mirror of https://github.com/YosysHQ/yosys.git
445 lines
13 KiB
C++
445 lines
13 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "opt_status.h"
|
|
#include "kernel/register.h"
|
|
#include "kernel/sigtools.h"
|
|
#include "kernel/log.h"
|
|
#include "kernel/celltypes.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <set>
|
|
|
|
using RTLIL::id2cstr;
|
|
|
|
struct OptMuxtreeWorker
|
|
{
|
|
RTLIL::Design *design;
|
|
RTLIL::Module *module;
|
|
SigMap assign_map;
|
|
int removed_count;
|
|
|
|
struct bitDef_t : public std::pair<RTLIL::Wire*, int> {
|
|
bitDef_t() : std::pair<RTLIL::Wire*, int>(NULL, 0) { }
|
|
bitDef_t(const RTLIL::SigBit &bit) : std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset) { }
|
|
};
|
|
|
|
|
|
struct bitinfo_t {
|
|
int num;
|
|
bitDef_t bit;
|
|
bool seen_non_mux;
|
|
std::vector<int> mux_users;
|
|
std::vector<int> mux_drivers;
|
|
};
|
|
|
|
std::map<bitDef_t, int> bit2num;
|
|
std::vector<bitinfo_t> bit2info;
|
|
|
|
struct portinfo_t {
|
|
std::vector<int> ctrl_sigs;
|
|
std::vector<int> input_sigs;
|
|
std::vector<int> input_muxes;
|
|
bool const_activated;
|
|
bool enabled;
|
|
};
|
|
|
|
struct muxinfo_t {
|
|
RTLIL::Cell *cell;
|
|
std::vector<portinfo_t> ports;
|
|
};
|
|
|
|
std::vector<muxinfo_t> mux2info;
|
|
|
|
OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) :
|
|
design(design), module(module), assign_map(module), removed_count(0)
|
|
{
|
|
log("Running muxtree optimizier on module %s..\n", module->name.c_str());
|
|
|
|
log(" Creating internal representation of mux trees.\n");
|
|
|
|
// Populate bit2info[]:
|
|
// .seen_non_mux
|
|
// .mux_users
|
|
// .mux_drivers
|
|
// Populate mux2info[].ports[]:
|
|
// .ctrl_sigs
|
|
// .input_sigs
|
|
// .const_activated
|
|
for (auto &cell_it : module->cells)
|
|
{
|
|
RTLIL::Cell *cell = cell_it.second;
|
|
if (cell->type == "$mux" || cell->type == "$pmux" || cell->type == "$safe_pmux")
|
|
{
|
|
RTLIL::SigSpec sig_a = cell->connections["\\A"];
|
|
RTLIL::SigSpec sig_b = cell->connections["\\B"];
|
|
RTLIL::SigSpec sig_s = cell->connections["\\S"];
|
|
RTLIL::SigSpec sig_y = cell->connections["\\Y"];
|
|
|
|
muxinfo_t muxinfo;
|
|
muxinfo.cell = cell;
|
|
|
|
for (int i = 0; i < sig_s.size(); i++) {
|
|
RTLIL::SigSpec sig = sig_b.extract(i*sig_a.size(), sig_a.size());
|
|
RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1));
|
|
portinfo_t portinfo;
|
|
for (int idx : sig2bits(sig)) {
|
|
add_to_list(bit2info[idx].mux_users, mux2info.size());
|
|
add_to_list(portinfo.input_sigs, idx);
|
|
}
|
|
for (int idx : sig2bits(ctrl_sig))
|
|
add_to_list(portinfo.ctrl_sigs, idx);
|
|
portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool();
|
|
portinfo.enabled = false;
|
|
muxinfo.ports.push_back(portinfo);
|
|
}
|
|
|
|
portinfo_t portinfo;
|
|
for (int idx : sig2bits(sig_a)) {
|
|
add_to_list(bit2info[idx].mux_users, mux2info.size());
|
|
add_to_list(portinfo.input_sigs, idx);
|
|
}
|
|
portinfo.const_activated = false;
|
|
portinfo.enabled = false;
|
|
muxinfo.ports.push_back(portinfo);
|
|
|
|
for (int idx : sig2bits(sig_y))
|
|
add_to_list(bit2info[idx].mux_drivers, mux2info.size());
|
|
|
|
for (int idx : sig2bits(sig_s))
|
|
bit2info[idx].seen_non_mux = true;
