yosys/passes/opt/opt_muxtree.cc

445 lines
13 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "opt_status.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/celltypes.h"
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <set>
using RTLIL::id2cstr;
struct OptMuxtreeWorker
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap assign_map;
int removed_count;
struct bitDef_t : public std::pair<RTLIL::Wire*, int> {
bitDef_t() : std::pair<RTLIL::Wire*, int>(NULL, 0) { }
bitDef_t(const RTLIL::SigBit &bit) : std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset) { }
};
struct bitinfo_t {
int num;
bitDef_t bit;
bool seen_non_mux;
std::vector<int> mux_users;
std::vector<int> mux_drivers;
};
std::map<bitDef_t, int> bit2num;
std::vector<bitinfo_t> bit2info;
struct portinfo_t {
std::vector<int> ctrl_sigs;
std::vector<int> input_sigs;
std::vector<int> input_muxes;
bool const_activated;
bool enabled;
};
struct muxinfo_t {
RTLIL::Cell *cell;
std::vector<portinfo_t> ports;
};
std::vector<muxinfo_t> mux2info;
OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) :
design(design), module(module), assign_map(module), removed_count(0)
{
log("Running muxtree optimizier on module %s..\n", module->name.c_str());
log(" Creating internal representation of mux trees.\n");
// Populate bit2info[]:
// .seen_non_mux
// .mux_users
// .mux_drivers
// Populate mux2info[].ports[]:
// .ctrl_sigs
// .input_sigs
// .const_activated
for (auto &cell_it : module->cells)
{
RTLIL::Cell *cell = cell_it.second;
if (cell->type == "$mux" || cell->type == "$pmux" || cell->type == "$safe_pmux")
{
RTLIL::SigSpec sig_a = cell->connections["\\A"];
RTLIL::SigSpec sig_b = cell->connections["\\B"];
RTLIL::SigSpec sig_s = cell->connections["\\S"];
RTLIL::SigSpec sig_y = cell->connections["\\Y"];
muxinfo_t muxinfo;
muxinfo.cell = cell;
for (int i = 0; i < sig_s.size(); i++) {
RTLIL::SigSpec sig = sig_b.extract(i*sig_a.size(), sig_a.size());
RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1));
portinfo_t portinfo;
for (int idx : sig2bits(sig)) {
add_to_list(bit2info[idx].mux_users, mux2info.size());
add_to_list(portinfo.input_sigs, idx);
}
for (int idx : sig2bits(ctrl_sig))
add_to_list(portinfo.ctrl_sigs, idx);
portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool();
portinfo.enabled = false;
muxinfo.ports.push_back(portinfo);
}
portinfo_t portinfo;
for (int idx : sig2bits(sig_a)) {
add_to_list(bit2info[idx].mux_users, mux2info.size());
add_to_list(portinfo.input_sigs, idx);
}
portinfo.const_activated = false;
portinfo.enabled = false;
muxinfo.ports.push_back(portinfo);
for (int idx : sig2bits(sig_y))
add_to_list(bit2info[idx].mux_drivers, mux2info.size());
for (int idx : sig2bits(sig_s))
bit2info[idx].seen_non_mux = true;
mux2info.push_back(muxinfo);
}
else
{
for (auto &it : cell->connections) {
for (int idx : sig2bits(it.second))
bit2info[idx].seen_non_mux = true;
}
}
}
for (auto &it : module->wires) {
if (it.second->port_output)
for (int idx : sig2bits(RTLIL::SigSpec(it.second)))
bit2info[idx].seen_non_mux = true;
}
if (mux2info.size() == 0) {
log(" No muxes found in this module.\n");
return;
}
// Populate mux2info[].ports[]:
// .input_muxes
for (size_t i = 0; i < bit2info.size(); i++)
for (int j : bit2info[i].mux_users)
