %d: %s\n", idx, log_signal(patterns[idx]));
std::string input_pattern_list;
RTLIL::SigSpec rtl_sig;
for (int mod = 0; mod < int(modules.size()); mod++)
{
RTLIL::SigSpec recorded_set_vars;
RTLIL::Const recorded_set_vals;
RTLIL::Module *module = modules[mod];
std::string module_name = module_names[mod].c_str();
ConstEval ce(module);
std::vector<RTLIL::State> bits(patterns[idx].bits.begin(), patterns[idx].bits.begin() + total_input_width);
for (int i = 0; i < int(inputs.size()); i++) {
RTLIL::Wire *wire = module->wires.at(inputs[i]);
for (int j = input_widths[i]-1; j >= 0; j--) {
ce.set(RTLIL::SigSpec(wire, j), bits.back());
recorded_set_vars.append(RTLIL::SigSpec(wire, j));
recorded_set_vals.bits.push_back(bits.back());
bits.pop_back();
}
if (module == modules.front()) {
RTLIL::SigSpec sig(wire);
if (!ce.eval(sig))
log_error("Can't read back value for port %s!\n", RTLIL::id2cstr(inputs[i]));
input_pattern_list += stringf(" %s", sig.as_const().as_string().c_str());
log("++PAT++ %d %s %s #\n", idx, RTLIL::id2cstr(inputs[i]), sig.as_const().as_string().c_str());
}
}
if (module->wires.count("\\y") == 0)
log_error("No output wire (y) found in module %s!\n", RTLIL::id2cstr(module->name));
RTLIL::SigSpec sig(module->wires.at("\\y"));
RTLIL::SigSpec undef;
while (!ce.eval(sig, undef)) {
// log_error("Evaluation of y in module %s failed: sig=%s, undef=%s\n", RTLIL::id2cstr(module->name), log_signal(sig), log_signal(undef));
log("Warning: Setting signal %s in module %s to undef.\n", log_signal(undef), RTLIL::id2cstr(module->name));
ce.set(undef, RTLIL::Const(RTLIL::State::Sx, undef.size()));
}
log("++VAL++ %d %s %s #\n", idx, module_name.c_str(), sig.as_const().as_string().c_str());
if (module_name == "rtl") {
rtl_sig = sig;
sat_check(module, recorded_set_vars, recorded_set_vals, sig, false);
sat_check(module, recorded_set_vars, recorded_set_vals, sig, true);
} else if (rtl_sig.size() > 0) {
if (rtl_sig.size() != sig.size())
log_error("Output (y) has a different width in module %s compared to rtl!\n", RTLIL::id2cstr(module->name));
for (int i = 0; i < SIZE(sig); i++)
if (rtl_sig[i] == RTLIL::State::Sx)
sig[i] = RTLIL::State::Sx;
}
log("++RPT++ %d%s %s %s\n", idx, input_pattern_list.c_str(), sig.as_const().as_string().c_str(), module_name.c_str());
}
log("++RPT++ ----\n");
}
log("++OK++\n");
}
VlogHammerReporter(RTLIL::Design *design, std::string module_prefix, std::string module_list, std::string input_list, std::string pattern_list) : design(design)
{
for (auto name : split(module_list, ",")) {
RTLIL::IdString esc_name = RTLIL::escape_id(module_prefix + name);
if (design->modules.count(esc_name) == 0)
log_error("Can't find module %s in current design!\n", name.c_str());
log("Using module %s (%s).\n", esc_name.c_str(), name.c_str());
modules.push_back(design->modules.at(esc_name));
module_names.push_back(name);
}
total_input_width = 0;
for (auto name : split(input_list, ",")) {
int width = -1;
RTLIL::IdString esc_name = RTLIL::escape_id(name);
for (auto mod : modules) {
if (mod->wires.count(esc_name) == 0)
log_error("Can't find input %s in module %s!\n", name.c_str(), RTLIL::id2cstr(mod->name));
RTLIL::Wire *port = mod->wires.at(esc_name);
if (!port->port_input || port->port_output)
log_error("Wire %s in module %s is not an input!\n", name.c_str(), RTLIL::id2cstr(mod->name));
if (width >= 0 && width != port->width)
log_error("Port %s has different sizes in the different modules!\n", name.c_str());
width = port->width;
}
log("Using input port %s with width %d.\n", esc_name.c_str(), width);
inputs.push_back(esc_name);
input_widths.push_back(width);
total_input_width += width;
}
for (auto pattern : split(pattern_list, ",")) {
RTLIL::SigSpec sig;
bool invert_pattern = false;
if (pattern.size() > 0 && pattern[0] == '~') {
invert_pattern = true;
pattern = pattern.substr(1);
}
if (!RTLIL::SigSpec::parse(sig, NULL, pattern) || !sig.is_fully_const())
log_error("Failed to parse pattern %s!\n", pattern.c_str());