|
|
|
|
mux2info.push_back(muxinfo);
|
|
}
|
|
else
|
|
{
|
|
for (auto &it : cell->connections) {
|
|
for (int idx : sig2bits(it.second))
|
|
bit2info[idx].seen_non_mux = true;
|
|
}
|
|
}
|
|
}
|
|
for (auto &it : module->wires) {
|
|
if (it.second->port_output)
|
|
for (int idx : sig2bits(RTLIL::SigSpec(it.second)))
|
|
bit2info[idx].seen_non_mux = true;
|
|
}
|
|
|
|
if (mux2info.size() == 0) {
|
|
log(" No muxes found in this module.\n");
|
|
return;
|
|
}
|
|
|
|
// Populate mux2info[].ports[]:
|
|
// .input_muxes
|
|
for (size_t i = 0; i < bit2info.size(); i++)
|
|
for (int j : bit2info[i].mux_users)
|
|
for (auto &p : mux2info[j].ports) {
|
|
if (is_in_list(p.input_sigs, i))
|
|
for (int k : bit2info[i].mux_drivers)
|
|
add_to_list(p.input_muxes, k);
|
|
}
|
|
|
|
log(" Evaluating internal representation of mux trees.\n");
|
|
|
|
std::set<int> root_muxes;
|
|
for (auto &bi : bit2info) {
|
|
if (!bi.seen_non_mux)
|
|
continue;
|
|
for (int mux_idx : bi.mux_drivers)
|
|
root_muxes.insert(mux_idx);
|
|
}
|
|
for (int mux_idx : root_muxes)
|
|
eval_root_mux(mux_idx);
|
|
|
|
log(" Analyzing evaluation results.\n");
|
|
|
|
for (auto &mi : mux2info)
|
|
{
|
|
std::vector<int> live_ports;
|
|
for (size_t port_idx = 0; port_idx < mi.ports.size(); port_idx++) {
|
|
portinfo_t &pi = mi.ports[port_idx];
|
|
if (pi.enabled) {
|
|
live_ports.push_back(port_idx);
|
|
} else {
|
|
log(" dead port %zd/%zd on %s %s.\n", port_idx+1, mi.ports.size(),
|
|
mi.cell->type.c_str(), mi.cell->name.c_str());
|
|
OPT_DID_SOMETHING = true;
|
|
removed_count++;
|
|
}
|
|
}
|
|
|
|
if (live_ports.size() == mi.ports.size())
|
|
continue;
|
|
|
|
if (live_ports.size() == 0) {
|
|
module->cells.erase(mi.cell->name);
|
|
delete mi.cell;
|
|
continue;
|
|
}
|
|
|
|
RTLIL::SigSpec sig_a = mi.cell->connections["\\A"];
|
|
RTLIL::SigSpec sig_b = mi.cell->connections["\\B"];
|
|
RTLIL::SigSpec sig_s = mi.cell->connections["\\S"];
|
|
RTLIL::SigSpec sig_y = mi.cell->connections["\\Y"];
|
|
|
|
RTLIL::SigSpec sig_ports = sig_b;
|
|
sig_ports.append(sig_a);
|
|
|
|
if (live_ports.size() == 1)
|
|
{
|
|
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[0]*sig_a.size(), sig_a.size());
|
|
module->connections.push_back(RTLIL::SigSig(sig_y, sig_in));
|
|
module->cells.erase(mi.cell->name);
|
|
delete mi.cell;
|
|
}
|
|
else
|
|
{
|
|
RTLIL::SigSpec new_sig_a, new_sig_b, new_sig_s;
|
|
|
|
for (size_t i = 0; i < live_ports.size(); i++) {
|
|
RTLIL::SigSpec sig_in = sig_ports.extract(live_ports[i]*sig_a.size(), sig_a.size());
|
|
if (i == live_ports.size()-1) {
|
|
new_sig_a = sig_in;
|
|
} else {
|
|
new_sig_b.append(sig_in);
|
|
new_sig_s.append(sig_s.extract(live_ports[i], 1));
|
|
}
|
|
}
|
|
|
|
mi.cell->connections["\\A"] = new_sig_a;
|
|
mi.cell->connections["\\B"] = new_sig_b;
|
|
mi.cell->connections["\\S"] = new_sig_s;
|
|
if (new_sig_s.size() == 1) {
|
|
mi.cell->type = "$mux";
|
|
mi.cell->parameters.erase("\\S_WIDTH");
|
|
} else {
|
|
mi.cell->parameters["\\S_WIDTH"] = RTLIL::Const(new_sig_s.size());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool list_is_subset(const std::vector<int> &sub, const std::vector<int> &super)
|
|
{
|
|
for (int v : sub)
|
|