for (auto &p : mux2info[j].ports) {
if (is_in_list(p.input_sigs, i))
for (int k : bit2info[i].mux_drivers)
add_to_list(p.input_muxes, k);
}
log(" Evaluating internal representation of mux trees.\n");
std::set<int> root_muxes;
for (auto &bi : bit2info) {
if (!bi.seen_non_mux)
continue;
for (int mux_idx : bi.mux_drivers)
root_muxes.insert(mux_idx);
}
for (int mux_idx : root_muxes)
eval_root_mux(mux_idx);
log(" Analyzing evaluation results.\n");
for (auto &mi : mux2info)
{
std::vector<int> live_ports;
for (size_t port_idx = 0; port_idx < mi.ports.size(); port_idx++) {
portinfo_t &pi = mi.ports[port_idx];
if (pi.enabled) {
live_ports.push_back(port_idx);
} else {
log(" dead port %zd/%zd on %s %s.\n", port_idx+1, mi.ports.size(),
mi.cell->type.c_str(), mi.cell->name.c_str());
OPT_DID_SOMETHING = true;
removed_count++;
}
}
if (live_ports.size() == mi.ports.size())
continue;
if (live_ports.size() == 0) {
module->cells.erase(mi.cell->name);
delete mi.cell;
continue;
}
RTLIL::SigSpec sig_a = mi.cell->connections["\\A"];
RTLIL::SigSpec sig_b = mi.cell->connections["\\B"];
RTLIL::SigSpec sig_s = mi.cell->connections["\\S"];
RTLIL::SigSpec sig_y = mi.cell->connections["\\Y"];
RTLIL::SigSpec sig_ports = sig_b;
sig_ports.append(sig_a);
if (live_ports.size() == 1)
{
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[0]*sig_a.size(), sig_a.size());
module->connections.push_back(RTLIL::SigSig(sig_y, sig_in));
module->cells.erase(mi.cell->name);
delete mi.cell;
}
else
{
RTLIL::SigSpec new_sig_a, new_sig_b, new_sig_s;
for (size_t i = 0; i < live_ports.size(); i++) {
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[i]*sig_a.size(), sig_a.size());
if (i == live_ports.size()-1) {
new_sig_a = sig_in;
} else {
new_sig_b.append(sig_in);
new_sig_s.append(sig_s.extract(live_ports[i], 1));
}
}
mi.cell->connections["\\A"] = new_sig_a;
mi.cell->connections["\\B"] = new_sig_b;
mi.cell->connections["\\S"] = new_sig_s;
if (new_sig_s.size() == 1) {
mi.cell->type = "$mux";
mi.cell->parameters.erase("\\S_WIDTH");
} else {
mi.cell->parameters["\\S_WIDTH"] = RTLIL::Const(new_sig_s.size());
}
}
}
}
bool list_is_subset(const std::vector<int> &sub, const std::vector<int> &super)
{
for (int v : sub)
if (!is_in_list(super, v))
return false;
return true;
}
bool is_in_list(const std::vector<int> &list, int value)
{
for (int v : list)
if (v == value)
return true;
return false;
}
void add_to_list(std::vector<int> &list, int value)
{
if (!is_in_list(list, value))
list.push_back(value);
}
std::vector<int> sig2bits(RTLIL::SigSpec sig)
{
std::vector<int> results;
assign_map.apply(sig);
for (auto &bit : sig)
if (bit.wire != NULL) {
if (bit2num.count(bit) == 0) {
bitinfo_t info;
info.num = bit2info.size();
info.bit = bit;
info.seen_non_mux = false;
bit2info.push_back(info);
bit2num[info.bit] = info.num;
}
results.push_back(bit2num[bit]);
}
return results;
}
struct knowledge_t
{
// database of known inactive signals
// the 2nd integer is a reference counter used to manage the
// list. when it is non-zero the signal in known to be inactive
std::map<int, int> known_inactive;
// database of known active signals
// the 2nd dimension is the list of or-ed signals. so we know that
// for each i there is a j so that known_active[i][j] points to an
// inactive control signal.