if (sig.size() < total_input_width)
log_error("Pattern %s is to short!\n", pattern.c_str());
patterns.push_back(sig.as_const());
if (invert_pattern) {
for (auto &bit : patterns.back().bits)
if (bit == RTLIL::State::S0)
bit = RTLIL::State::S1;
else if (bit == RTLIL::State::S1)
bit = RTLIL::State::S0;
}
log("Using pattern %s.\n", patterns.back().as_string().c_str());
}
}
};
} /* namespace */
struct EvalPass : public Pass {
EvalPass() : Pass("eval", "evaluate the circuit given an input") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" eval [options] [selection]\n");
log("\n");
log("This command evaluates the value of a signal given the value of all required\n");
log("inputs.\n");
log("\n");
log(" -set <signal> <value>\n");
log(" set the specified signal to the specified value.\n");
log("\n");
log(" -set-undef\n");
log(" set all unspecified source signals to undef (x)\n");
log("\n");
log(" -table <signal>\n");
log(" create a truth table using the specified input signals\n");
log("\n");
log(" -show <signal>\n");
log(" show the value for the specified signal. if no -show option is passed\n");
log(" then all output ports of the current module are used.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
std::vector<std::pair<std::string, std::string>> sets;
std::vector<std::string> shows, tables;
bool set_undef = false;
log_header("Executing EVAL pass (evaluate the circuit given an input).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-set" && argidx+2 < args.size()) {
std::string lhs = args[++argidx].c_str();
std::string rhs = args[++argidx].c_str();
sets.push_back(std::pair<std::string, std::string>(lhs, rhs));
continue;
}
if (args[argidx] == "-set-undef") {
set_undef = true;
continue;
}
if (args[argidx] == "-show" && argidx+1 < args.size()) {
shows.push_back(args[++argidx]);
continue;
}
if (args[argidx] == "-table" && argidx+1 < args.size()) {
tables.push_back(args[++argidx]);
continue;
}
if ((args[argidx] == "-brute_force_equiv_checker" || args[argidx] == "-brute_force_equiv_checker_x") && argidx+3 == args.size()) {
/* this should only be used for regression testing of ConstEval -- see vloghammer */
std::string mod1_name = RTLIL::escape_id(args[++argidx]);
std::string mod2_name = RTLIL::escape_id(args[++argidx]);
if (design->modules.count(mod1_name) == 0)
log_error("Can't find module `%s'!\n", mod1_name.c_str());
if (design->modules.count(mod2_name) == 0)
log_error("Can't find module `%s'!\n", mod2_name.c_str());
BruteForceEquivChecker checker(design->modules.at(mod1_name), design->modules.at(mod2_name), args[argidx-2] == "-brute_force_equiv_checker_x");
if (checker.errors > 0)
log_cmd_error("Modules are not equivialent!\n");
log("Verified %s = %s (using brute-force check on %d cases).\n",
mod1_name.c_str(), mod2_name.c_str(), checker.counter);
return;
}
if (args[argidx] == "-vloghammer_report" && argidx+5 == args.size()) {
/* this should only be used for regression testing of ConstEval -- see vloghammer */
std::string module_prefix = args[++argidx];
std::string module_list = args[++argidx];
std::string input_list = args[++argidx];
std::string pattern_list = args[++argidx];
VlogHammerReporter reporter(design, module_prefix, module_list, input_list, pattern_list);
reporter.run();
return;
}
break;
}
extra_args(args, argidx, design);
RTLIL::Module *module = NULL;
for (auto &mod_it : design->modules)
if (design->selected(mod_it.second)) {
if (module)
log_cmd_error("Only one module must be selected for the EVAL pass! (selected: %s and %s)\n",
RTLIL::id2cstr(module->name), RTLIL::id2cstr(mod_it.first));
module = mod_it.second;
}
if (module == NULL)
log_cmd_error("Can't perform EVAL on an empty selection!\n");
ConstEval ce(module);
for (auto &it : sets) {
RTLIL::SigSpec lhs, rhs;
if (!RTLIL::SigSpec::parse_sel(lhs, design, module, it.first))
log_cmd_error("Failed to parse lhs set expression `%s'.\n", it.first.c_str());