if (!is_in_list(super, v))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool is_in_list(const std::vector<int> &list, int value)
|
|
{
|
|
for (int v : list)
|
|
if (v == value)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void add_to_list(std::vector<int> &list, int value)
|
|
{
|
|
if (!is_in_list(list, value))
|
|
list.push_back(value);
|
|
}
|
|
|
|
std::vector<int> sig2bits(RTLIL::SigSpec sig)
|
|
{
|
|
std::vector<int> results;
|
|
assign_map.apply(sig);
|
|
for (auto &bit : sig)
|
|
if (bit.wire != NULL) {
|
|
if (bit2num.count(bit) == 0) {
|
|
bitinfo_t info;
|
|
info.num = bit2info.size();
|
|
info.bit = bit;
|
|
info.seen_non_mux = false;
|
|
bit2info.push_back(info);
|
|
bit2num[info.bit] = info.num;
|
|
}
|
|
results.push_back(bit2num[bit]);
|
|
}
|
|
return results;
|
|
}
|
|
|
|
struct knowledge_t
|
|
{
|
|
// database of known inactive signals
|
|
// the 2nd integer is a reference counter used to manage the
|
|
// list. when it is non-zero the signal in known to be inactive
|
|
std::map<int, int> known_inactive;
|
|
|
|
// database of known active signals
|
|
// the 2nd dimension is the list of or-ed signals. so we know that
|
|
// for each i there is a j so that known_active[i][j] points to an
|
|
// inactive control signal.
|
|
std::vector<std::vector<int>> known_active;
|
|
|
|
// this is just used to keep track of visited muxes in order to prohibit
|
|
// endless recursion in mux loops
|
|
std::set<int> visited_muxes;
|
|
};
|
|
|
|
void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx)
|
|
{
|
|
muxinfo_t &muxinfo = mux2info[mux_idx];
|
|
muxinfo.ports[port_idx].enabled = true;
|
|
|
|
for (size_t i = 0; i < muxinfo.ports.size(); i++) {
|
|
if (int(i) == port_idx)
|
|
continue;
|
|
for (int b : muxinfo.ports[i].ctrl_sigs)
|
|
knowledge.known_inactive[b]++;
|
|
}
|
|
|
|
if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated)
|
|
knowledge.known_active.push_back(muxinfo.ports[port_idx].ctrl_sigs);
|
|
|
|
std::vector<int> parent_muxes;
|
|
for (int m : muxinfo.ports[port_idx].input_muxes) {
|
|
if (knowledge.visited_muxes.count(m) > 0)
|
|
continue;
|
|
knowledge.visited_muxes.insert(m);
|
|
parent_muxes.push_back(m);
|
|
}
|
|
for (int m : parent_muxes)
|
|
eval_mux(knowledge, m);
|
|
for (int m : parent_muxes)
|
|
knowledge.visited_muxes.erase(m);
|
|
|
|
if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated)
|
|
knowledge.known_active.pop_back();
|
|
|
|
for (size_t i = 0; i < muxinfo.ports.size(); i++) {
|
|
if (int(i) == port_idx)
|
|
continue;
|
|
for (int b : muxinfo.ports[i].ctrl_sigs)
|
|
knowledge.known_inactive[b]--;
|
|
}
|
|
}
|
|
|
|
void eval_mux(knowledge_t &knowledge, int mux_idx)
|
|
{
|
|
muxinfo_t &muxinfo = mux2info[mux_idx];
|
|
|
|
// if there is a constant activated port we just use it
|
|
for (size_t port_idx = 0; port_idx < muxinfo.ports.size()-1; port_idx++)
|
|
{
|
|
portinfo_t &portinfo = muxinfo.ports[port_idx];
|
|
if (portinfo.const_activated) {
|
|
eval_mux_port(knowledge, mux_idx, port_idx);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// compare ports with known_active signals. if we find a match, only this
|
|
// port can be active. do not include the last port (its the default port
|
|
// that has no control signals).