std::vector<std::vector<int>> known_active;
// this is just used to keep track of visited muxes in order to prohibit
// endless recursion in mux loops
std::set<int> visited_muxes;
};
void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx)
{
muxinfo_t &muxinfo = mux2info[mux_idx];
muxinfo.ports[port_idx].enabled = true;
for (size_t i = 0; i < muxinfo.ports.size(); i++) {
if (int(i) == port_idx)
continue;
for (int b : muxinfo.ports[i].ctrl_sigs)
knowledge.known_inactive[b]++;
}
if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated)
knowledge.known_active.push_back(muxinfo.ports[port_idx].ctrl_sigs);
std::vector<int> parent_muxes;
for (int m : muxinfo.ports[port_idx].input_muxes) {
if (knowledge.visited_muxes.count(m) > 0)
continue;
knowledge.visited_muxes.insert(m);
parent_muxes.push_back(m);
}
for (int m : parent_muxes)
eval_mux(knowledge, m);
for (int m : parent_muxes)
knowledge.visited_muxes.erase(m);
if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated)
knowledge.known_active.pop_back();
for (size_t i = 0; i < muxinfo.ports.size(); i++) {
if (int(i) == port_idx)
continue;
for (int b : muxinfo.ports[i].ctrl_sigs)
knowledge.known_inactive[b]--;
}
}
void eval_mux(knowledge_t &knowledge, int mux_idx)
{
muxinfo_t &muxinfo = mux2info[mux_idx];
// if there is a constant activated port we just use it
for (size_t port_idx = 0; port_idx < muxinfo.ports.size()-1; port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_activated) {
eval_mux_port(knowledge, mux_idx, port_idx);
return;
}
}
// compare ports with known_active signals. if we find a match, only this
// port can be active. do not include the last port (its the default port
// that has no control signals).
for (size_t port_idx = 0; port_idx < muxinfo.ports.size()-1; port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
for (size_t i = 0; i < knowledge.known_active.size(); i++) {
if (list_is_subset(knowledge.known_active[i], portinfo.ctrl_sigs)) {
eval_mux_port(knowledge, mux_idx, port_idx);
return;
}
}
}
// compare ports with known_inactive and known_active signals. If all control
// signals of the port are know_inactive or if the control signals of all other
// ports are known_active this port can't be activated. this loop includes the
// default port but no known_inactive match is performed on the default port.
for (size_t port_idx = 0; port_idx < muxinfo.ports.size(); port_idx++)
{
portinfo_t &portinfo = muxinfo.ports[port_idx];
if (port_idx < muxinfo.ports.size()-1) {
bool found_non_known_inactive = false;
for (int i : portinfo.ctrl_sigs)
if (knowledge.known_inactive[i] == 0)
found_non_known_inactive = true;
if (!found_non_known_inactive)
continue;
}
bool port_active = true;
std::vector<int> other_ctrl_sig;
for (size_t i = 0; i < muxinfo.ports.size()-1; i++) {
if (i == port_idx)
continue;
other_ctrl_sig.insert(other_ctrl_sig.end(),
muxinfo.ports[i].ctrl_sigs.begin(), muxinfo.ports[i].ctrl_sigs.end());
}
for (size_t i = 0; i < knowledge.known_active.size(); i++) {
if (list_is_subset(knowledge.known_active[i], other_ctrl_sig))
port_active = false;
}
if (port_active)
eval_mux_port(knowledge, mux_idx, port_idx);
}
}
void eval_root_mux(int mux_idx)
{
knowledge_t knowledge;
knowledge.visited_muxes.insert(mux_idx);
eval_mux(knowledge, mux_idx);
}
};
struct OptMuxtreePass : public Pass {
OptMuxtreePass() : Pass("opt_muxtree", "eliminate dead trees in multiplexer trees") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_muxtree [selection]\n");
log("\n");
log("This pass analyzes the control signals for the multiplexer trees in the design\n");
log("and identifies inputs that can never be active. It then removes this dead\n");
log("branches from the multiplexer trees.\n");
log("\n");
log("This pass only operates on completely selected modules without processes.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header("Executing OPT_MUXTREE pass (detect dead branches in mux trees).\n");
extra_args(args, 1, design);
int total_count = 0;
for (auto &mod_it : design->modules) {
if (!design->selected_whole_module(mod_it.first)) {
if (design->selected(mod_it.second))
log("Skipping module %s as it is only partially selected.\n", id2cstr(mod_it.second->name));
continue;
}
if (mod_it.second->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", id2cstr(mod_it.second->name));
} else {
OptMuxtreeWorker worker(design, mod_it.second);
total_count += worker.removed_count;
}
}
log("Removed %d multiplexer ports.\n", total_count);
}
} OptMuxtreePass;