if (!RTLIL::SigSpec::parse_rhs(lhs, rhs, module, it.second))
log_cmd_error("Failed to parse rhs set expression `%s'.\n", it.second.c_str());
if (!rhs.is_fully_const())
log_cmd_error("Right-hand-side set expression `%s' is not constant.\n", it.second.c_str());
if (lhs.size() != rhs.size())
log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
it.first.c_str(), log_signal(lhs), lhs.size(), it.second.c_str(), log_signal(rhs), rhs.size());
ce.set(lhs, rhs.as_const());
}
if (shows.size() == 0) {
for (auto &it : module->wires)
if (it.second->port_output)
shows.push_back(it.second->name);
}
if (tables.empty())
{
for (auto &it : shows) {
RTLIL::SigSpec signal, value, undef;
if (!RTLIL::SigSpec::parse_sel(signal, design, module, it))
log_cmd_error("Failed to parse show expression `%s'.\n", it.c_str());
value = signal;
if (set_undef) {
while (!ce.eval(value, undef)) {
log("Failed to evaluate signal %s: Missing value for %s. -> setting to undef\n", log_signal(signal), log_signal(undef));
ce.set(undef, RTLIL::Const(RTLIL::State::Sx, undef.size()));
undef = RTLIL::SigSpec();
}
log("Eval result: %s = %s.\n", log_signal(signal), log_signal(value));
} else {
if (!ce.eval(value, undef))
log("Failed to evaluate signal %s: Missing value for %s.\n", log_signal(signal), log_signal(undef));
else
log("Eval result: %s = %s.\n", log_signal(signal), log_signal(value));
}
}
}
else
{
RTLIL::SigSpec tabsigs, signal, value, undef;
std::vector<std::vector<std::string>> tab;
int tab_sep_colidx = 0;
for (auto &it : shows) {
RTLIL::SigSpec sig;
if (!RTLIL::SigSpec::parse_sel(sig, design, module, it))
log_cmd_error("Failed to parse show expression `%s'.\n", it.c_str());
signal.append(sig);
}
for (auto &it : tables) {
RTLIL::SigSpec sig;
if (!RTLIL::SigSpec::parse_sel(sig, design, module, it))
log_cmd_error("Failed to parse table expression `%s'.\n", it.c_str());
tabsigs.append(sig);
}
std::vector<std::string> tab_line;
for (auto &c : tabsigs.chunks())
tab_line.push_back(log_signal(c));
tab_sep_colidx = tab_line.size();
for (auto &c : signal.chunks())
tab_line.push_back(log_signal(c));
tab.push_back(tab_line);
tab_line.clear();
RTLIL::Const tabvals(0, tabsigs.size());
do
{
ce.push();
ce.set(tabsigs, tabvals);
value = signal;
RTLIL::SigSpec this_undef;
while (!ce.eval(value, this_undef)) {
if (!set_undef) {
log("Failed to evaluate signal %s at %s = %s: Missing value for %s.\n", log_signal(signal),
log_signal(tabsigs), log_signal(tabvals), log_signal(this_undef));
return;
}
ce.set(this_undef, RTLIL::Const(RTLIL::State::Sx, this_undef.size()));
undef.append(this_undef);
this_undef = RTLIL::SigSpec();
}
int pos = 0;
for (auto &c : tabsigs.chunks()) {
tab_line.push_back(log_signal(RTLIL::SigSpec(tabvals).extract(pos, c.width)));
pos += c.width;
}
pos = 0;
for (auto &c : signal.chunks()) {
tab_line.push_back(log_signal(value.extract(pos, c.width)));
pos += c.width;
}
tab.push_back(tab_line);
tab_line.clear();
ce.pop();
tabvals = RTLIL::const_add(tabvals, RTLIL::Const(1), false, false, tabvals.bits.size());
}
while (tabvals.as_bool());
std::vector<int> tab_column_width;
for (auto &row : tab) {
if (tab_column_width.size() < row.size())
tab_column_width.resize(row.size());
for (size_t i = 0; i < row.size(); i++)
tab_column_width[i] = std::max(tab_column_width[i], int(row[i].size()));
}
log("\n");
bool first = true;
for (auto &row : tab) {
for (size_t i = 0; i < row.size(); i++) {
int k = int(i) < tab_sep_colidx ? tab_sep_colidx - i - 1 : i;
log(" %s%*s", k == tab_sep_colidx ? "| " : "", tab_column_width[k], row[k].c_str());
}
log("\n");
if (first) {
for (size_t i = 0; i < row.size(); i++) {
int k = int(i) < tab_sep_colidx ? tab_sep_colidx - i - 1 : i;
log(" %s", k == tab_sep_colidx ? "| " : "");
for (int j = 0; j < tab_column_width[k]; j++)
log("-");
}
log("\n");
first = false;
}
}
log("\n");
if (undef.size() > 0) {
undef.sort_and_unify();
log("Assumend undef (x) value for the following singals: %s\n\n", log_signal(undef));
}
}
}
} EvalPass;