|
|
for (size_t port_idx = 0; port_idx < muxinfo.ports.size()-1; port_idx++)
|
|
{
|
|
portinfo_t &portinfo = muxinfo.ports[port_idx];
|
|
for (size_t i = 0; i < knowledge.known_active.size(); i++) {
|
|
if (list_is_subset(knowledge.known_active[i], portinfo.ctrl_sigs)) {
|
|
eval_mux_port(knowledge, mux_idx, port_idx);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// compare ports with known_inactive and known_active signals. If all control
|
|
// signals of the port are know_inactive or if the control signals of all other
|
|
// ports are known_active this port can't be activated. this loop includes the
|
|
// default port but no known_inactive match is performed on the default port.
|
|
for (size_t port_idx = 0; port_idx < muxinfo.ports.size(); port_idx++)
|
|
{
|
|
portinfo_t &portinfo = muxinfo.ports[port_idx];
|
|
|
|
if (port_idx < muxinfo.ports.size()-1) {
|
|
bool found_non_known_inactive = false;
|
|
for (int i : portinfo.ctrl_sigs)
|
|
if (knowledge.known_inactive[i] == 0)
|
|
found_non_known_inactive = true;
|
|
if (!found_non_known_inactive)
|
|
continue;
|
|
}
|
|
|
|
bool port_active = true;
|
|
std::vector<int> other_ctrl_sig;
|
|
for (size_t i = 0; i < muxinfo.ports.size()-1; i++) {
|
|
if (i == port_idx)
|
|
continue;
|
|
other_ctrl_sig.insert(other_ctrl_sig.end(),
|
|
muxinfo.ports[i].ctrl_sigs.begin(), muxinfo.ports[i].ctrl_sigs.end());
|
|
}
|
|
for (size_t i = 0; i < knowledge.known_active.size(); i++) {
|
|
if (list_is_subset(knowledge.known_active[i], other_ctrl_sig))
|
|
port_active = false;
|
|
}
|
|
if (port_active)
|
|
eval_mux_port(knowledge, mux_idx, port_idx);
|
|
}
|
|
}
|
|
|
|
void eval_root_mux(int mux_idx)
|
|
{
|
|
knowledge_t knowledge;
|
|
knowledge.visited_muxes.insert(mux_idx);
|
|
eval_mux(knowledge, mux_idx);
|
|
}
|
|
};
|
|
|
|
struct OptMuxtreePass : public Pass {
|
|
OptMuxtreePass() : Pass("opt_muxtree", "eliminate dead trees in multiplexer trees") { }
|
|
virtual void help()
|
|
{
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
log("\n");
|
|
log(" opt_muxtree [selection]\n");
|
|
log("\n");
|
|
log("This pass analyzes the control signals for the multiplexer trees in the design\n");
|
|
log("and identifies inputs that can never be active. It then removes this dead\n");
|
|
log("branches from the multiplexer trees.\n");
|
|
log("\n");
|
|
log("This pass only operates on completely selected modules without processes.\n");
|
|
log("\n");
|
|
}
|
|
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
|
|
{
|
|
log_header("Executing OPT_MUXTREE pass (detect dead branches in mux trees).\n");
|
|
extra_args(args, 1, design);
|
|
|
|
int total_count = 0;
|
|
for (auto &mod_it : design->modules) {
|
|
if (!design->selected_whole_module(mod_it.first)) {
|
|
if (design->selected(mod_it.second))
|
|
log("Skipping module %s as it is only partially selected.\n", id2cstr(mod_it.second->name));
|
|
continue;
|
|
}
|
|
if (mod_it.second->processes.size() > 0) {
|
|
log("Skipping module %s as it contains processes.\n", id2cstr(mod_it.second->name));
|
|
} else {
|
|
OptMuxtreeWorker worker(design, mod_it.second);
|
|
total_count += worker.removed_count;
|
|
}
|
|
}
|
|
log("Removed %d multiplexer ports.\n", total_count);
|
|
}
|
|
} OptMuxtreePass;
|
|
|